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Abstract

The unitary Cayley graph of Z/nZ, denoted Xn, is the graph with ver-
tex set {0, . . . , n − 1} where vertices a and b are adjacent if and only if
gcd(a− b, n) = 1. We answer a question of Defant and Iyer by constructing
a family of infinitely many integers n such that γt(Xn) ≤ g(n)− 2, where γt
denotes the total domination number and g denotes the Jacobsthal function.
We determine the irredundance number, domination number, and lower in-
dependence number of certain direct products of complete graphs and give
bounds for these parameters for any direct product of complete graphs. We
provide upper bounds on the size of irredundant sets in direct products of
balanced, complete multipartite graphs which are asymptotically correct for
the unitary Cayley graphs of integers with a bounded smallest prime factor.

Keywords: unitary Cayley graph, domination chain, direct product, com-
plete balanced multipartite graph.
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1. Introduction

For a group Γ and a set S = S−1 ⊆ Γ not containing the identity element, the
Cayley graph Cay(Γ;S) is the undirected graph with vertices labeled by Γ and
edge set {{a, b} : a− b ∈ S}. If Γ is a commmutative ring with unity, the unitary
Cayley graph XΓ is the Cayley graph Cay(Γ, UΓ), where UΓ is the set of units in
Γ. More information on Cayley graphs and unitary Cayley graphs can be found
in the algebraic graph theory texts by Biggs [5] and by Godsil and Royle [17]. We
are interested in Xn := XZ/nZ, that is, the graph on {0, . . . , n−1} where vertices
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a and b are connected by an edge if and only if gcd(a − b, n) = 1. Observe that
Xn is vertex-transitive and regular of degree φ(n), where φ denotes the Euler
totient function.

These graphs were cast into the limelight in 1989, when Erdős and Evans
showed that every finite simple graph G is isomorphic to an induced subgraph of
Xn for some positive integer n, in which case they say G is representable modulo n.
The representation number rep(G) of a graph G is the minimum positive integer
such that G is representable modulo n. The representation numbers of many
classes of graphs have been determined, including progress related to complete
multipartite graphs and Z/nZ [3, 13, 14]. See Section 7.6 of [15] for a survey of
representation numbers and additional references.

In this paper, we consider domination parameters of the unitary Cayley graph
of Z/nZ, including variants of the domination, irredundance, and independence
numbers. Recall that a set S ⊆ V (G) is called independent if it contains no
pair of adjacent vertices. A set S ⊆ V (G) is called dominating if every vertex
of G is either contained in S or adjacent to a vertex of S. A set S ⊆ V (G) is
called irredundant if for each v ∈ S, either v is isolated in S or v has a neighbor
u 6∈ S such that u is not adjacent to any vertex of S\{v}. These notions yield
the following graph parameters for a graph G.

• The irredundance number ir(G) is the minimum size of a maximal irredundant
set.

• The domination number γ(G) is the minimum size of a dominating set.

• The lower independence number i(G), also known as the independent domi-
nation number, is the minimum size of a maximal independent set.

• The independence number α(G) is the maximum size of an independent set.

• The upper domination number Γ(G) is the maximum size of a minimal dom-
inating set.

• The upper irredundance number IR(G) is the maximum size of an irredundant
set.

For any graph G, we have the following chain of inequalities, known as the
domination chain

ir(G) ≤ γ(G) ≤ i(G) ≤ α(G) ≤ Γ(G) ≤ IR(G).

Hundreds of papers have been written showing that some inequalities in this
chain are equalities for certain classes of graphs, see Section 3.5 of [18] for more
details. Many of these results were unified in 1994, when Cheston and Fricke
showed that α(G) = IR(G) for any strongly perfect graph G [9].

It has been shown in [2] that the unitary Cayley graph of any finite com-
mutative ring is a direct product of balanced, complete multipartite graphs, so
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we will often work in this more general setting. The direct product (sometimes
called the tensor product or Kronecker product) of graphs G1, . . . , Gt, denoted by∏t
i=1Gi, is the graph with vertex set given by the Cartesian product of the ver-

tex sets of Gi, i.e.,
∏t
i=1 V (Gi), where (g1, . . . , gt) and (g′1, . . . , g

′
t) in

∏t
i=1 V (Gi)

are adjacent if and only gi and g′i are adjacent in Gi for all i ∈ {1, . . . , t}. The
direct product of two graphs G and H is often denoted by G × H or G ⊗ H.
The balanced, complete b-partite graph with partite set size a, denoted K[a, b], is
the graph on ab vertices partitioned into b partite sets of size a such that two
vertices are adjacent if and only if they lie in different partite sets. If p is a prime
and α is a positive integer, note that Xpα

∼= K[pα−1, p]. An application of the
Chinese remainder theorem shows that for an integer n with prime factorization
n = pα1

1 pα2
2 · · · p

αt
t , we have Xn

∼=
∏t
i=1Xp

αi
i

∼=
∏t
i=1K[pαi−1

i , pi].

In this paper, we build upon the work of Defant and Iyer [11] to determine
domination parameters of the unitary Cayley graphs of Z/nZ. Let g(n) denote
the minimum positive integer m such that every set of m consecutive integers
contains an integer which is coprime to n; this arithmetic function is known as
the Jacobsthal function. The total domination number of a graph G, denoted by
γt(G), is the minimum size of a set S in G such that every vertex is adjacent
to a member of S. Defant observed in [10] that there exist integers n such
that γt(Xn) ≤ g(n) − 1. In Section 3, we answer two questions of Defant and
Iyer in the positive. The first asks whether there exists a single integer n such
that γt(Xn) ≤ g(n)− 2, and the second asks whether there exist integers n with
arbitrarily many distinct prime factors such that γ(Xn) ≤ g(n)−2. We construct
integers n with arbitrarily many distinct prime factors such that Xn contains a
dominating cycle of size g(n)− 2; this answers both questions of Defant and Iyer
since a dominating cycle is necessarily a total dominating set.

