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Abstract

For positive integers j and k, an efficient (j, k)-dominating function of a
graph G = (V,E) is a function f : V → {0, 1, 2, . . . , j} such that the sum of
function values in the closed neighbourhood of every vertex equals k. The re-
lationship between the existence of efficient (j, k)-dominating functions and
various kinds of efficient dominating sets is explored. It is shown that if a
strongly chordal graph has an efficient (j, k)-dominating function, then it has
an efficient dominating set. Further, every efficient (j, k)-dominating func-
tion of a strongly chordal graph can be expressed as a sum of characteristic
functions of efficient dominating sets. For j < k there are strongly chordal
graphs with an efficient dominating set but no efficient (j, k)-dominating
function. The problem of deciding whether a given graph has an efficient
(j, k)-dominating function is shown to be NP-complete for all positive inte-
gers j and k, and solvable in polynomial time for strongly chordal graphs
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when j = k. By taking j = 1 we obtain NP-completeness of the problem of
deciding whether a given graph has an efficient k-tuple dominating set for
any fixed positive integer k. Finally, we consider efficient (2, 2)-dominating
functions of trees. We describe a new constructive characterization of the
trees with an efficient dominating set and a constructive characterization
of the trees with two different efficient dominating sets. A number of open
problems and questions are stated throughout the work.

Keywords: efficient (j, k)-dominating function, efficient dominating set, k-
tuple dominating set, strongly chordal graph, tree, complexity.
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1. Introduction

Recall that a dominating set of a graph G = (V,E) is a subset D ⊆ V such that,
for every vertex x ∈ V , |N [x] ∩D| ≥ 1, where N [x] = N(x) ∪ {x} is the closed
neighbourhood of x. The domination number of G, denoted γ(G), is the smallest
size of a dominating set of G. If |N [x]∩D| = 1 for all x ∈ V , then D is called an
efficient dominating set of G.

A wealth of information on dominating sets and efficient dominating sets in
graphs can be found in the two volume set by Haynes, Hedetniemi and Slater [16,
17]. Efficient dominating sets are also called perfect codes, or perfect dominating

sets because they first arose in the work of Biggs on error-correcting codes [3].
In the literature the term “perfect dominating set” often means a subset D ⊆ V
such that |N [x] ∩D| ≥ 1 for every vertex x ∈ V \D, for example see [22], so we
will not use it. Efficient dominating sets were later independently introduced by
Bange, Bartsaukas and Slater [2]. The problem of deciding whether a given graph
has an efficient dominating set is NP-complete even for some restricted graph
families (see [4] and its references). Linear time algorithms to find an efficient
dominating set of a tree, if one exists, are described in [2, 20]. The existence of
a linear-programming algorithm that decides if a strongly chordal graph has an
efficient dominating set follows from the work of Farber [8]. The trees that have
an efficient dominating set have been constructively characterized, as have the
trees with two disjoint efficient dominating sets [2]. While a characterization of
the trees with a unique dominating set is known [12], no characterization of the
trees with a unique efficient dominating set has been given.

For an integer k ≥ 1, a k-tuple dominating set of a graph G is a subset D ⊆ V
such that |N [v]∩D| ≥ k for every v ∈ V . If the equality |N [v]∩D| = k holds for
every v ∈ V , then D is an efficient k-tuple dominating set. Clearly, D is a 1-tuple
dominating set of G if and only if D is a dominating set of G. Only graphs with
minimum degree at least k−1 have a k-tuple dominating set. Harary and Haynes
[14] (also see [16, 17]) were the first to study k-tuple domination in graphs. The
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case k = 2 has received the most attention, for example see [13, 15, 19]. Efficient
2-tuple domination was studied by Chellali, Khelladi and Maffray [6] under the
name exact double domination.

A function f : V (G) → {0, 1} is the characteristic function of a dominating
set D of a graph G if and only if

∑

x∈N [v] f(x) ≥ 1 for each vertex v ∈ V . The
set D is an efficient dominating set if and only if equality holds for each vertex
v ∈ V . Similarly, f is the characteristic function of a k-tuple dominating set of a
graph G if and only if

∑

x∈N [v] f(x) ≥ k for each vertex v ∈ V , and the k-tuple
dominating set is efficient if and only if equality holds for each vertex v ∈ V .

A great variety of other dominating functions have received attention. See
[16, 17, 19, 21] for details. We mention one example which is related to the
present work. An Italian dominating function of a graph G is a function f :
V (G) → {0, 1, 2} such that

∑

x∈N [v] f(x) ≥ 2 for each vertex v with f(v) = 0.
The function f is a perfect Italian dominating function if

∑

x∈N [v] f(x) = 2 for
each vertex v with f(v) = 0. It is proved in [18], that if f is a perfect Italian
dominating function of a tree with n vertices, then

∑

v∈V f(v) ≤ 4
5n, and this

bound is best possible.

We now state the main definition needed for this work. It first appears in
Rubalcaba and Slater [21]. For positive integers j and k, a (j, k)-dominating func-

tion of a graph G is a function f : V (G) → {0, 1, . . . , j} such that
∑

x∈N [v] f(x) ≥
k for each vertex v ∈ V (G). If

∑

x∈N [v] f(x) = k for each vertex v ∈ V (G), then
f is an efficient (j, k)-dominating function of G.

The weight of the (j, k)-dominating function f is
∑

x∈V (G) f(x). The (j, k)-
domination number of G, denoted γ(j,k)(G), is the minimum weight of a (j, k)-
dominating function of G, if such a function exists.

By definition γ(1,1)(G) = γ(G) because a (1, 1)-dominating function is the
characteristic function of a dominating set. A graph may not have a (j, k)-
dominating function for some values of j and k: for example, it follows from
considering the closed neighbourhood of a leaf that a tree has a (j, k)-dominating
function only when j ≥ k/2; a graph with isolated vertices has a (j, k)-dominating
function if and only if j ≥ k.

