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Abstract

Let χ(G) denote the chromatic number of a graph and χv(G) denote
the vector chromatic number. For all graphs χv(G) ≤ χ(G) and for some
graphs χv(G) � χ(G). Galtman proved that Hoffman’s well-known lower
bound for χ(G) is in fact a lower bound for χv(G). We prove that two more
spectral lower bounds for χ(G) are also lower bounds for χv(G). We then
use one of these bounds to derive a new characterization of χv(G).
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1. Introduction

For any graph G let V denote the set of vertices where |V | = n, E denote
the set of edges where |E| = m, A denote the adjacency matrix, χ(G) denote
the chromatic number and ω(G) the clique number. Let µ1 ≥ µ2 ≥ · · · ≥ µn
denote the eigenvalues of A and let s+ and s− denote the sum of the squares
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of the positive and negative eigenvalues of A, respectively. Let G denote the
complement of G.

Let D be the diagonal matrix of vertex degrees, and let L = D−A denote the
Laplacian ofG andQ = D+A denote the signless Laplacian ofG. The eigenvalues
of L are λ1 ≥ · · · ≥ λn = 0 and the eigenvalues of Q are δ1 ≥ · · · ≥ δn.

The off-diagonal entries of A, L and Q are zero or one. A weight matrix
W = [wij ] has wij = 0 for i 6∼ j but wij is arbitrary for i ∼ j.

2. Vector Chromatic Numbers and Theta Functions

In 1979 Lovász [14] defined the theta function, ϑ(G), that is now named after
him, in order to upper bound the Shannon capacity, c(G), of a graph, and proved
that c(C5) = ϑ(C5) =

√
5. He also proved that ω(G) ≤ ϑ(G) ≤ χ(G). Schrijver

and Szegedy subsequently defined variants of the Lovász theta function, which
are denoted ϑ′(G) and ϑ+(G) respectively, where ϑ′(G) ≤ ϑ(G) ≤ ϑ+(G). All
three theta functions can be approximated to within a fixed ε in polynomial time
using semidefinite programming (SDP), even though computing ω(G) and χ(G)
is NP-hard.

In parallel with the use of these theta functions, various vector chromatic
numbers were defined. In 1998 Karger et al. [11] defined the vector chromatic
number, χv(G), and the strict vector chromatic number, χsv(G), where χv(G) ≤
χsv(G) ≤ χ(G). There exist graphs for which χv(G) � χ(G) [6]. Karger et al.
[11] also proved that χsv(G) = ϑ(G), and Godsil et al. [9] noted that χv(G) =
ϑ′(G). Finally there is what is called the rigid vector chromatic number, χrv(G),
and Roberson proved (see Section 6.7 of [17]) that χrv(G) = ϑ+(G). So to
summarise

(1) ω(G) ≤ χv(G) = ϑ′(G) ≤ χsv(G) = ϑ(G) ≤ χrv(G) = ϑ+(G) ≤ χ(G).

In this paper we focus on lower bounds for χv(G) so it is only necessary to
include the following definition.

Definition (Vector chromatic number χv(G)). Given a graph G = (V,E) on n
vertices, and a real number k ≥ 2, a vector k-coloring of G is an assignment of
unit vectors ui ∈ Rn to each vertex i ∈ V , such that for any two adjacent vertices
i and j

(2) 〈ui, uj〉 ≤ −
1

k − 1
.

The vector chromatic number χv(G) is the smallest real number k for which a
vector k-coloring exists. The vector k-coloring can always be assumed to be in
dimension n.
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3. Spectral Lower Bounds for Chromatic Numbers

Most of the known spectral lower bounds for the chromatic number can be sum-
marised as follows:

(3) 1 + max

(
µ1
|µn|

,
2m

2m− nδn
,

µ1
µ1 − δ1 + λ1

,
s±

s∓

)
≤ χ(G),

where reading from left to right, these bounds are due to Hoffman [10], Lima
et al. [13], Kolotilina [12], and Ando and Lin [1]. (Note that s±/s∓ denotes
s+/s− or s−/s+.) It should be noted that Nikiforov [16] pioneered the use of
non-adjacency matrix eigenvalues to bound χ(G), and his general result implies
the Hoffman and Kolotilina bounds.

Note that for regular graphs the first three bounds are equal. Some of these
bounds are further generalised in Elphick and Wocjan [4], which for reasons
discussed in Section 5 we exclude here. Several of these bounds equal two for all
bipartite graphs.

Wocjan and Elphick [5] strengthened (3) by proving that the Ando and Lin
bound is a lower bound for the quantum chromatic number, χq(G), with arbitrary
Hermitian weight matrices. Wocjan and Elphick [19] further strengthened (3)
by proving that the Kolotilina and Lima et al. bounds are lower bounds for the
vectorial chromatic number, χvect(G) = dϑ+(G)e, again with arbitrary Hermitian
weight matrices.