In Section 4, we provide bounds on the irredundance, domination, and lower
independence numbers of direct products of complete graphs and determine these
parameters in certain cases. One application of this work is the construction of
some infinite families of integers n where ir(Xn) = γ(Xn) = i(Xn). We provide
an upper bound on the lower independence number of Xn in Corollary 4.12,
thus demonstrating an error in a result of Uma Maheswari and Maheswari [20,
Theorem 4.2]. Defant and Iyer [11] recently determined the value of γ

(∏4
i=1Kni

)
in several cases; we compute this parameter in all cases. In Section 5, we provide
upper bounds on the sizes of irredundant sets in direct products of balanced,
complete multipartite graphs. In the case of unitary Cayley graphs of Z/nZ, we
prove the following bound.

Corollary 5.6. Let n = pα1
1 pα2

2 · · · p
αt
t , where p1 < · · · < pt. Then

IR(Xn) ≤

(
1 + 2 · p1

pt
· 1

pα1−1
1 pα2−1

2 · · · pαt−1
t

)
α(Xn).
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In a preprint of the current article, we conjectured that the upper irredun-
dance number was equal to the independence number for all direct products of
balanced, complete multipartite graphs. This was a strengthening of an earlier
conjecture of Defant and Iyer [11, Conjecture 4.2]. Since the online release of
that preprint, Alon and Defant [4, Theorem 1.2] have confirmed the stronger
conjecture for all but 37 such products, thus improving upon Corollary 5.6.

We conclude with a discussion of possible directions for further study and
pose several open questions in Section 6.

2. Preliminaries

A graph G is a set of vertices V (G) along with a set of undirected edges E(G),
excluding loops. For any U ⊆ V (G), the subgraph of G induced by U , denoted
G[U ], is the graph with vertex set U and whose edge set is precisely the edge set
E(G) restricted to U × U .

Let N(v) denote the neighborhood of a vertex v, the set of all vertices ad-
jacent to v. Let N [v] denote the closed neighborhood of a vertex v, that is, the
set N(v) along with the vertex v itself. For S ⊆ V (G), let N [S] =

⋃
v∈S N [v].

A vertex u ∈ V (G) is a private neighbor of a vertex v ∈ S ⊆ V (G) if u ∈
(N [v]\N [S\{v}]). Note u can equal v. Let pn[v] = pn[v;S] denote the set of
private neighbors of v ∈ S. Let pn[S] =

⋃
v∈S pn[v;S]. Note that a set S ⊆ V (G)

is irredundant if and only if every v ∈ S has a private neighbor, and S ⊆ V (G)
is dominating if and only if N [S] = V (G).

Let N = {1, 2, 3, . . . }. For n ∈ N, let ω(n) denote the number of distinct
prime factors of n. For S ⊆ N, let ω(S) = {ω(n) : n ∈ S}.

3. Dominating Cycles in the Unitary Cayley Graphs of Z/nZ

It was shown by Maheswari and Manjuri [21] that the value of the Jacobsthal
function g(n) is an upper bound for the domination number of Xn, the unitary
Cayley graph of Z/nZ. Defant and Iyer [11] note that the stronger inequality
γt(Xn) ≤ g(n) holds and that these quantities can differ by 1 for n with arbitrarily
many distinct prime factors.

We consider a variation of the domination number, introduced by Veldman
[25] in 1983. The cycle domination number of a graph G, denoted γc(G), is the
minimum size of a dominating cycle in G, provided that such a cycle exists. Note
that γc(G) ≥ γt(G) ≥ γ(G) for any graph G. Since (0, 1, . . . , n− 1) is a cycle in
Xn, the cycle domination number of the unitary Cayley graph of Z/nZ exists for
all n ∈ N.

In the following theorem, we exhibit an infinite family of integers n such that
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g(n) − γt(Xn) ≥ g(n) − γc(Xn) ≥ 2. Let Mc,j be the set of positive integers n
such that g(n)− γc(Xn) ≥ j. Similarly, let Mt,j be the set of positive integers n
such that g(n)− γt(Xn) ≥ j.

Theorem 3.1. The set ω(Mc,2) is unbounded.

Proof. Let q be a prime such that q ≡ 1 mod 3. Let k = 2q−2
3 , and let p1, . . . , pk

be primes such that 2q + 10 < p1 < · · · < pk. Let n = 6q
∏k
j=1 pj .

We begin by showing g(n) ≥ 2q + 8. For i ∈ {0, . . . , 2q + 6}, let

ai =


2 if i ≡ 0 mod 2,

3 if i ≡ 1 mod 6,

q if i = 3 or i = 2q + 3,

min({p1, . . . , pk}\{a0, . . . , ai−1}) otherwise.

Let L(x) = {i ∈ {0, . . . , 2q+ 6} : ai = x}. Note that |L(2)| = q+ 4, |L(3)| = q+5
3 ,

and |L(q)| = 2, and |L(pj)| = 1 for each j ∈ {1, . . . , k}. By the Chinese remainder
theorem, there exists a z ∈ Z such that z ≡ −i mod ai for all i. We note that
the Chinese remainder theorem can be applied because the ai’s are all either
coprime or equal, and in the case that ai = aj for i 6= j, we have −i ≡ −j
mod ai. Hence it is equivalent to consider the set of conditions that z ≡ −i
mod ai, where i ranges over a subset I ⊂ {0, . . . , 2q + 6} is chosen such that the
ai’s are distinct and {ai}i∈I = {ai}0≤i≤2q+6. Having chosen such a z ∈ Z, the set
{z + i : 0 ≤ i ≤ 2q + 6} is a set of 2q + 7 integers, none of which are relatively
prime to n. Hence g(n) ≥ 2q + 8.