This paper is organized as follows. In the remainder of this section we make
some observations about (j, k)-dominating functions. For example, the ordered
pairs (j, k) such that a graph G has a (j, k)-dominating function are determined
in Proposition 1.1 below. We also relate (j, k)-dominating functions of a graph
G to k-tuple dominating sets of a related graph. The next section contains
observations about the relationship between the (j, k)-domination number and
the domination number, and about efficient (j, k)-domination. Strongly chordal
graphs are considered in Section 3. It is shown that if a strongly chordal graph
has an efficient (j, k)-dominating function, then it has an efficient dominating
set. The converse holds if and only if j = k. It is also shown that every efficient
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(j, k)-dominating function of a strongly chordal graph can be written as a sum of
efficient (1, 1)-dominating functions, that is, as a sum of characteristic functions
of efficient dominating sets. The main result of Section 4 is that, for all integers
j and k, it is NP-complete to decide whether a given graph has an efficient (j, k)-
dominating function. When j = k the problem is solvable in polynomial time for
strongly chordal graphs. By taking j = 1 in the main result of the section we
obtain NP-completeness of the problem of deciding whether a given graph has
an efficient k-tuple dominating set for all integers k. Efficient (2, 2)-dominating
functions of trees are considered in the final section. We give a constructive
characterization of the trees with an efficient (2, 2)-dominating function, as well
as some subclasses where the values the function can take are restricted to 0
and 1, or to be such that the function is onto {0, 1, 2}. The results imply a
constructive characterization of the trees with an efficient dominating set which
is simpler than the one in [2], essentially the same constructive characterization
of the trees with two disjoint efficient dominating sets as in [2], and a constructive
characterization of the trees with two different efficient dominating sets.

Every graph has a dominating set but, as remarked above, only graphs with
minimum degree at least k−1 have a k-tuple dominating set. We now determine
which graphs have a (j, k)-dominating function.

Proposition 1.1. For positive integers j and k, a graph G has a (j, k)-dominating

function if and only if (1 + δ)j ≥ k, where δ denotes the minimum degree of a

vertex of G.

Proof. Suppose G has a (j, k)-dominating function. Then the sum of function
values in the closed neighbourhood of any vertex of minimum degree must be at
least k. Since f(x) ≤ j for all x ∈ V , this implies (1 + δ)j ≥ k.

On the other hand, if (1+ δ)j ≥ k, then the function f that assigns j to each
vertex is a (j, k)-dominating function.

Consider the following array

γ(1,1) γ(1,2) γ(1,3) · · ·

γ(2,1) γ(2,2) γ(2,3) · · ·

γ(3,1) γ(3,2) γ(3,3) · · ·
...

...
...

. . .

By Proposition 1.1, for a given graph G, the j-th row extends to γ(j,j(1+δ)), after
which γ(j,k) does not exist. It follows from the definition that, in each row, any
entry is less than or equal to all of those on its right which exist, and in each
column, any entry that exists is greater than or equal to all of those below it. It is
easy to see that γ(j,k)(G) = γ(k,k)(G) for all integers j ≥ k. This is the reason the
condition j ≤ k, which appears in the definition of a (j, k)-dominating function
in [21], has been removed.
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Question 1.2. Is it true that, for each k ≥ 2, there exists a graph Gk, with

minimum degree k, such that all inequalities arising from rows 1 through k − 1
of the array are strict, and all inequalities arising from columns 2 through k are

strict?

We close this section by establishing a connection between (j, k)-dominating
functions and k-tuple dominating sets (i.e., (1, k)-dominating functions) in a re-
lated graph.

The wreath product, or lexicographic product of the graphs G and H is the
graph GwrH with vertex set {(v, w) : v ∈ V (G), w ∈ V (H)} such that vertices
(u, x) and (v, y) are adjacent in GwrH if and only if either uv ∈ E(G), or u = v
and xy ∈ E(H).

Theorem 1.3. For positive integers j and k, a graph G has a (j, k)-dominating

function of weight w if and only if GwrKj has a k-tuple dominating set of

cardinality w.

Proof. Suppose f : V → {0, 1, 2, . . . , j} is (j, k)-dominating function of G with
weight w. For each vertex u ∈ V (G), we have f(u) ∈ {0, 1, . . . , j}. Hence, let Du

be a set of f(u) vertices of GwrKj such that Du ⊆ {(u, z) : z ∈ V (Kj)}. Let
D =

⋃

u∈V (G)Du. Then |D| =
∑

u∈V (G) |Du| =
∑

u∈V (G) f(u) = w. Further, for
each vertex v ∈ V (G) we have

∑

x∈N [v] f(x) =
∑

x∈N [v] |Dx| ≥ k, so that by the
structure of the wreath product |N [(v, z)]∩D| ≥ k for any z ∈ V (Kj). Therefore
D is a k-tuple dominating set of GwrKj of cardinality w.

Now suppose D is a k-tuple dominating set of GwrKj of cardinality w. For
each vertex u ∈ V (G), let Du = {(u, z) : z ∈ V (Kj)} ∩D and f(u) = |Du|. Then
f(u) ∈ {0, 1, . . . , j}, and also

∑

u∈V (G) f(u) =
∑

u∈V (G) |Du| = |D| = w. By the
structure of the wreath product we have

∑

x∈N [v] |Dx| =
∑

x∈N [v] f(x) ≥ k for
each vertex v ∈ V (G). Therefore f is a (j, k)-dominating function of G with
weight w.

2. Efficient (j, k)-Dominating Functions

Let v and w be different vertices of Kt+2, where t ≥ 1. By Proposition 1.1, the
graph Kt+2 − vw has a (j, k)-dominating function if and only if (t+1)j ≥ k. We
claim that it has an efficient (j, k)-dominating function if and only if tj ≥ k. Note
that an efficient (j, k)-dominating function must assign the value 0 to v and w,
otherwise the sum of function values in the neighbourhood of any other vertex is
greater than k. If tj ≥ k, then any function f : V → {0, 1, . . . , j} that assigns 0
to v and w and has weight k on the complete subgraph V \ {v, w} is an efficient
(j, k)-dominating function. Now suppose k > tj. Then any (j, k)-dominating
function must assign a positive weight to v and w, and cannot be efficient.