Galtman [7] provides eight characterizations of χv(G). The fifth of these is
that:

(4) χv(G) = 1 + max
W

(
µ1(W )

|µn(W )|

)
,

where W is an arbitrary non-negative1 weight matrix. This shows that the Hoff-
man bound is a lower bound for the vector chromatic number, χv(G) = ϑ′(G),
but for non-negative weight matrices only. This bound was also independently
obtained by Bilu [3].

We prove below that the bounds due to Lima et al. and Kolotilina are also
lower bounds for χv(G). It is straightforward to amend our proofs to show that
the Lima et al. and the Kolotilina bounds remain lower bounds for χv(G) with
arbitrary non-negative weight matrices. In the case of the Lima et al. bound this
involves replacing 2m in the numerator with the sum of the off-diagonal entries
of the weight matrix and 2m in the denominator with the trace of the weight
matrix. In Section 4 we use the Lima et al. bound to prove a new character-
ization of the vector chromatic number. As discussed by Galtman [7], removing
the non-negativity constraint would provide lower bounds for χsv(G), which can
exceed χv(G).

1Non-negative means that all matrix entries are non-negative.
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4. Proof of the Lima Bound

Theorem 1. For any graph G

(5) 1 +
2m

2m− nδn
≤ χv(G).

Proof. Let u1, . . . , un ∈ Rn be the unit vectors on which the vector chromatic
number χv is attained. That is 〈ui, uj〉 ≤ −1/(χv − 1) for all ij ∈ E.

Let e1, . . . , en denote the standard basis of Rn. Define the vector

(6) v =
n∑

i=1

ei ⊗ ui ∈ Rn ⊗ Rn,

where ⊗ denotes the tensor product.
Let qij denote the entries of the signless Laplacian Q. We have

n · δn = 〈v, v〉 · δn(7)

≤ 〈v, (Q⊗ In)v〉(8)

=
n∑

i,j=1

qij · 〈ui, uj〉(9)

=

n∑
i=1

di + 2

n∑
ij∈E
〈ui, uj〉(10)

≤ 2m− 2m · 1

χv − 1
.(11)

This proof uses first the Rayleigh principle δn ≤ 〈v, (Q ⊗ In)v〉/〈v, v〉. We then
use Q = D + A, that is, qii = di, qij = 1 for all ij ∈ E and qij = 0 for all ij 6∈ E
and i 6= j. We finally use 〈ui, uj〉 ≤ −1/(χv − 1) for all ij ∈ E.

We also present an alternative proof of Theorem 1. This proof does not
make use of the definition of the vector chromatic number in terms of certain
vectors as in the definition of χv(G) in Section 2. Instead, we rely on the third
characterization of χv(G) in [7, Section 3] which is as follows.

(12) χv(G) = max
B

n∑
i,j=1

bij ,

where B = (bij) is a non-negative symmetric positive semi-definite matrix such
that tr(B) = 1 and bij = 0 if i and j are distinct non-adjacent vertices. We
can now reformulate the above characterization of χv(G) so that the Lima et al.
bound arises as a special case.
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Theorem 2. For any graph G

(13) χv(G) = 1 + max
W

( ∑
i 6=j wij

tr(W )− nλmin(W )

)
,

where W = (wij) is a non-negative weight matrix and λmin(W ) denotes the min-
imum eigenvalue of W .

Proof. Let W be an arbitrary non-negative symmetric matrix. Then, the matrix

(14) B =
W − λmin(W )I

tr(W )− nλmin(W )

is positive semidefinite and tr(B) = 1. Substituting B into (12) yields the char-
acterization. Setting W equal to the signless Laplacian Q yields the Lima et al.
bound as a special case.

5. Proof of the Kolotilina Bound

We briefly recall some standard concepts and results that are needed to prove
that the Kolotilina bound is a lower bound for the vector chromatic number. Let
X,Y ∈ Cn×n be two arbitrary Hermitian matrices with eigenvalues α1 ≥ α2 ≥
· · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn, respectively. We say that X majorizes Y ,
denoted by X � Y , if

(15)
∑̀
i=1

αi ≥
∑̀
i=1

βi

for all ` ∈ {1, . . . , n− 1} and

(16)
n∑

i=1

αi =
n∑

i=1

βi .

Recall that the Schur product of two matrices M,N ∈ Cn×n, denoted by M ◦N
is defined to be the matrix whose entries are the products of the corresponding
entries of M and N . We say that a Hermitian matrix M ∈ Cn×n is positive
semidefinite if all its eigenvalues are non-negative.