Let y be the unique vertex of Xn such that y ≡ 0 mod 2, y ≡ 2 mod 3,
y ≡ −1 mod q, and y ≡ −1 mod pi for all 1 ≤ i ≤ k. Let z be the unique
vertex of Xn such that z ≡ 1 mod 2, z ≡ 0 mod 3, z ≡ −2 mod q, and z ≡ −2
mod pi for all 1 ≤ i ≤ k. Let D = {0, 1, . . . , 2q + 3, y, z}. We will show that the
vertices of D form a cycle dominating set of Xn. Since |D| = 2q + 6 ≤ g(n)− 2,
this will prove n ∈Mc,2.

Suppose a vertex x is not adjacent to any element of D\{y, z}. We will show
that x is adjacent to either y or z. The set S = {x, x− 1, x− 2, . . . , x− (2q+ 3)}
consists of 2q+4 consecutive integers, none of which are coprime to n. For r ∈ N,
let B(r) = {s ∈ S : s ≡ 0 mod r}. Let

B(2, 3) = {s ∈ S : s ≡ 0 mod 2 or s ≡ 0 mod 3}.

Observe that |B(2, 3)| = 2
3(2q + 4) = 4q+8

3 , |B(q)| ≤ 3, and |B(pi)| ≤ 1 for all pi.
Since

S = B(2, 3) ∪B(q) ∪
k⋃
i=1

B(pi),
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we have

2q + 4 =

∣∣∣∣∣B(2, 3) ∪B(q) ∪
k⋃
i=1

B(pi)

∣∣∣∣∣ ≤ |B(2, 3)|+ |B(q)|+
k∑
i=1

|B(pi)|

≤ 4q + 8

3
+ 3 +

2q − 2

3
= 2q + 5.

This calculation implies that |B(q)\B(2, 3)| ≥ 2. Let ` denote the minimum
nonnegative integer such that x − ` ∈ B(q). If ` > 3, then one element of
{x − `, x − ` − q} = B(q) is even, hence |B(q)\B(2, 3)| < 2. Therefore, we
must have ` ≤ 3 with B(q) ∩ B(2, 3) = {x − ` − q}. Hence the sets B(2, 3),
B(q)\{x− `− q}, and

⋃k
i=1B(pi) are disjoint.

Thus, exactly one of x, x− 1, x− 2, x− 3 is contained in B(q). In particular,
x 6≡ −1,−2 mod q. For each 1 ≤ i ≤ k, from the fact that |B(pi)| = 1 and the
assumption that pi ≥ 2q + 10, we can conclude that x 6≡ −1,−2 mod pi.

If x is not adjacent to y, then either x ≡ 2 mod 3 or x ≡ 0 mod 2. We will
show that, under these conditions, x ≡ 2 mod 6 or x ≡ 4 mod 6. Since z ≡ 3
mod 6, this is enough to show that x is adjacent to z.

Suppose x ≡ 2 mod 3.

• If x ≡ 0 mod 2, then x ≡ 2 mod 6.

• If x ≡ 1 mod 2, then x ≡ 5 mod 6. Thus x − 1, x − 2, x − 3 ∈ B(2, 3),
so x ∈ B(q). Hence x − 2q ∈ B(q). However, x − 2q ≡ 2 − 2 ≡ 0 mod 3,
contradicting the disjointedness of B(2, 3) and B(q)\{x− `− q}.

Now suppose x 6≡ 2 mod 3 and x ≡ 0 mod 2.

• If x ≡ 1 mod 3, then x ≡ 4 mod 6.

• If x ≡ 0 mod 3, then x ≡ 0 mod 6. Thus x, x − 2, x − 3 ∈ B(2, 3). Hence
x − 1 ∈ B(q). However, (x − 1) − 2q ≡ 2 − 2 ≡ 0 mod 3, contradicting the
disjointedness of B(2, 3) and B(q)\{x− `− q}.

Thus, if x is not adjacent to y, then x ≡ 4 mod 6 or x ≡ 2 mod 6. We can
conclude that D is indeed a total dominating set, and we have

γt(Xn) ≤ 2q + 6 = (2q + 8)− 2 ≤ g(n)− 2.

Lastly, note that y is adjacent to 1, z is adjacent to 2, and y is adjacent to z.
Therefore, (0, 1, y, z, 2, 3, . . . , 2q + 3) is a dominating cycle.

We will briefly expand upon the motivation behind the construction in The-
orem 3.1. Fix an integer d and a prime q. Let [n]d denote the smallest non-
negative integer equivalent to n modulo d. Let Rq,d be the set of integers
x ∈ {0, . . . , d − 1} such that x and [x − 2q]d are relatively prime to d. Let
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Rq,d,k = {x + ` : x ∈ Rq,d and 0 ≤ ` ≤ k − 1}. A key property used in both the
construction of integers n for which γt(Xn) ≤ g(n) − 1 by Defant and Iyer [11]
(using d = 2 and k = 2) and the construction in Theorem 3.1 (using d = 6 and
k = 4) is that Rq,d,k can be covered by relatively few vertices in Xd, namely 1
vertex in [11] and 2 in Theorem 3.1. Note that k is the minimum integer such
that, for x not adjacent the consecutive vertices of the constructed dominating
set, one of x, x−1, . . . , x−(k−1) is divisible by q. If other such triples of integers
(q, d, k) can be found, similar constructions could yield other families of integers
in Mc,2 and perhaps even Mc,j for j ≥ 3.