120 W.F. Klostermeyer, et al.

The example in the previous paragraph can be generalized as follows. A
dominating vertex of a graph G is a vertex adjacent to all other vertices of G.

Proposition 2.1. Let G be a graph with a dominating vertex. Then G has an

efficient (j, k)-dominating function if and only if j|D| ≥ k, where D is the set of

dominating vertices. Furthermore, any efficient (j, k)-dominating function of G
must assign the value 0 to all vertices in V \D.

Proof. Suppose G has an efficient (j, k)-dominating function, f . We claim f
must assign the value 0 to all vertices in V \D. Suppose v ∈ V \D is such that
f(v) > 0. Let u be a vertex such that uv 6∈ E. Then the sum of the function
values in the closed neighbourhood of u does not equal the sum of the function
values in the closed neighbourhood of any vertex in D (which equals the weight of
f). This proves the claim. Since f(x) > 0 only if x ∈ D, it follows that j|D| ≥ k.

Now suppose j|D| ≥ k. Then there exists a (j, k)-dominating function which
has weight exactly k on the complete subgraph induced by D, and assigns the
value 0 to all vertices of V \D. Such a function is an efficient (j, k)-dominating
function of G.

Question 2.2. Is it true that, for every pair of positive integers (j, k) with k
1+δ

<
j ≤ k, there exists a graph with an efficient (j, k)-dominating function but no

efficient (j − 1, k)-dominating function?

The following theorem implies that there is only one possible weight an effi-
cient (j, k)-dominating function of a graph G can have γ(j,k)(G).

Theorem 2.3 [21]. Let j and k be positive integers. If f is an efficient (j, k)-
dominating function of the graph G, the weight of f is γ(j,k)(G).

A natural question is whether there is a bound of the form γ(j,k)(G) ≤ cj,k ·
γ(G) for all graphs G, where cj,k is a constant. We now show that the answer is
yes if j = k and no if j < k.

Proposition 2.4. Let G be a graph. Then γ(k,k)(G) ≤ kγ(G). Further, if G has

an efficient dominating set, then γ(k,k)(G) = kγ(G).

Proof. Let D be a minimum dominating set of G, and f : V → {0, 1, . . . , k} be
defined by

f(x) =

{

k, x ∈ D,

0, x 6∈ D.

Then f is a (k, k)-dominating function of G with weight kγ(G), from which it
follows that γ(k,k)(G) ≤ kγ(G).

If D is an efficient dominating set, then |D| = γ(G). The function f is then
an efficient (k, k)-dominating function of G. It follows from Theorem 2.3 that the
weight of f is γ(k,k)(G).
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Proposition 2.5. Let j and k be positive integers such that j < k. For any

constant cj,k there exists a graph G such that γ(j,k)(G) > cj,kγ(G).

Proof. Let cj,k be a given constant. Let H be a graph with n ≥ 2 vertices. Let
p > cj,k and let G be constructed from H by attaching p vertices of degree 1 at
each vertex of H. Since γ(G) = n, we have

γ(j,k)(G) ≥ γ(k−1,k)(G) = (k − 1)n+ np > np > cj,kγ(G).

We now relate the existence of certain efficient (k, k)-dominating functions
to the existence of efficient dominating sets.

Proposition 2.6. Let k ≥ 2 be an integer. A graph G has an efficient (k, k)-
dominating function that takes only the values 0 and k if and only if it has an

efficient dominating set. Further, if every efficient (k, k)-dominating function of

G takes only the values 0 and k, then G has a unique efficient dominating set.

Proof. Suppose f is an efficient (k, k)-dominating function of G that takes only
the values 0 and k. Then f = kg, where g : V (G) → {0, 1} is the characteristic
function of an efficient dominating set. Thus G has efficient dominating set.

Conversely, suppose G has an efficient dominating set D. If g is the char-
acteristic function of D, then f = kg is an efficient (k, k)-dominating function
of G.

Finally, suppose D1 and D2 are different efficient dominating sets of G with
characteristic functions f1 and f2, respectively. Since D1 6= D2 there is a vertex
x such that f1(x) = 1 and f2(x) = 0. Then (k − 1)f1 + f2 is an efficient (k, k)-
dominating function of G that does not take only the values 0 and k (since k ≥ 2).
Therefore, if every efficient (k, k)-dominating function of G takes only the values
0 and k, then G has a unique efficient dominating set.

The condition that the efficient (k, k)-dominating function takes only the
values 0 and k cannot be removed for all graphs. The function that assigns the
value 1 to each vertex of the cycle Cn is an efficient (3, 3)-dominating function
of Cn, but Cn has an efficient dominating set if and only if n ≡ 0 (mod 3). The
condition can be removed for strongly chordal graphs; see Corollary 3.5.

The following results are similar to those in the literature for various types
of dominating sets. See [6], for example. Recall that the maximum degree of a
vertex of the graph G is denoted by ∆.

Proposition 2.7. Let G be a graph on n vertices. If G has an efficient (j, k)-
dominating function, then

kn

1 + ∆
≤ γ(j,k)(G) ≤

kn

1 + δ
.



122 W.F. Klostermeyer, et al.

Proof. Suppose f is an efficient (j, k)-dominating function of G. Since, for each
vertex w, the quantity f(w) appears 1+deg(w) times in

∑

v∈V

∑

x∈N [v] f(x), and
this sum equals kn, we have

(1+δ)γ(j,k) = (1+δ)
∑

x∈V

f(x) ≤
∑

v∈V

∑

x∈N [v]

f(x) ≤ (1+∆)
∑

x∈V

f(x) = (1+∆)γ(j,k)

from which the result follows.

Corollary 2.8. If G is an r-regular graph with n vertices and an efficient (j, k)-
dominating function f , then γ(j,k)(G) = kn

1+r
.

Corollary 2.9. If G is an r-regular graph with n vertices which has an efficient

(j, k)-dominating function, then (1 + r) divides kn.