The Schur product M ◦N of any two positive semidefinite matrices M and
N is positive semidefinite. Let u1, . . . , un ∈ Cn be a collection of n arbitrary unit
vectors. Their Gram matrix Φ = (Φij) ∈ Cn×n, whose entries Φij are the inner
products 〈ui, uj〉, is positive semidefinite.

We say that a matrix M ∈ Rn×n is non-negative if all its entries are non-
negative. Similarly, we say a vector v ∈ Rn is non-negative if all its entries are
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non-negative. Note that Mv is non-negative whenever M and v are non-negative.
For two matrices M,N ∈ Rn×n, we write M ≥ N to indicate that M −N is non-
negative. For any two non-negative matrices M,N ∈ Rn×n and non-negative
vector v ∈ Rn, M ≥ N implies Mv ≥ Nv.

Let M ∈ Rn×n be an arbitrary symmetric, non-negative, and irreducible ma-
trix. Then, the eigenvector corresponding to the largest eigenvalue can be chosen
to have positive entries. This follows from the proof of the Perron-Frobenius
theorem for non-negative irreducible matrices [15, Chapter 8].

For our purposes, it is useful to reformulate the defining condition of a k-
vector coloring as follows.

Remark 3. Note that condition (2) in the definition of a k-vector coloring of
G = (V,E) can be equivalently formulated as

(17) Φ ◦ (D −A) ≥ D +
1

k − 1
A ,

where D denotes the diagonal matrix of vertex degrees di, A = (aij) the adjacency
matrix, and Φ = (Φij) the Gram matrix of the n unit vectors ui ∈ Rn of the k-
vector coloring, that is, Φij = 〈ui, uj〉 ≤ −1/(k − 1) for all ij ∈ E.

This reformulation enables us to leverage the well-known Perron-Frobenius
theorem because the entries of the matrix on the right hand side of (17) are all
non-negative.

In the book [20], correlation matrices are positive semidefinite matrices with
ones along the diagonal. It is easy to see that a Gram matrix (of unit vectors)
is a correlation matrix and vice versa.2 Besides the Perron-Frobenius theorem,
the result in [20, Corollary 2.15] plays a central role in showing that the spectral
bounds are also lower bounds on the vector chromatic number. We decided to
include a proof of this key result.

Lemma 4. Let Φ ∈ Cn×n be an arbitrary correlation matrix. Then, for any
Hermitian matrix X ∈ Cn×n

(18) X � Φ ◦X .

Proof. Set Y = Φ ◦X. Let

(19) X =

n∑
j=1

αjPj , and Y =

n∑
i=1

βiQi

2Every positive semidefinite matrix Φ can be written as Φ = B∗B for some B [2, Exercise
I.2.2]. When Φ is a correlation matrix, then the columns of B of this decomposition are the
desired unit vectors whose pairwise inner products form Φ. The other direction is obvious
because a Gram matrix is positive semidefinite and its diagonal entries are all one when the
corresponding vectors are unit vectors.
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denote the spectral decompositions of X and Y , respectively. We assume that the
eigenvalues of X and Y in the above decompositions are ordered in non-increasing
order, that is, α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn, respectively. We also
assume that the orthogonal projectors Pj and Qi are one-dimensional. Note that∑n

j=1 Pj =
∑n

i=1Qi = I.
For an arbitrary i ∈ {1, . . . , n}, we can use the spectral decompositions to

write βi as follows

(20) βi =

n∑
j=1

Tr(Qi(Φ ◦ Pj))αj .

For i, j ∈ {1, . . . , n}, define the values pij = Tr(Qi(Φ ◦ Pj)) so that βi =∑n
j=1 pijαj . Note that equivalently pij = v†i (Φ ◦ Pj)vi ≥ 0, where vi ∈ Cn with

Qi = viv
†
i . Therefore, these values are non-negative because the Schur product

Φ ◦Pj of the two positive semidefinite matrices Φ and Pj is positive semidefinite.
We now show that the matrix P = (pij) is doubly stochastic, that is, all row

and column sums are equal to 1. We have Tr(Φ ◦M) = Tr(M) for all matrices
M ∈ Cn×n and Φ ◦ I = I because Φ has ones along the diagonal. These two
simple observations and the properties of spectral decompositions imply that

(21)
n∑

i=1

pij = Tr(Φ ◦ Pj) = Tr(Pj) = 1

and

(22)

n∑
j=1

pij = Tr(Qi(Φ ◦ I)) = Tr(Qi) = 1.

Hence (β1, . . . , βn)T = P (α1, . . . , αn)T for some doubly stochastic matrix P . The
Hardy-Littlewood-Pólya theorem [2, Theorem II.1.10] now implies that the spec-
trum of X majorizes the spectrum of Φ◦X, that is, (α1, . . . , αn) � (β1, . . . , βn).