Budadoddi and Mallikarjuna Reddy claim in [8] that the cycle dominating
number (see Section 3) of Xn is given by the Jacobsthal function g(n), provided
n is neither a prime power nor twice a prime power. Theorem 3.1 shows that this
is not the case; in fact, there are integers n with ω(n) arbitrarily large such that
g(n)− γc(Xn) ≥ 2.

In the family constructed in Theorem 3.1, we see that γc(Xn) ≤ g(n). How-
ever, this inequality does not hold for all integers. For example, it is easily seen
that γc(X6) = 6 while g(6) = 4. We do not know if there exist infinitely many
integers for which γc(Xn) > g(n). The construction of a dominating set in Xn

of size g(n) by Manjuri and Maheswari [21] shows that γc(Xn) ≤ g(n) whenever
gcd(n, g(n)) = 1.

Theorem 3.1 also answers two questions of Defant and Iyer from [11], the
first asking whether Mt,2 is nonempty and the second asking whether there exist
integers n with ω(n) arbitrarily large such that γ(Xn) ≤ g(n)− 2.

Corollary 3.2. There exist integers n with arbitrarily many distinct prime fac-
tors such that γ(Xn) ≤ γt(Xn) ≤ g(n)− 2.

This leads to the natural next question: does there exist a single integer such
that γt(Xn) ≤ g(n)− 3?

4. Lower Domination Parameters in Products of Complete Graphs

In this section, we consider the quantities in the lower portion of the domination
chain for products of complete graphs. It is often useful to think of vertices in∏t
i=1Kni as t-tuples of integers where the ith-entry is in the range {0, . . . , ni−1},

where two vertices are adjacent if and only if their corresponding vectors differ
in every coordinate. For squarefree positive integers n, we refer to vertices in Xn

as integers and tuples interchangeably.

4.1. Irredundant sets in products of complete graphs

We will make use of two previous results; the first from Defant and Iyer in [11],
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and the second from Bollobás and Cockayne, as well as Allan and Laskar, inde-
pendently, in [6, 1].

Theorem 4.1 [11]. Let G =
∏t
i=1Kni, where 2 ≤ n1 ≤ n2 ≤ · · · ≤ nt, t ≥ 4,

and n2 ≥ 3. We have

γ(G) ≥ t+ 1 +

⌊
t− 1

n1 − 1

⌋
.

Theorem 4.2 [1, 6]. For any graph G, ir(G) ≥ 1
2(γ(G) + 1).

As a direct consequence of these two theorems, we have the following lower
bound on the irredundance numbers of direct products of at least 4 complete
graphs.

Corollary 4.3 [1, 6, 11]. Let G =
∏t
i=1Kni, where 2 ≤ n1 ≤ n2 ≤ · · · ≤ nt,

t ≥ 4, and n2 ≥ 3. We have ir(G) ≥ 1
2

(
t+
⌊
t−1
n1−1

⌋)
+ 1.

For direct products of at most 3 complete graphs, we compute the irredun-
dance number exactly.

Theorem 4.4. Let G =
∏t
i=1Kni, where 2 ≤ n1 ≤ n2 ≤ · · · ≤ nt. If t = 1, then

ir(G) = 1. If t = 2, then

ir(G) =

{
2, if n1 = 2,

3, if n1 ≥ 3.

If t = 3, then ir(G) = 4.

Proof. As ir(G) ≤ γ(G), the calculation of the domination number for G =∏t
i=1Kni for t ≤ 3 by Mekǐs [22] proves that these irredundance numbers are

at most the stated values. The case t = 1 is trivial, since any single vertex is a
maximal irredundant set.

Let t = 2 and n1 = 2. Fix an irredundant set {(x1, y1)}. We claim this set
is not a maximal irredundant set. This follows from the fact that {(x1, y1), (1−
x1, y1)} is also irredundant, as each vertex is its own private neighbor. Therefore,
ir(G) ≥ 2.

Let t = 2, and suppose n1 ≥ 3. Clearly no vertex of G is dominating, so
ir(G) > 1. Fix an irredundant set S = {(x1, y1), (x2, y2)}. Suppose these two
vertices are equal in some coordinate, without loss of generality x1 = x2. Fix y3 ∈
{1, 2, 3}\{y1, y2}. The set {(x1, y1), (x2, y2), (x1, y3)} is an independent hence
irredundant set. Thus, we can assume x1 6= x2 and y1 6= y2. Let S′ be the set
{(x1, y1), (x2, y2), (x1, y2)}. Fix z1 ∈ {1, 2, 3}\{x1, x2} and z2 ∈ {1, 2, 3}\{y1, y2}.
Then (z1, y2) is a private neighbor of (x1, y1) in S′, (x1, z2) is a private neighbor
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of (x2, y2) in S′, and (x1, y2) is its own private neighbor in S′. Therefore, the
minimum size of a maximal irredundant set in G is at least 3.

Let t = 3. Suppose, seeking a contradiction, that

S = {(x1, y1, z1), (x2, y2, z2), (x3, y3, z3)}

is a maximal irredundant set in G. We can assume these three vertices are not
all equal in any coordinate, otherwise S can be extended to an independent set
of size 4 by taking a fourth vector which is also equal in that coordinate.

Suppose that S is independent; without loss of generality assume x1 = x2 6=
x3, y1 = y3 6= y2, and z2 = z3 6= z1. Note that if n3 = 2, every irredundant set is
independent. The point (x3, y2, z1) is not in S, and we have that S∪{(x3, y2, z1)}
is independent. This contradicts that S is a maximal irredundant set.

Thus, we can assume S is not independent; without loss of generality assume

S = {(0, 0, 0), (1, 1, 1), (x3, y3, z3)}.