The fact that the necessary condition in the above corollary is not in general
sufficient is suggested by the fact that it in no way depends on j. By Proposition
1.1, the condition (1 + δ)j ≥ k is also necessary. These two conditions together
are also not sufficient. For example, it is easy to see that, for t ≥ 1, the complete
bipartite graph K2t+1,2t+1 has no efficient (t+1, t+1)-dominating function even
though both conditions are satisfied.

A graph can have an efficient (j, k)-dominating function even though it has no
efficient dominating set, as was noted above for any cycle Cn where n 6≡ 0 (mod 3).
More generally, if k is a positive integer then a (k − 1)-regular graph G has an
efficient (j, k)-dominating function for all integers j with 1 ≤ j ≤ k : define
f : V → {0, 1, 2, . . . , j} by f(x) = 1 for all x ∈ V . Such a graph can have an
efficient dominating set only if k divides |V |.

We now give further examples of graphs with an efficient (k, k)-dominating
function and no efficient dominating set.

Suppose first that k is even. Let ℓ be a positive integer, and Gℓ be the cubic
graph obtained from a cycle v1, v2, . . . , v8ℓ by joining vertex vi to vertex vi+4ℓ

for i = 1, 2, . . . , 4ℓ. Then Gℓ has no efficient dominating set. The function that
assigns k/2 to each vertex with an odd subscript and 0 to each vertex with an
even subscript is an efficient (k/2, k)-dominating function, and hence an efficient
(k, k)-dominating function.

Now suppose k is odd. Let ℓ ≥ k ≥ 3 be an integer, and Hℓ be any graph
obtained from a cycle v1, v2, . . . , v3ℓ by adding a new vertex v and joining it to k
vertices in the set {vi : i ≡ 1 (mod 3)}. Then Hℓ has no efficient dominating set.
The function f defined by f(x) = 0 and

f(vi) =











0, i ≡ 0 (mod 3),

1, i ≡ 1 (mod 3),

k − 1, i ≡ 2 (mod 3),
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is an efficient (k − 1, k)-dominating function, and hence an efficient (k, k)-domi-
nating function. Figure 1 shows H3.

v9

v1

v2

v8

v7

v6

v5 v4

v3

x

Figure 1. The graph H3.

3. Strongly Chordal Graphs

In this section we show that the class of strongly chordal graphs has the prop-
erty that the existence of an efficient (j, k)-dominating function is equivalent to
the existence of an efficient dominating set. We show further that every (j, k)-
dominating function of a strongly chordal graph is a sum of characteristic func-
tions of efficient dominating sets.

A graph G is strongly chordal if its vertices can be ordered v1, v2, . . . , vn such
that for each i, j, k and l the following conditions are satisfied.

(a) If i < j < k and vivj , vivk ∈ E, then vjvk ∈ E;

(b) If i < j, k < l and vivk, vivl, vjvk ∈ E, then vjvl ∈ E.

Since any vertex ordering that satisfies (a) is a perfect elimination ordering, ev-
ery strongly chordal graph is chordal. A forbidden subgraph characterization of
strongly chordal graphs was independently given by Farber [8, 9], and Chang and
Nemhauser [5].

A (0, 1)-matrix is called balanced, if it does not have a submatrix which is
the incidence matrix of an odd cycle, and totally balanced if it does not have a
submatrix which is the incidence matrix of any cycle of length at least 3.

Totally balanced matrices, strongly chordal graphs, and integer / linear pro-
gramming are connected in the following theorems. Note that a graph G has
an efficient dominating set if and only if there is a (0, 1)-vector x such that
(A+ I)x = 1, where A is the adjacency matrix of G.

Theorem 3.1 [8, 9]. A graph G is strongly chordal if and only if the matrix

A(G) + I is totally balanced, where A is the adjacency matrix of G.

Theorem 3.2 [10]. If the matrix B is balanced, then the polyhedron Bx = 1,
x ≥ 0 is either empty, or every vertex has (0, 1)-coordinates.
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If a strongly chordal graph G has an efficient (j, k)-dominating function, then
the polyhedron P determined by (A+ I)x = 1, x ≥ 0 is non-empty. By Theorem
3.2, each vertex of P corresponds to an efficient dominating set of G. The char-
acteristic function of an efficient dominating set is an efficient (1, 1)-dominating
function. We now show that the efficient (1, 1)-dominating functions correspond-
ing to vertices of P are the building blocks of the efficient (j, k)-dominating
functions of G.

Theorem 3.3. For every integer k ≥ 1, if a strongly chordal graph G has an

efficient (j, k)-dominating function f , then there exist efficient (1, 1)-dominating

functions g1, g2, . . . , gk such that f = g1 + g2 + · · ·+ gk.

Proof. The proof is by induction on k. The statement is clearly true when k = 1
since an efficient (1, 1)-dominating function is the characteristic function of an
efficient dominating set. Suppose it is true when k = t− 1, where t ≥ 2.

Let G be a strongly chordal graph with an efficient (s, t)-dominating function
f . Then, setting xv = 1

t
f(v) for each v ∈ V gives a solution x to (A + I)x = 1,

x ≥ 0. Since the polyhedron P determined by the equation is non-empty, by
Theorem 3.2 its vertices have (0, 1)-coordinates. Note that if x ∈ P, then 0 ≤
xv ≤ 1 for all vertices v ∈ V (G), so ||x||2 ≤

√

|V (G)|. In particular, P is bounded
and thus is the convex hull of its extreme points.

Hence x is a (possibly trivial) convex combination of vertices of P. Recall
that each vertex of P corresponds to an efficient dominating set of T . Therefore
there exists an efficient (1, 1)-dominating function gt such that gt(v) ≤ f(v) for
all v ∈ V .

Since f is an efficient (s, t)-dominating function of G and t ≥ 2, the function
f − gt is an efficient (s, t − 1)-dominating function of G. By the induction hy-
pothesis there exist efficient (1, 1)-dominating functions g1, g2, . . . , gt−1 such that
f − gt = g1 + g2 + · · ·+ gt−1. Hence f can be expressed as the sum of t efficient
(1, 1)-dominating functions of G.