Using the above results, we establish the following theorem.

Theorem 5. Assume that A = (aij) ∈ Rn×n is irreducible, that D is a diagonal
matrix with non-negative entries and that there exists a correlation matrix Φ ∈
Rn×n such that

(23) Φ ◦ (D −A) ≥ D +
1

k − 1
A,

which is the condition (17) in Remark 3. Then, we have

(24) λmax(D −A) ≥ λmax

(
D +

1

k − 1
A

)
.
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Proof. We have the following facts:

D −A � Φ ◦ (D −A),(25)

Φ ◦ (D −A) ≥ D +
1

k − 1
A.(26)

Observe that the matrix D + 1/(k − 1)A is symmetric, non-negative, and irre-
ducible because A has these properties and D is a diagonal matrix with non-
negative entries. As discussed at the beginning of this section, the Perron-
Frobenius theorem implies that the eigenvector corresponding to the maximum
eigenvalue can be chosen to have non-negative entries. Denote this eigenvector
by w. Using (26) and w ≥ 0, we obtain

(27)
〈
w,
(
Φ ◦ (D −A)

)
w
〉
≥
〈
w,
(
D +

1

k − 1
A
)
w
〉

= λmax

(
D +

1

k − 1
A
)
.

Using the Rayleigh principle, we obtain

(28) λmax

(
Φ ◦ (D −A)

)
≥
〈
w,
(
Φ ◦ (D −A)

)
w
〉
.

Finally, (25) implies λmax(D − A) ≥ λmax

(
Φ ◦ (D − A)

)
. Combining all the in-

equalities yields the proof.

Note that it is essential that the eigenvector corresponding to the maximum
eigenvalue has non-negative entries. Otherwise, we cannot establish the inequality
in (27). Therefore, it does not seem to be possible to generalize these proof
techniques to include other eigenvalues besides the maximum eigenvalue as in [4].

Note also that (24) is the same as the result proved in [16], except that
Nikiforov has A as a Hermitian matrix and D as a real diagonal matrix in order
to bound the chromatic number, whereas we have A as an irreducible adjacency
matrix and D as a non-negative matrix in order to bound the vector chromatic
number.

We can now prove that the Kolotilina bound is a lower bound for χv(G).

Theorem 6. For any3 graph G

(29) 1 +
µ1

µ1 − δ1 + λ1
≤ χv(G).

Proof. The matrix on the right hand side of (24) is equal to D + A − k−2
k−1A.

It is easy to see that λmax(X − Y ) ≥ λmax(X) − λmax(Y ) holds for arbitrary
Hermitian matrices. In particular, this inequality holds for X = D + A and
Y = k−2

k−1A. The Kolotilina bound for χv(G) therefore follows immediately when
A is the adjacency matrix and D is the diagonal matrix of vertex degrees.

3We may assume without loss of generality that the adjacency matrix is irreducible, which
is equivalent to the graph being connected. The result is true for each connected component.
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The Hoffman bound for χv(G), proved by Galtman and Bilu, follows when
D is the zero matrix.

6. Extremal Graphs

A graph, G, is said to have a Hoffman coloring if χ(G) equals the Hoffman bound.
We have investigated graphs with χv(G) < χ(G) and χv(G) equal to one or more
of the bounds proved in this paper. We have found no irregular graph meeting
these criteria.

For regular graphs, the Kolotilina and Lima et al. bounds equal the Hoffman
bound, and there are numerous regular graphs for which χv(G) < χ(G) and
χv(G) equals the Hoffman bound. Such graphs can be said to have a Hoffman
vector coloring. For example the Clebsch graph has χ = 5 and χv = Hoffman
bound = 8/3; and the Kneser graph Kp,k has χ = p− 2k + 2 and χv = Hoffman
bound = p/k. The orthogonality graph, Ω(n), has χv = Hoffman bound = n
and, for large enough n, χ is exponential in n.

Godsil et al. [8] proved that any 1-homogeneous graph has χv = Hoffman
bound. 1-homogeneous graphs are always regular and include distance regular
(and thus strongly regular) and non-bipartite edge transitive graphs; and graphs
which are both vertex and edge transitive.

7. An Open Question

As discussed in Section 3, Ando and Lin [1] proved a conjecture due to two of
the authors [18] that:

1 + max

(
s+

s−
,
s−

s+

)
≤ χ(G).

We have been unable to prove that this bound is also a lower bound for
χv(G). We have, however, tested this question, using that χv(G) = ϑ′(G) and
SDP, against thousands of named graphs in the Wolfram Mathematica database
and found no counter-example. We have also tested 10,000s of circulant graphs
and found no counter-example.

Our code for testing this question is available in the GitHub repository [21].
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