If each of x3, y3, and z3 is greater than 1, then S ∪ {(0, 1, z3)} is irredundant,
contradicting the maximality of S. Thus, we can assume x3 ∈ {0, 1}. If y3 ≥ 2
and z3 ≥ 2, then S∪{(x3, 0, 1)} is irredundant, which contradicts the maximality
of S. Therefore, at least one of y3, z3 is in the set {0, 1}, so without loss of
generality we shall assume that y3 ∈ {0, 1}. Moreover, we may assume that
x3 = 0. However, either S ∪ {(0, 0, 1)} or S ∪ {(0, 1, 0)} is irredundant as well.
Therefore, we can conclude ir(G) ≥ 4.

4.2. Dominating sets in products of complete graphs

We provide an upper bound on the domination number of any product of t
complete graphs which is exponential in t. This is an improvement on the upper
bound yielded by a theorem of Brešar, Klavžar, and Rall [7], stating that γ(G×
H) ≤ 3γ(G)γ(H) for any graphs G and H. This implies γ

(∏t
i=1Kni

)
≤ 3t−1.

We show that γ
(∏t

i=1Kni

)
≤ 3 · 2t−2.

Theorem 4.5. Let G =
∏t
i=1Kni. Let M be a family of vertices in {0, 1}t ⊆

V (G) such that no two vertices in M are equal in t − 1 coordinates or different
in all t coordinates. Then {0, 1}t\M is a dominating set for G.

Proof. Let D = {0, 1}t\M . Suppose v ∈ {0, 1}t. By the requirement that no
two vertices in M differ in all coordinates, at least one of v and its Boolean
complement (1, . . . , 1)− v is in D. Hence v is dominated by D.

Suppose u ∈ V (G)\{0, 1}t, that is, u has at least one coordinate which is not
in the set {0, 1}. Fix ` ∈ {1, . . . , t} to be some coordinate in which u is neither
0 nor 1. Observe that there exist two vertices w1 and w2 in {0, 1}t, differing
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in only the `th coordinate, which differ from u in every coordinate. Namely,
for i 6= ` we can choose some element ai ∈ {0, 1} such that ai is not equal to
the ith entry of u. Then we let w1 = (a1, . . . , a`−1, 0, a`+1, . . . , at) and w2 =
(a1, . . . , a`−1, 1, a`+1, . . . , at). Since w1 and w2 differ from u in every coordinate,
w1 and w2 are both adjacent to u in G. Since w1 and w2 are equal in t − 1
coordinates, at least one of them is in D. Therefore, u is dominated by D. We
conclude that D is a dominating set of G.

Let A(t, d, t − 1) denote the maximum number of binary vectors of length t
such that any two distinct vectors have Hamming distance between d and t− 1,
inclusive. Let A(t, d) denote the maximum number of binary vectors such that
no two vectors have Hamming distance less than d. By taking a set witnessing
A(t, d) and throwing out one of the vectors in any pair of Boolean complements,
we obtain the following bound.

A classic result in coding theory is the Gilbert-Varshamov lower bound [16,
24] on A(t, d), originally stated for alphabets of prime power size.

Theorem 4.6 [16, 24]. If k satisfies

2k <
2t∑d−2
j=0

(
t
j

) ,
then A(t, d) ≥ 2k.

Corollary 4.7. Let G =
∏t
i=1Kni. We have

γ(G) ≤ 2t −A(t, 2, t− 1) ≤ 3 · 2t−2.

Proof. By Theorem 4.6, we have A(t, 2) ≥ 2t−1. Let M be a set of length
t binary vectors such that no two vectors are equal in t − 1 coordinates and
|M | = 2t−1. We can delete one vector in each pair of Boolean complements in M
to obtain a set M ′ ⊆ M of size at least 2t−2 such that no two vectors are equal
in t− 1 coordinates nor differ in all coordinates. Theorem 4.5 implies {0, 1}t\M ′
is a dominating set, hence

γ(G) ≤ 2t − 2t−2 = 3 · 2t−2.

We now determine the domination number of a product of four complete
graphs, extending the results of Defant and Iyer in [11] and Mekǐs in [22]. Defant

and Iyer determined γt

(∏4
i=1Kni

)
in the cases when n1 = 2, n3 > 4 = n1, or

n2 − 2 > 3 = n1. Mekǐs determined γ
(∏4

i=1Kni

)
in the case that n1 ≥ 5.
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Theorem 4.8. If 2 ≤ n1 ≤ n2 ≤ n3 ≤ n4 and n2 ≥ 3, then

γ

(
4∏
i=1

Kni

)
=


8 if n1 = 2, or if n1 = n2 = 3,

7 if n1 = 3, n2 ∈ {4, 5}, or if n1 = n3 = 4, n4 ∈ {4, 5},
6 if n1 = 3, n2 > 5, or if n1 = 4, (n3, n4) 6∈ {(4, 4), (4, 5)},
5 if n1 ≥ 5.

Moreover, if n1 ≥ 3, then γ
(∏4

i=1Kni

)
= γt

(∏4
i=1Kni

)
.

Proof. Let G =
∏4
i=1Kni . We will proceed through the cases in increasing order

of domination number. The case n1 ≥ 5 is determined by Corollary 2.2 of [22].
Furthermore, the same result yields that if n1 < 5, then γ(G) ≥ 6.

Consider those cases when the theorem claims γ(G) = γt(G) = 6. The cases
n1 = 4, n3 ≥ 5 or n1 = 3, n2 > 5 follow from Theorem 2.8 of [11], using the
fact that the dominating sets constructed by Defant and Iyer are in fact total
dominating sets. To show that γ(G) = γt(G) = 6 when n1 = 4 and n4 ≥ 6, we
construct a total dominating set D. Let

D = {(0, 0, 0, 0), (0, 1, 1, 1), (1, 0, 1, 2), (1, 1, 0, 3), (2, 2, 2, 4), (3, 3, 3, 5)}.