The path P5 is strongly chordal and has an efficient (4, 4)-dominating function
f that assigns 0 to the middle vertex of the path and 2 to all other vertices. The
function g is the sum of two copies of the characteristic function of the efficient
dominating set consisting of the first and fourth vertices of the path, and two
copies of the characteristic function of the efficient dominating set consisting of
the second and fifth vertices of the path. In particular, note that if g4 is any one
of these characteristic functions, then g4(v) < f(v) for all vertices v ∈ V .

Corollary 3.4. Let G be a strongly chordal graph. If G has an efficient (j, k)-
dominating function, then G has an efficient dominating set.

The converse of Corollary 3.4 does not hold when j < k. The star K1,n,
n ≥ 2, is a strongly chordal graph with an efficient dominating set. It has
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efficient (j, k)-dominating function only if j = k. The converse of the corollary
holds when j = k. This statement strengthens Theorem 2.6 for strongly chordal
graphs.

Corollary 3.5. Let G be a strongly chordal graph. Then G has an efficient

(k, k)-dominating function if and only if it has an efficient dominating set.

Proof. The forward implication of the first statement follows from Corollary 3.4,
and the backwards implication follows from Proposition 2.6.

Problem 3.6. Given a graph G with an efficient (k, k)-dominating function,
find bounds for the smallest positive integer j such that it has an efficient (j, k)-
dominating function.

Theorem 3.3 makes it possible to connect efficient dominating sets in strongly
chordal graphs and efficient (k, k)-dominating functions in a stronger way than
in the two corollaries above.

Theorem 3.7. Let G be a strongly chordal graph. For any integer k ≥ 2.

1. If G has an efficient (k, k)-dominating function, then every efficient (k, k)-
dominating function of G takes only the values 0 and k if and only if G has

a unique efficient dominating set.

2. There exists an efficient (1, k)-dominating function of G if and only if G has

k pairwise disjoint efficient dominating sets.

3. There exists an efficient (k, k)-dominating function of G that takes a value t
such that 1 < t < k at some vertex if and only if G has at least two different

efficient dominating sets.

Proof. Let G be a strongly chordal graph that has an efficient (k, k)-dominating
function. We prove each statement in turn.

1. If G has an efficient (k, k)-dominating function, then, by Corollary 3.5,
G has an efficient dominating set (irrespective of the values the function takes).
To prove the converse, we prove the contrapositive. Suppose G has two dif-
ferent efficient dominating sets D1 and D2 with characteristic functions f1 and
f2, respectively. Since D1 6= D2, there exists a vertex x such that f1(x) = 0 and
f2(x) = 1. Since k ≥ 2, the function (k−1)f1+f2 is an efficient (k, k)-dominating
function of G that takes the value 1 < k.

2. Suppose f is an efficient (1, k)-dominating function of G. By Theorem
3.3 there exist efficient (1, 1)-dominating functions g1, g2, . . . , gk such that f =
g1 + g2 + · · · + gk. Let Di be the efficient dominating set whose characteristic
function is gi, 1 ≤ i ≤ k. Since f(x) ∈ {0, 1} for all x ∈ V , the setsD1, D2, . . . , Dk

are pairwise disjoint. Conversely, if G has k pairwise disjoint efficient dominating
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sets, then the sum of their respective characteristic functions is an efficient (1, k)-
dominating function.

3. Suppose f is an efficient (k, k)-dominating function of G that takes a
value t such that 1 < t < k at the vertex x. Then, as in the proof of statement
2, f is the sum of characteristic functions of (not necessarily different) efficient
dominating sets D1, D2, . . . , Dk. Since f(x) = t and t < k, the vertex x belongs
to t < k of these sets. Therefore G has at least two different efficient dominating
sets. Conversely, suppose G has at least two different efficient dominating sets
with characteristic functions f1 and f2, respectively. Then tf1 + (k − t)f2 is an
efficient (k, k)-dominating function of G that takes the value t at some vertex.

The efficient dominating sets in statement 3 of the above theorem need not
have non-empty intersection, as is demonstrated by the example immediately fol-
lowing Theorem 3.3. More generally, if f1 and f2 are the characteristic functions
of the two efficient dominating sets of P5, then for a, b ∈ Z with 1 ≤ a ≤ b and
a+ b ≥ 3, the function af1 + bf2 is an efficient (a+ b, a+ b)-dominating function
of P5 that takes a value strictly between 1 and a+ b at some vertex.

4. Complexity

The problem of deciding whether a given graph has an efficient dominating set
(i.e., an efficient (1, 1)-dominating function) is NP-complete, even when restricted
to chordal graphs [22]. Chellali and others proved that the problem of deciding
whether a given graph has an efficient (1, 2)-dominating function is NP-complete
[6]. We show that the problem of deciding whether a given graph has an effi-
cient (j, k)-dominating function is NP-complete for all j and k, where k ≥ 2.
It follows that the problem of deciding whether a given graph has an efficient
(j, k)-dominating function is NP-complete for all positive integers j and k.

Let G be a graph. For p ≥ 1, the p-th power of G is the graph Gp with the
same vertex set as G in which vertices u and v are adjacent if and only if the
distance between u and v in G is less than or equal to p.

Lemma 4.1. Let j and k be integers such that k ≥ 2. Let Xk be the (k − 1)-
st power of the cycle v0, v1, . . . , v2k2−k−1, v0 of length 2k2 − k. Then Xk has

an efficient (j, k)-dominating function and, if f is an efficient (j, k)-dominating

function of Xk, then f(v0) = f(v2k−1) = f
(

v2(2k−1)

)

= · · · = f
(

v(k−1)(2k−1)

)

.

Proof. To see the first statement, let f : V → {0, 1} be

f(vi) =

{

1, i ≡ 0, 1, . . . , k − 1 (mod 2k − 1),

0, i ≡ k, k + 1, . . . , 2k − 2 (mod 2k − 1).
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Then the closed neighbourhood of every vertex vi contains exactly k vertices to
which f assigns the value 1. Thus f is an efficient (1, k)-dominating function of
Xk, and hence an efficient (j, k)-dominating function of Xk.

