DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

A. Burcroff

Amanda Burcroff

University of Michigan

email: burcroff@umich.edu

Title:

Domination parameters of the unitary Cayley graph of $\mathbb{Z}/n\mathbb{Z}$

PDF

Source:

Discussiones Mathematicae Graph Theory 43(1) (2023) 95-114

Received: 2019-06-22 , Revised: 2020-07-21 , Accepted: 2020-07-25 , Available online: 2020-09-20 , https://doi.org/10.7151/dmgt.2352

Abstract:

The unitary Cayley graph of $\mathbb{Z}/n\mathbb{Z}$, denoted $X_n$, is the graph with vertex set $\{0,\dots,n-1\}$ where vertices $a$ and $b$ are adjacent if and only if $\gcd(a-b,n) = 1$. We answer a question of Defant and Iyer by constructing a family of infinitely many integers $n$ such that $\gamma_t(X_n) \leq g(n) - 2$, where $\gamma_t$ denotes the total domination number and $g$ denotes the Jacobsthal function. We determine the irredundance number, domination number, and lower independence number of certain direct products of complete graphs and give bounds for these parameters for any direct product of complete graphs. We provide upper bounds on the size of irredundant sets in direct products of balanced, complete multipartite graphs which are asymptotically correct for the unitary Cayley graphs of integers with a bounded smallest prime factor.

Keywords:

unitary Cayley graph, domination chain, direct product, complete balanced multipartite graph

References:

  1. R.B. Allan and R. Laskar, On domination and some related topics in graph theory, in: Proceedings of the Ninth Southeast Conference on Combinatorics, Graph Theory, and Computing, Util. Math. (1978) 43–56.
  2. R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jiménez, R. Karpman, A. Kinzel and D. Pritikin, On the unitary Cayley graph of a finite ring, Electron. J. Combin. 16 (2009) #R117.
    https://doi.org/10.37236/206
  3. R. Akhtar, A.B. Evans and D. Pritikin, Representation numbers of complete multipartite graphs, Discrete Math. 312 (2012) 1158–1165.
    https://doi.org/10.1016/j.disc.2011.12.003
  4. N. Alon and C. Defant, Isoperimetry, stability, and irredundance in direct products, Discrete Math. 343 (2020) 111902.
    https://doi.org/10.1016/j.disc.2020.111902
  5. N. Biggs, Algebraic Graph Theory, Second Edition (Cambridge University Press, Cambridge, 1993).
    https://doi.org/10.1017/CBO9780511608704
  6. B. Bollobás and E.J. Cockayne, Graph-theoretic parameters concerning domination, independence, and irredundance, J. Graph Theory 3 (1979) 241–249.
    https://doi.org/10.1002/jgt.3190030306
  7. B. Brešar, S. Klavžar and D.F. Rall, Dominating direct products of graphs, Discrete Math. 307 (2007) 1636–1642.
    https://doi.org/10.1016/j.disc.2006.09.013
  8. K. Budadoddi and A. Mallikarjuna Reddy, Cycle dominating sets of Euler totient Cayley graphs, Math. Sci. Int. Res. J. 3 (2014) 727–730.
  9. G.A. Cheston and G.H. Fricke, Classes of graphs for which the upper fractional domination equals independence, upper domination, and upper irredundance, Discrete Appl. Math. 55 (1994) 241–258.
    https://doi.org/10.1016/0166-218X(94)90011-6
  10. C. Defant, Unitary Cayley graphs of Dedekind domain quotients, AKCE Int. J. Graphs Comb. 13 (2016) 65–75.
    https://doi.org/10.1016/j.akcej.2016.03.001
  11. C. Defant and S. Iyer, Domination and upper domination of direct product graphs, Discrete Math. 341 (2018) 2742–2752.
    https://doi.org/10.1016/j.disc.2018.06.031
  12. P. Erdős and A.B. Evans, Representations of graphs and orthogonal Latin square graphs, J. Graph Theory 13 (1989) 593–595.
    https://doi.org/10.1002/jgt.3190130509
  13. A.B. Evans, Representations of disjoint unions of complete graphs, Discrete Math. 307 (2007) 1191–1198.
    https://doi.org/10.1016/j.disc.2006.07.029
  14. A.B. Evans, G. Isaak and D.A. Narayan, Representations of graphs modulo $n$, Discrete Math. 223 (2000) 109–123.
    https://doi.org/10.1016/S0012-365X(00)00062-5
  15. J.A. Gallian, Graph labeling, A dynamic survey, Electron. J. Combin. (2018) #DS6.
    https://doi.org/10.37236/27
  16. E.N. Gilbert, A comparison of signalling alphabets, The Bell System Technical Journal 31 (1952) 504–522.
    https://doi.org/10.1002/j.1538-7305.1952.tb01393.x
  17. C. Godsil and G. Royle, Algebraic Graph Theory, in: Grad. Texts in Math. 207 (Springer-Verlag, New York, 2001).
    https://doi.org/10.1007/978-1-4613-0163-9
  18. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc, New York, 1998).
    https://doi.org/10.1201/9781482246582
  19. W. Klotz and T. Sander, Some properties of unitary Cayley graphs, Electron. J. Combin. 14 (2007) #R45.
    https://doi.org/10.37236/963
  20. S.U. Maheswari and B. Maheswari, Independent domination number of Euler totient Cayley graphs and arithmetic graphs, Int. J. Adv. Res. Eng. Technol. 7(3) (2016) 56–65.
  21. M. Manjuri and B. Maheswari, Strong dominating sets of some arithmetic graphs, Int. J. Comput. Appl. 83(3) (2013) 36–40.
    https://doi.org/10.5120/14431-2577
  22. G. Mekiš, Lower bounds for the domination number and the total domination number of direct product graphs, Discrete Math. 310 (2010) 3310–3317.
    https://doi.org/10.1016/j.disc.2010.07.015
  23. M. Valencia-Pabon, Idiomatic partitions of direct products of complete graphs, Discrete Math. 310 (2010) 1118–1122.
    https://doi.org/10.1016/j.disc.2009.10.012
  24. R.R. Varshamov, Estimate of the number of signals in error correcting codes, Dokl. Akad. Nauk 117 (1957) 739–741.
  25. H.J. Veldman, Existence of dominating cycles and paths, Discrete Math. 43 (1983) 281–296.
    https://doi.org/10.1016/0012-365X(83)90165-6
  26. H. Vemuri, Domination in direct products of complete graphs, Discrete Appl. Math. 285 (2020) 473–482.
    https://doi.org/10.1016/j.dam.2020.06.015

Close