Observe that there are no two pairs of vertices in D such that each pair is equal
in a different coordinate. Moreover, no three vertices of D are equal in any
coordinate. Therefore any vertex of G is adjacent to a vertex of D, hence D is a
total dominating set of G.

Next, we handle the cases in which γ(G) = γt(G) are claimed to equal 7. We
begin by showing that γ(G) ≥ 7 if n1 = 3, n2 ≤ 5 or n1 = n2 = n3 = 4, n4 ∈
{4, 5}. The lower bound in the case n1 = 3, n2 ≤ 5, n3 ≥ 5 follows from Theorem
2.8 of [11]. Thus we need only handle the case n3 ≤ 4. Fix D̃ ⊆ V (G) such that
|D̃| = 6. It is straightforward to show that if three vertices of D̃ are equal in some
coordinate, then there are at least 6 vertices which are not adjacent to a vertex
of D̃, hence D̃ is not dominating. Observe that there must be at least seven

tuples ({v, w}, i) ∈
(
D̃
2

)
× {1, 2, 3, 4} such that the ith coordinates of v and w are

equal. It is straightforward to show that there exist two such tuples ({v, w}, i)
and ({v̂, ŵ}, î) such that {v, w} ∩ {v̂, ŵ} = ∅ and i 6= î. Thus the vertex which
is equal to v in the ith coordinate, v̂ in the îth coordinate, and each vertex of
D̃\{v, w, v̂, ŵ} in the remaining two coordinates is not dominated by D̃. We can
conclude that γ(G) ≥ 7 in the claimed cases. For the upper bound, consider the
set

D = {(0, 0, 0, 0), (0, 1, 1, 1), (0, 2, 2, 2), (1, 0, 1, 1), (1, 1, 2, 2), (1, 2, 0, 0), (2, 3, 3, 3)}.

Observe that if we take any subset of D determined by omitting those vertices
with a fixed first entry, the projection of the remaining vertices to the last three
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coordinates forms a total dominating set of Kn2 ×Kn3 ×Kn4 . Thus D is a total
dominating set of G.

Lastly, we consider those cases in which γ(G) = γt(G) are claimed to equal
8. When n1 = 2, the result follows from Theorem 2.9 of [11]. When n1 = 3, we
obtain the upper bound by constructing an explicit dominating set. Let

D = {(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0),

(1, 2, 2, 2), (2, 2, 0, 1), (2, 2, 1, 0), (2, 1, 2, 2)}.

A similar technique to that used earlier of removing vertices with a fixed entry
in one coordinate and verifying that the projection of the remaining vertices to
the remaining coordinates forms a total dominating set shows that D is indeed
a total dominating set of G. For the lower bound when n1 = n2 = 3, suppose
there exists a dominating set of size 7. By the pigeonhole principal, at least 3
vertices are equal in the first coordinate, and it is easy to see that at most 3
vertices are equal in any coordinate. The projection of the remaining 4 vertices
to K3 ×Kn3 ×Kn4 must be adjacent to 3 vertices of K3 ×Kn3 ×Kn4 , which is
not possible (as the only dominating sets of K3×Kn3×Kn4 are independent).

4.3. Maximal independent sets in products of complete graphs

We begin by calculating the lower independence numbers of products of two or
three complete graphs.

Theorem 4.9. Let G =
∏t
i=1Kni for 2 ≤ n1 ≤ · · · ≤ nt. We have

i(G) =

{
n1 if t = 2,

4 if t = 3.

Proof. Suppose t = 2. If n1 = 2, observe that {(0, 0), (1, 0)} is a maximal
independent set and i(G) ≥ γ(G) ≥ 2, hence i(G) = n1 = 2. For n1 ≥ 3, we will
show that the maximal independent sets are precisely the fibers under projection
onto some coordinate. Since the minimum size of such fibers is n1, occurring
when the projection is onto the second coordinate, this is sufficient.

Fix three independent vertices (x1, x2), (y1, y2), (z1, z2) ∈ V (G). It is impos-
sible to have both x1 = y1 6= z1 and y2 = z2 6= x2, as in this case x1 6= z1 and
x2 6= z2. Thus, every set of three independent vertices must be equal in some co-
ordinate. We can conclude that the maximal independent sets must all be equal
in some coordinate, hence can be extended to a fiber under the projection onto
that coordinate. Therefore i(G) = n1.

Now we handle the case t = 3. Observe that the set

{(0, 0, 0), (1, 0, 1), (1, 1, 0), (0, 1, 1)}
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forms a maximal independent set. Theorem 4.4 provides the lower bound 4 =
γ(G) ≤ i(G), so we can conclude i(G) = 4.

Corollary 4.10. For all integers n1, n2, n3 ≥ 3, we have

ir (K2 ×Kn1) = γ (K2 ×Kn1) = i (K2 ×Kn1),

ir (K3 ×Kn1) = γ (K3 ×Kn1) = i (K3 ×Kn1),

ir (Kn1 ×Kn2 ×Kn3) = γ (Kn1 ×Kn2 ×Kn3) = i (Kn1 ×Kn2 ×Kn3).

We also briefly note an error in a paper by Uma Maheswari and Maheswari
[20, Theorem 4.2]. Their paper correctly shows that i(Xn) ≤ n

pt
, where pt is the

largest prime divisor of n, but they incorrectly claim that equality holds for all
n. We show that the gap between this upper bound and the true value of i(Xn)
can be arbitrarily large.

Theorem 4.11. Let p1, . . . , pt be distinct primes, where t ≥ 3. For n = p1 · · · pt,
we have i(Xn) ≤ 4p1p2 · · · pt−3.