To see the second statement, observe that since

∑

x∈N [vk−1]

f(x) =
2k−2
∑

i=0

f(vi) = k

and
∑

x∈N [vk]

f(x) =
2k−1
∑

i=1

f(vi) = k,

it follows that f(v0) = f(v2k−1). Similarly, f(v2k−1) = f(v2(2k−1)) = · · · =
f(v(k−1)(2k−1)).

We prove the main result in this section using a transformation from mono-
tone 1-in-3-SAT, the variant of SAT which is described at the start of the proof
(also, see [11], problem L04). NP-completeness of monotone 1-in-3-SAT follows
from Schaefer’s Dichotomy Theorem [7].

Theorem 4.2. Let j and k be integers such that k ≥ 2. The problem of deciding

whether a given graph has an efficient (j, k)-dominating function is NP-complete.

Proof. The transformation is from monotone 1-in-3-SAT. Suppose we are given
an instance of monotone 1-in-3-SAT with variables x1, x2, . . . , xn and 3-variable
clauses c1, c2, . . . , cm such that no clause contains a negated variable. Construct
a graph G as follows.

Corresponding to each variable xi there is a copy Xi of the (k − 1)-st power
of the cycle vi,0, vi,1, . . . , vi,2k2−k−1, vi,0 of length 2k2 − k. Corresponding to each
clause ct there is a vertex ℓt. If clause ct = xt1 ∨ xt2 ∨ xt3 , then for 1 ≤ q ≤ 3 add
edges joining ℓt to vertices vtq ,0, vtq ,2k−1, . . . , vtq ,(k−1)(2k−1). This completes the
construction of G. The transformation can clearly be carried out in polynomial
time.

We claim that there is a satisfying truth assignment in which each clause
contains exactly one true variable if and only ifG has an efficient (j, k)-dominating
function.

Suppose there is a satisfying truth assignment in which each clause contains
exactly one true variable. Define the function f : V (G) → {0, 1} as follows. If xi
is true, then the restriction of f to Xi is such that f(vi,0) = 1, and if xi is false,
then the restriction of f to Xi is such that f(vi,0) = 0. All other f -values for Xi

are assigned according to Lemma 4.1. Set f(ℓt) = 0, 1 ≤ t ≤ m. Since each clause
contains exactly one true variable, it follows from Lemma 4.1, that the sum of
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function values in the closed neighbourhood of each vertex ℓt equals k. Since the
same holds for all other vertices by the construction of G and the definition of f ,
the function f is an efficient (1, k)-dominating function of G. Therefore, f is an
efficient (j, k)-dominating function of G.

Now suppose G has an efficient (j, k)-dominating function f . We claim that
f(ℓt) = 0, 1 ≤ t ≤ m. Without loss of generality assume f(ℓ1) > 0, and ℓ1 is
adjacent to v1,0, v1,2k−1, . . . , v1,(k−1)(2k−1). We will obtain a contradiction. Since
f(ℓ1) > 0, we have

∑

x∈NX1
[v1,t(2k−1)]

f(x) < k, 0 ≤ t ≤ k − 1.

But the set {v1,t(2k−1) : 0 ≤ t ≤ k − 1} is an efficient dominating set of X1, so
that

2k2−k−1
∑

i=0

f(v1,i) < k2.

On the other hand, the set {v1,t(2k−1)+1 : 0 ≤ t ≤ k−1} is an efficient dominating
set of X1, and none of the vertices in this set are adjacent to ℓ1, so that

∑

x∈NX1
[v1,t(2k−1)+1]

f(x) = k, 0 ≤ t ≤ k − 1.

But this implies
2k2−k−1
∑

i=0

f(v1,i) = k2,

a contradiction. This proves the claim.
Define a truth assignment for x1, x2, . . . , xn by setting xi to be true if f(vi,0)

> 0, and false if f(vi,0) = 0. Since

∑

x∈N [ℓt]

f(x) = k

for 1 ≤ t ≤ m, it follows from Lemma 4.1 that each clause contains exactly
one true variable. Therefore the given instance of monotone 1-in-3-SAT has
a satisfying truth assignment in which each clause contains exactly one true
variable.

This completes the proof.

One can observe that, in the above proof, the function f must be (0, 1)-valued.

Corollary 4.3. Let j and k be integers. The problem of deciding whether a given

graph has an efficient (j, k)-dominating function is NP-complete.
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Corollary 4.4. For every integer k ≥ 1 the problem of deciding whether a given

graph has an efficient k-tuple dominating set is NP-complete.

By Theorem 3.2 there is a polynomial-time algorithm to decide whether a
strongly chordal graph has an efficient dominating set (also see [4, 8]). The
following then becomes an immediate consequence of Corollary 3.5.

Corollary 4.5. There is a polynomial-time algorithm to determine whether a

strongly chordal graph has an efficient (k, k)-dominating function.

Proof. By Corollary 3.5 this is equivalent to the existence of an efficient domi-
nating set in G, which is in turm equivalent to the existence of a feasible solution
to (A+ I)x = 1, x ≥ 0.

5. Efficient (2, 2)-Dominating Functions of Trees

Since trees are strongly chordal graphs, by Corollary 3.5 a tree has an efficient
(2, 2)-dominating function if and only if it has an efficient dominating set. One
such function is obtained by assigning the value 2 to the vertices of an efficient
dominating set, and the value 0 to all other vertices. Theorem 3.7 describes the
circumstances under which these are the only efficient (2, 2)-dominating functions,
or when a tree has an efficient (2, 2)-dominating function that takes only the
values 0 and 1, or that takes all of the values 0, 1, and 2.

Let us introduce the following notations.

• T02 be the set of trees which are such that every efficient (2, 2)-dominating
function uses only the values 0 and 2, i.e., the trees with a unique efficient
dominating set.

• T01 be the set of trees which have an efficient (2, 2)-dominating function
using only 0 and 1, that is, the set of trees which have an efficient double
dominating set or, equivalently, two disjoint efficient dominating sets.

• T012 be the set of trees that admit a surjective efficient (2, 2)-dominating
function. These are the trees with two different efficient dominating sets.

