DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

W. F. Klostermeyer

William F Klostermeyer

University of North Florida

email: wkloster@unf.edu

G. MacGillivray

Gary MacGillivray

University of Victoria

email: gmacgill@uvic.ca

S.M. Semnani

Saeed Semnani

University of Semnan

email: s_mohammadian@semnan.ac.ir

F. Piri

Farzaneh Piri

University of Semnan

email: f.piri@semnan.ac.ir

Title:

Efficient $(j, k)$-dominating functions

PDF

Source:

Discussiones Mathematicae Graph Theory 43(1) (2023) 115-135

Received: 2019-04-18 , Revised: 2020-07-22 , Accepted: 2020-07-25 , Available online: 2020-09-09 , https://doi.org/10.7151/dmgt.2355

Abstract:

For positive integers $j$ and $k$, an efficient $(j, k)$-dominating function of a graph $G=(V,E)$ is a function $f: V \to \{0, 1, 2, \ldots, j\}$ such that the sum of function values in the closed neighbourhood of every vertex equals $k$. The relationship between the existence of efficient $(j, k)$-dominating functions and various kinds of efficient dominating sets is explored. It is shown that if a strongly chordal graph has an efficient $(j, k)$-dominating function, then it has an efficient dominating set. Further, every efficient $(j ,k)$-dominating function of a strongly chordal graph can be expressed as a sum of characteristic functions of efficient dominating sets. For $j < k$ there are strongly chordal graphs with an efficient dominating set but no efficient $(j, k)$-dominating function. The problem of deciding whether a given graph has an efficient $(j, k)$-dominating function is shown to be NP-complete for all positive integers $j$ and $k$, and solvable in polynomial time for strongly chordal graphs when $j = k$. By taking $j=1$ we obtain NP-completeness of the problem of deciding whether a given graph has an efficient $k$-tuple dominating set for any fixed positive integer $k$. Finally, we consider efficient $(2,2)$-dominating functions of trees. We describe a new constructive characterization of the trees with an efficient dominating set and a constructive characterization of the trees with two different efficient dominating sets. A number of open problems and questions are stated throughout the work.

Keywords:

efficient $(j,k)$-dominating function, efficient dominating set, $k$-tuple dominating set, strongly chordal graph, tree, complexity

References:

  1. R.P. Anstee and M. Farber, Characterizations of totally balanced matrices, J. Algorithms 5 (1984) 215–230.
    https://doi.org/10.1016/0196-6774(84)90028-2
  2. D.W. Bange, A.E. Barkauskas and P.J. Slater, Efficient dominating sets in graphs, in: Applications of Discrete Mathematics, R.D. Ringeisen, F.S. Roberts (Ed(s)), (SIAM, Philadelphia, PA 1988) 189–199.
  3. N. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B 15 (1973) 289–296.
    https://doi.org/10.1016/0095-8956(73)90042-7
  4. A. Brandstädt, A. Leitert and D. Rautenbach, Efficient dominating and edge dominating sets for graphs and hypergraphs, in: Algorithms and Computation, Lecture Notes in Comput. Sci. 7676 (2012) 267–277.
    https://doi.org/10.1007/978-3-642-35261-4_30
  5. G.J. Chang and G.L. Nemhauser, The $k$-domination and $k$-stability problems on sun-free chordal graphs, SIAM J. Algebraic Discrete Methods 5 (1984) 332–345.
    https://doi.org/10.1137/0605034
  6. M. Chellali, A. Khelladi and F. Maffray, Exact double domination in graphs, Discuss. Math. Graph Theory 25 (2005) 291–302.
    https://doi.org/10.7151/dmgt.1282
  7. T.J. Schaefer, The complexity of satisfiability problems, Proceedings of the $10^{th}$ Annual ACM Symposium on Theory of Computing (1978) 216–226.
    https://doi.org/10.1145/800133.804350
  8. M. Farber, Domination, independent domination, and duality in strongly chordal graphs, Discrete Appl. Math. 7 (1984) 115–130.
    https://doi.org/10.1016/0166-218X(84)90061-1
  9. M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (1983) 173–189.
    https://doi.org/10.1016/0012-365X(83)90154-1
  10. D.R. Fulkerson, A. Hoffman and R. Oppenheim, On balanced matrices, Math. Program. Study 1 (1974) 120–132.
    https://doi.org/10.1007/BFb0121244
  11. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H Freeman and Co, New York, 1979).
  12. G. Gunther, B. Hartnell, L.R. Markus and D.F. Rall, Graphs with unique minimum dominating sets, Congr. Numer. 101 (1994) 55–63.
  13. M.A. Henning and W. Klostermeyer, Italian domination in trees, Discrete Appl. Math. 217 (2017) 557–564.
    https://doi.org/10.1016/j.dam.2016.09.035
  14. F. Harary and T.W. Haynes, The $k$-tuple domatic number of a graph, Math. Slovaca 48 (1998) 161–166.
  15. F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201–213.
  16. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
    https://doi.org/10.1201/9781482246582
  17. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).
    https://doi.org/10.1201/9781315141428
  18. T.W. Haynes and M.A. Henning, Perfect Italian domination in trees, Discrete Appl. Math. 260 (2019) 164–177.
    https://doi.org/10.1016/j.dam.2019.01.038
  19. W.F. Klostermeyer and G. MacGillivray, Roman, Italian, and $2$-domination, J. Combin. Math. Combin. Comput. 108 (2019) 125–146.
  20. M. Livingston and Q.J. Stout, Perfect dominating sets, Congr. Numer. 79 (1990) 187–203.
  21. R.R Rubalcaba and P.J. Slater, Efficient $(j,k)$-domination, Discuss. Math. Graph Theory 27 (2007) 409–423.
    https://doi.org/10.7151/dmgt.1371
  22. C.C. Yen and R.C.T. Lee, The weighted perfect domination problem and its variants, Discrete Appl. Math. 66 (1996) 147–160.
    https://doi.org/10.1016/0166-218X(94)00138-4

Close