Proof. Recall from the proof of Theorem 4.9 that

E = {(0, 0, 0), (1, 0, 1), (1, 1, 0), (0, 1, 1)}

is an independent dominating set of Kpt−2 ×Kpt−1 ×Kpt . We claim that the set

D =

(
t−3∏
i=1

{0, . . . , pi − 1}

)
× {(0, 0, 0), (1, 0, 1), (1, 1, 0), (0, 1, 1)}

is an independent dominating set of
∏t
i=1Kpi . Since we require our primes

p1, . . . , pt to be distinct, we have Xn =
∏t
i=1K[1, pi] =

∏t
i=1Kpi .

For any vertex x equal to an element of D in the last three coordinates, we
have x ∈ D. For any vertex x not equal to an element of E in the last three
coordinates, we can form a vertex y ∈ D adjacent to x by taking yi = xi + 1 in
the first t − 3 coordinates and choosing a dominating element of E in the last
three. Lastly, we note that D is independent as any two vertices of D will be
equal in at least one of the last three coordinates.

Therefore, the upper bound given by Uma Maheswari and Maheswari [20,
Theorem 4.2] is tight only when n has at most 2 prime divisors.

Corollary 4.12. For any t ≥ 3 and ε > 0, there exists a positive integer n such
that ω(n) = t and i(Xn)

n/pt
< ε, where pt is the largest prime divisor of n.
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5. Upper Domination Parameters of Products of Complete
Multipartite Graphs

We now shift our focus to the upper portion of the domination chain and broaden
our scope to products of balanced, complete multipartite graphs. In [11], Defant
and Iyer initiated the investigation of the upper domination parameters of prod-
ucts of balanced, complete multipartite graphs, proving the following result.

Theorem 5.1 [11]. Let G =
∏t
i=1K[ai, bi] with 2 ≤ b1 ≤ · · · ≤ bt. If b1 = 2 or

t ≤ 3, then α(G) = IR(G).

In fact, the original result stated only that α(G) = Γ(G), but their methods
never use the hypothesis that D is dominating, only that D is irredundant. In this
section, we provide upper bounds for IR(G) in products of balanced, complete
multipartite graphs not covered by Theorem 5.1. Since the release of the preprint
of the current article, Alon and Defant [4] have improved upon these bounds in all
but finitely many cases using recent progress in the study of vertex isoperimetry.
In particular, they proved the following theorem.

Theorem 5.2 [4, Theorem 1.2]. Let G be a product of complete, balanced mul-
tipartite graphs. For all but at most 37 exceptional cases (listed in [4]), we have
α(G) = IR(G).

Our approach, though ultimately yielding obtains a weaker result, is shorter
and fairly elementary.

Fix an irredundant set S ⊆ V (G). If v ∈ S is isolated in G[S], we say v is
lonely; otherwise, we say v is social. Let Lon(S) denote the set of lonely vertices
in S, and let Soc(S) denote the set of social vertices in S. Observe that if v ∈ S
is social, then pn[v;S] ⊆ V (G)\S.

As we did in the case of products of complete graphs, it is often useful to
associate a t-tuple of integers to each vertex in

∏t
i=1K[ai, bi]. Label the ver-

tices of K[ai, bi] by elements of Z/aibiZ, where two vertices are adjacent if they
are not congruent modulo bi. Associate to v ∈

∏t
i=1K[ai, bi] a vector of inte-

gers (v(1), . . . , v(t)), where the v(i) is the element of {0, . . . , aibi − 1} associated
to the projection of v onto the ith coordinate. Let p(v) be the vector (v(1)
mod b1, v(2) mod b2, . . . , v(t) mod bt). Note that vertices u and v are adjacent
in
∏t
i=1K[ai, bi] if and only if p(u) differs from p(v) in every coordinate.

Lemma 5.3. Let G =
∏t
i=1K[ai, bi], where 2 ≤ b1 ≤ · · · ≤ bt. Let S be an

irredundant set in G, and let T ⊆ pn[S] be chosen so that each vertex of S has
exactly one private neighbor in T and S ∩ T consists only of lonely vertices. If
there exist three vertices v1, v2, v3 ∈ T such that the vectors p(v1), p(v2), p(v3)
vary in exactly one coordinate, then v1, v2, and v3 are lonely vertices of S.
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Proof. Suppose at least one of v1, v2, v3, say v1, is in pn[S]\Lon[S]. Then v1 is
adjacent to p(v1). Since p(v1), p(v2), and p(v3) differ in exactly one coordinate,
any vertex which is adjacent to at least one of p(v1), p(v2), p(v3) is adjacent to at
least two of p(v1), p(v2), p(v3). Thus v1 is adjacent to at least one of p(v2), p(v3) ∈
S, contradicting that v1 is a private neighbor of p(v1).

Lemma 5.4. Let G =
∏t
i=1K[ai, bi], where 2 ≤ b1 ≤ · · · ≤ bt. Let S be an

irredundant set in G, and let T ⊆ pn[S] be chosen so that each vertex of S has
exactly one private neighbor in T . If there are two vertices v1, v2 ∈ T such that
p(v1) = p(v2), then v1 and v2 are lonely vertices of S.

Proof. Note that N(v1) = N(v2). Suppose, seeking a contradiction, that v1 ∈
T\Lon[S]. Then there exists some w ∈ S such that w is adjacent to v1 and v2,
so v2 cannot be lonely. Hence v2 must also be a private neighbor of some vertex
in S, but as is it already a neighbor of w ∈ S, this contradicts our assumption
that each vertex in S has a unique private neighbor in T .

Theorem 5.5. If G =
∏t
i=1K[ai, bi], where 2 ≤ b1 ≤ · · · ≤ bt, then

IR(G) ≤ 1

b1

t∏
i=1

aibi +
2

bt

t∏
i=1

bi.