No tree has an efficient (2, 2)-dominating function that takes only the values 1
and 2 (consider the sum of function values in closed neighbourhood of a leaf
versus the closed neighbourhood of its neighbour). Thus the set of trees which
have an efficient (2, 2)-dominating function is T = T01∪T012∪T02. Note that T02
is disjoint from T01 ∪ T012.

Stars with at least three vertices have an efficient dominating set, and hence
an efficient (2, 2)-dominating function. These belong to T02, and do not belong
to T01 ∪ T012. The path P5 belongs to T01 and does not belong to T012. The
tree obtained by subdividing each edge of a star with at least four vertices once
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belongs to T012 and does not belong to T01. The tree obtained from two copies
of P5 by adding an edge joining their central vertices belongs to T01 ∩ T012.

The proof of the following is straightforward, and omitted.

Proposition 5.1. 1. The path Pn ∈ T01 if and only if n ≡ 2 (mod 3).

2. No path belongs to T012.

3. The path Pn ∈ T02 if and only if n 6≡ 2 (mod 3).

No tree has a (1, k)-dominating function when k ≥ 3 (consider the closed
neighbourhood of a leaf). Further, no tree has more than two disjoint efficient
dominating sets (consider how a leaf is dominated). Thus, statement (2) in the
theorem above has no direct analogy for k ≥ 3.

Problem 5.2. For k > 2, characterize the trees that have k different efficient
dominating sets.

We now construct a set Tc of vertex-coloured trees in such a way that, for
each tree T ∈ T = T01 ∪ T012 ∪ T02, all efficient (2, 2)-dominating functions of
T are also described. The vertices of each tree Tf ∈ Tc are painted one of the
three colours red, blue and white. These colours represent the vertices that are
assigned the values 2, 1, 0, respectively, by the efficient (2, 2)-dominating function
f of T . The set T is obtained from Tc by ignoring the vertex colours.

Initially P1, P2 ∈ Tc. The vertex of P1 is painted red, and the vertices of P2

are both painted blue. In the sequel we refer to these a red P1 and a blue P2,
respectively. Suppose T ′ ∈ Tc. Add to Tc any tree that can be obtained from T ′

by a sequence of the following operations.

O1. Add a new vertex w by adding an edge from w to a red vertex of T ′. Paint
the vertex w white.

O2. Add a path x1x2 consisting of two new vertices by joining x1 to a white
vertex of T ′. Paint x1 white and x2 red.

O3. Add a path y1y2y3 consisting of three new vertices by joining y1 to a blue
vertex of T ′. Paint y1 white, and both y2 and y3 blue.

O4. Add a path P5 = z1z2z3z4z5 consisting of five new vertices by joining z3 to
a white vertex of T ′. Paint z3 white, and z1, z2, z4 and z5 blue.

Theorem 5.3. Let T be a tree. A function f : V → {0, 1, 2} is an efficient

(2, 2)-dominating function of T if and only if a vertex-coloured copy of T can be

constructed, starting from a red P1 or a blue P2 using a sequence of operations

O1, O2, O3, O4.

Proof. By construction, if T ∈ Tc, then T has an efficient (2, 2)-dominating
function in which the vertices in f−1(2), f−1(1), f−1(0) are painted red, blue and
white, respectively.
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For the converse, suppose the tree T has an efficient (2, 2)-dominating func-
tion f . We construct a vertex-coloured tree Tf ∈ Tc such that the red, blue, and
white vertices correspond to f−1(2), f−1(1), f−1(0), respectively.

If |V (T )| ≤ 2, then Tf is either a red P1, a blue P2, or a P2 with a red vertex
and a white vertex. Each of these vertex-coloured trees belongs to Tc.

For n ≥ 3, suppose that for any tree with fewer than n vertices and any
efficient (2, 2)-dominating function g of T , there exists a vertex-coloured tree Tg ∈
Tc such that the red, blue, and white vertices correspond to g−1(2), g−1(1), g−1(0),
respectively.

Let T be a tree with n vertices and an efficient (2, 2)-dominating function f .
Let ℓ be an end of a longest path of T . Then ℓ is a leaf. Let s be the unique
neighbour of ℓ. We consider cases depending on f(ℓ).

Case 1. f(ℓ) = 0. Then f(s) = 2, and the restriction, g, of f to V (T − ℓ)
is an efficient (2, 2)-dominating function of T − ℓ. By the induction hypothesis,
there exists a vertex-coloured tree (T−ℓ)g ∈ Tc such that the red, blue, and white
vertices correspond to g−1(2), g−1(1), g−1(0), respectively. The vertex-coloured
tree Tf can be constructed from (T − ℓ)g by operation O1.

Case 2. f(ℓ) = 2. Then f(s) = 0. We claim that the vertex s must have
degree 2. The claim is true if T is P3, so assume T 6= P3. If s is adjacent to a
leaf ℓ′ 6= ℓ, then f(ℓ′) = 2. But then the sum of function values in the closed
neighbourhood of s is greater than 2. If s is adjacent to two internal vertices of
T , then there is longer path than the one under consideration. Both possibilities
lead to a contradiction, which proves the claim. Let t 6= ℓ be adjacent to s. Then
f(t) = 0. Thus the restriction, g, of f to V (T − {ℓ, s}) is an efficient (2, 2)-
dominating function of T − {ℓ, s}. By the induction hypothesis, there exists a
vertex-coloured tree (T −{ℓ, s})g ∈ Tc such that the red, blue, and white vertices
correspond to g−1(2), g−1(1), g−1(0), respectively. The vertex-coloured tree Tf

can be constructed from (T − {ℓ, s})g by operation O2.

Case 3. f(ℓ) = 1. Then f(s) = 1 and, similar to the previous case, the vertex
s must have degree 2. Let t 6= ℓ be adjacent to s. Then f(t) = 0. We consider
subcases depending on the degree of t.

