DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

P. Wocjan

Pawel Wocjan

Department of Computer Science
University of Central Florida

email: schneider128k@gmail.com

C. Elphick

Clive Elphick

email: clive.elphick@gmail.com

D. Anekstein

David Anekstein

Uknown

email: aneksteind@gmail.com

Title:

More tales of Hoffman: bounds for the vector chromatic number of a graph

PDF

Source:

Discussiones Mathematicae Graph Theory 43(1) (2023) 159-169

Received: 2020-03-26 , Revised: 2020-08-02 , Accepted: 2020-08-03 , Available online: 2020-09-14 , https://doi.org/10.7151/dmgt.2358

Abstract:

Let $\chi(G)$ denote the chromatic number of a graph and $\chi_v(G)$ denote the vector chromatic number. For all graphs $\chi_v(G) \le \chi(G)$ and for some graphs $\chi_v(G) \ll \chi(G)$. Galtman proved that Hoffman's well-known lower bound for $\chi(G)$ is in fact a lower bound for $\chi_v(G)$. We prove that two more spectral lower bounds for $\chi(G)$ are also lower bounds for $\chi_v(G)$. We then use one of these bounds to derive a new characterization of $\chi_v(G)$.

Keywords:

vector chromatic number, spectral bounds

References:

  1. T. Ando and M. Lin, Proof of a conjectured lower bound on the chromatic number of a graph, Linear Algebra Appl. 485 (2015) 480–484.
    https://doi.org/10.1016/j.laa.2015.08.007
  2. R. Bhatia, Matrix Analysis (Springer, 1997).
    https://doi.org/10.1007/978-1-4612-0653-8
  3. Y. Bilu, Tales of Hoffman: Three extensions of Hoffman's bound on the chromatic number, J. Combin. Theory Ser. B 96 (2006) 608–613.
    https://doi.org/10.1016/j.jctb.2005.10.002
  4. C. Elphick and P. Wocjan, Unified spectral bounds on the chromatic number, Discuss. Math. Graph Theory 35 (2015) 773–780.
    https://doi.org//10.7151/dmgt.1835
  5. C. Elphick and P. Wocjan, Spectral lower bounds on the quantum chromatic number of a graph, J. Combin. Theory Ser. A 168 (2019) 338–347.
    https://doi.org/10.1016/j.jcta.2019.06.008
  6. U. Feige, M. Langberg and G. Schechtman, Graphs with tiny vector chromatic number and huge chromatic numbers, SIAM J. Comput. 33 (2004) 1338–1368.
    https://doi.org/10.1137/S0097539703431391
  7. A. Galtman, Spectral characterizations of the Lovász number and the Delsarte number of a graph, J. Algebraic Combin. 12 (2000) 131–143.
    https://doi.org/10.1023/A:1026587926110
  8. C. Godsil, D.E. Roberson, R. Šamal and S. Severini, Sabidussi versus Hedetniemi for three variations of the chromatic number, Combinatorica 36 (2016) 395–415.
    https://doi.org/10.1007/s00493-014-3132-1
  9. C. Godsil, D.E. Roberson, B. Rooney, R. Šamal and A. Varvitsiotis, Graph homomorphisms via vector colorings, European J. Combin. 79 (2016) 244–261.
    https://doi.org/10.1016/j.ejc.2019.04.001
  10. A.J. Hoffman, On Eigenvalues and Colorings of Graphs, in: Graph Theory and its Applications, B. Harris, Ed. (Acad. Press, New York, 1970).
  11. D. Karger, R. Motwani and M. Sudan, Approximate graph coloring by semidefinite programming, J. ACM 45 (1998) 246–265.
    https://doi.org/10.1145/274787.274791
  12. L. Yu. Kolotilina, Inequalities for the extreme eigenvalues of block-partitioned Hermitian matrices with applications to spectral graph theory, J. Math. Sci. 176 (2011) 44–56 (translated from Zap. Nauchn. Sem. POMI 382 (2010) 82–103).
    https://doi.org/10.1007/s10958-011-0392-9
  13. L.S. de Lima, C.S. Oliveira, N.M.M. de Abreu and V. Nikiforov, The smallest eigenvalue of the signless Laplacian, Linear Algebra Appl. 435 (2011) 2570–2584.
    https://doi.org/10.1016/j.laa.2011.03.059
  14. L. Lovász, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory 25 (1979) 1–7.
    https://doi.org/10.1109/TIT.1979.1055985
  15. C. Meyer, Matrix Analysis and Applied Linear Algebra (SIAM, 2000).
  16. V. Nikiforov, Chromatic number and spectral radius, Linear Algebra Appl. 426 (2007) 810–814.
    https://doi.org/10.1016/j.laa.2007.06.005
  17. D.E. Roberson, Variations on a Theme: Graph Homomorphisms, PhD Thesis (University of Waterloo, 2013).
  18. P. Wocjan and C. Elphick, New spectral bounds on the chromatic number encompassing all eigenvalues of the adjacency matrix, Electron. J. Combin. 20 (2013) #P39.
    https://doi.org/10.37236/2735
  19. P. Wocjan and C. Elphick, Spectral lower bounds for the orthogonal and projective ranks of a graph, Electron. J. Combin. 26 (2019) #P3.45.
    https://doi.org/10.37236/8183
  20. X. Zhan, Matrix Inequalities, Lect. Notes Math. 1790 ( Springer, 2002).
    https://doi.org/10.1007/b83956
  21. More Tales of Hoffman: bounds for the vector chromatic number of a graph,.
    https://github.com/aneksteind/MoreTalesOfHoffman

Close