Suppose the vertex t has degree 2. Then, the restriction, g, of f to V (T −
{ℓ, s, t}) is an efficient (2, 2)-dominating function of T − {ℓ, s, t}. By the induc-
tion hypothesis, there exists a vertex-coloured tree (T −{ℓ, s, t})g ∈ Tc such that
the red, blue, and white vertices correspond to g−1(2), g−1(1), g−1(0), respec-
tively. The vertex-coloured tree Tf can be constructed from (T − {ℓ, s, t})g by
operation O3.

Suppose the vertex t has degree 3. Since f(t) = 0 and f(s) = 1, then the
vertex t cannot be adjacent to a leaf. By the choice of ℓ, the vertex t must have
a neighbour s′ 6= s which is a adjacent to a leaf. Since t has a neighbour assigned
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the value 1, we must have f(s′) = 1. This, in turn, implies that s′ has degree 2.
It follows that the leaf ℓ′ adjacent to s′ has f(ℓ′) = 1. Since t has two neighbours
assigned the value 1, its third neighbour must be assigned the value 0. Then,
the restriction, g1, of f to V (T − {ℓ, s, t, s′, ℓ′}) is an efficient (2, 2)-dominating
function of T − {ℓ, s, t, s′, ℓ′}. By the induction hypothesis, there exists a vertex-
coloured tree (T−{ℓ, s, t, s′, ℓ′})g1 ∈ Tc such that the red, blue, and white vertices
correspond to g−1(2), g−1(1), g−1(0), respectively. The vertex-coloured tree Tf

can be constructed from (T − {ℓ, s, t, s′, ℓ′})g1 by operation O4.

Finally, suppose t has degree at least 4. Then, as above, t is not adjacent to a
leaf and all neighbours of t, except possibly one, are adjacent to leaves. Since t has
a neighbour assigned the value 1, it has one other neighbour assigned the value
1, and all other neighbours are assigned the value 0. Hence t has a neighbour
s′ which is adjacent to a leaf and is such that f(s′′) = 0. The vertex s′′ can be
adjacent to only one leaf, say ℓ′′, and f(ℓ′′) = 2. Then, the restriction, g2 of f
to V (T − {ℓ′′, s′′}) is an efficient (2, 2)-dominating function of T − {ℓ′′, s′′}. By
the induction hypothesis, there exists a vertex-coloured tree (T −{ℓ′′, s′′})g2 ∈ Tc
such that the red, blue, and white vertices correspond to g−1

2 (2), g−1
2 (1), g−1

2 (0),
respectively. The vertex-coloured tree Tf can be constructed from T −{ℓ′′, s′′})g2
by operation O2.

The result now follows by induction.

Suppose the tree T has an efficient (2, 2)-dominating function f . We use Tf

to denote the vertex-coloured tree in Tc such that the red, blue, and white vertices
correspond to f−1(2), f−1(1), f−1(0), respectively. If, in the construction of Tf ,
operations O1, O2, O3, and O4 have been applied a total of k1, k2, k3, and k4
times, respectively, then the weight of f is 2 + 2k2 + 2k3 + 4k4.

A constructive characterization of the trees that have an efficient dominating
set was given by Bange, Barkauskas and Slater [2]. A simpler constructive char-
acterization is an immediate consequence of the previous theorem. Recall that an
efficient dominating set of a tree T corresponds to an efficient (2, 2)-dominating
function of T that takes only the values 0 and 2.

Corollary 5.4. Let T be a tree. Then T has an efficient (2, 2)-dominating func-

tion f , that takes only the values 0 and 2 if and only if Tf can be constructed

from a red P1 using operations O1 and O2.

Proof. Suppose T has an efficient (2, 2)-dominating function f , that takes only
the values 0 and 2. Then, the tree Tf ∈ Tc has no blue vertices. Hence Tf is
constructed from a red P1 using operations O1 and O2.

On the other hand, if the vertex-coloured tree Tf can be constructed from a
red P1 using operations O1 and O2, then Tf has no blue vertices. Therefore the
efficient (2, 2)-dominating function f takes only the values 0 and 2.
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Bange, Barkauskas and Slater [2] also gave a constructive characterization
of the trees with two disjoint efficient dominating sets. Essentially the same
characterization can be derived from Theorem 5.3 similarly to Corollary 5.4.

Corollary 5.5 [2]. Let T be a tree. Then T has an efficient (2, 2)-dominating

function f , that takes only the values 0 and 1 (i.e., T ∈ T01) if and only if Tf can

be constructed from a blue P2 using only O3 and O4.

It is possible to modify our construction to use “light blue” and “dark blue”
vertices so that if T ∈ T01, then the set of light blue vertices and the set of dark
blue vertices form two disjoint efficient dominating sets of T . To do this, O3
needs to be replaced by O3′ and O3′′ in a way that takes into account whether
the new vertices are being joined to a light blue vertex or a dark blue vertex.
Operation O4 also needs to be modified so that the two efficienct dominating
sets of P5 are distinguished by the two shades of blue.

The trees in T012 can be similarly characterized.

Corollary 5.6. Let T be a tree. Then T has a surjective efficient (2, 2)-dominat-

ing function f (i.e., T ∈ T012) if and only Tf can be constructed from a red P1 or

a blue P2 such that at least one of O1, O2 is used, and at least one of O3, O4 is

used.

The trees with two different efficient dominating sets can also be construc-
tively characterized.

Corollary 5.7. Let T be a tree. Then T has an efficient (2, 2)-dominating func-

tion f , which assigns the value 1 to at least one vertex (i.e., T ∈ T01 ∪ T012) if

and only if Tf can be constructed from a red P1 or a blue P2 such that at least

one of O3 and O4 is used.

Problem 5.8. Characterize the trees that have a unique efficient dominating
set.

We close with a proposition which suggests that the problem above may be
difficult.

Proposition 5.9. Any tree T is an induced subtree of a tree T ′ which has a

unique efficient dominating set.

Proof. Let T be a tree. Let T ′ be the corona of T with respect to K1, that is, for
each vertex x ∈ V (T ) add a new vertex x′ and join it to x. Then T is a subtree
of T ′ and the set {x′ : x ∈ V (T ) is the unique efficient dominating set of T ′.
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