Proof. Suppose S ⊆ V (G) is irredundant. Observe that |Lon(S)| ≤ α(G) =
1
b1

∏t
i=1 aibi. Let T ⊆ pn[S] be chosen so that each vertex of S has exactly one

private neighbor in T and S∩T consists of lonely vertices. Note that such a set T
always exists, since the latter condition is equivalent to, for each s ∈ S, choosing
a vertex in the open neighborhood of s rather than s itself. By Lemma 5.4, no
two vertices of T\Lon[S] have the same associated vector. Moreover, by Lemma
5.3, no three vertices of T\Lon[S] have associated vectors which agree in all but
the last coordinate. Hence

|Soc(S)| = |T\Lon[S]| ≤ 2

bt

t∏
i=1

bi.

We can conclude

|S| = |Lon(S)|+ | Soc(S)| ≤ 1

b1

t∏
i=1

aibi +
2

bt

t∏
i=1

bi.

In particular, for the case of unitary Cayley graphs of Z/nZ, we have the
following bound.



110 A. Burcroff

Corollary 5.6. If n = pα1
1 pα2

2 · · · p
αt
t , where p1 < · · · < pt are primes, then

IR(Xn) ≤

(
1 + 2 · p1

pt
· 1

pα1−1
1 pα2−1

2 · · · pαt−1
t

)
α(Xn).

If we look at sets of integers with a bounded smallest prime factor, we can
show that IR(Xn) and α(Xn) are asymptotically the same. An integer x is called
r-rough (or r-jagged) for a positive integer r if every prime factor of x is at least
r. Let Dr = {x ∈ N : ∃d ∈ {2, 3, . . . , r} such that d | x}; that is, Dr is the set of
positive integers that are not (r + 1)-rough.

Corollary 5.7. For each r ∈ N, we have

lim
n∈Dr
n→∞

IR(Xn)

α(Xn)
= 1.

Proof. Let n = pα1
1 · · · pαnn , where p1 < · · · < pn are primes. Hence Xn

∼=∏t
i=1K[ai, bi], where ai = pαi−1

i and bi = pi. By the condition n ∈ Dr, we know
b1 ≤ r. Hence

IR(Xn)

α(Xn)
≤ 1 +

2b1

bt
∏t
i=1 ai

≤ 1 +
2r

bt
∏t
i=1 ai

.

Note that bt
∏t
i=1 ai tends to infinity as n tends to infinity. Since IR(Xn) ≥ α(Xn)

for all n, the limit goes to 1.

We note that the bound in Theorem 5.5 is trivial if a1 = · · · = at = 1 and
b1 = · · · = bt = 3, that is, when G is a direct product of triangles. This case
motivates the following theorem, which provides a nontrivial (though, usually
worse) upper bound for the upper irredundance number of any direct product of
balanced, complete multipartite graphs.

Theorem 5.8. If G =
∏t
i=1K[ai, bi], where 2 ≤ b1 ≤ · · · ≤ bt, then

IR(G) ≤ b1
2b1 − 1

t∏
i=1

aibi.

Proof. Let S ⊆ V (G) have size greater than 1
2− 1

b1

∏t
i=1 aibi. Suppose, seeking a

contradiction, that S is irredundant.
Let Pj be the set of vertices v ∈ S such that v(1) = j. By the Pigeonhole

Principle, |Pj | ≥ 1
b1
|S| for some j ∈ {0, . . . , b1 − 1}; without loss of generality,

suppose |P0| ≥ 1
b1
|S|.

For each k ∈ {1, . . . , b1 − 1}, let Qk denote the set of private neighbors
u ∈

⋃
v∈(S\P0) pn[v, S] such that u(1) = k. Observe that of the |S| − |P0| vertices
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Figure 1. An example of how the sets P0, Q1, and R are determined by a fixed irredundant
set S = {(0, 0), (2, 0), (2, 2)} in K3 ×K3. For a vertex v in the figure, v(0) is given by
its row and v(1) by its column, hence two vertices are adjacent if and only if they lie in
different rows and columns.

in S\P0, at most 1
b1

∏t
i=1 aibi− |P0| have private neighbors u such that u(1) = 0.

By the Pigeonhole Principle,

|Qk| ≥
1

b1 − 1
(|S| − |P0| − |{u ∈ pn[S\P0] : u(1) = 0}|)

≥ 1

b1 − 1

(
|S| − 1

b1

t∏
i=1

aibi

)
for some k ∈ {1, . . . , b1 − 1}; without loss of generality, assume

|Q1| ≥
1

b1 − 1

(
|S| − 1

b1

t∏
i=1

aibi

)
.

Let R be the set of vertices u such that p(u) = (0, v(2) + 1, . . . , v(t) + 1) for some
v ∈ Q1. That is,

R =
⋃
v∈Q1

p−1((0, v(2) + 1, . . . , v(t) + 1)).

Since the associated vectors are disjoint, each member of R is adjacent to a
member of Q1. Using the fact that P0 is disjoint from Q1 and that Q1 consists of
private neighbors of S\P0, we conclude that P0 and R are disjoint; lest a member
of P0 is adjacent to a private neighbor of S\P0. Since P0 and R both consist of
vectors u satisfying u1 = 0, we have |P0|+ |R| ≤ 1

b1

∏t
i=1 aibi. However, we reach

a contradiction by noting that

|P0|+ |R| = |P0|+ |Q1| ≥
1

b1
|S|+ 1

b1 − 1

(
|S| − 1

b1

t∏
i=1

aibi

)

>

(
1

2b1 − 1
+

1

b1 − 1

(
b1

2b1 − 1
− 1

b1

)) t∏
i=1

aibi =
1

b1

t∏
i=1

aibi.

We conclude that S is not irredundant.
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6. Further Directions

In Section 3, we raise the question of whether there exist infinitely many integers
n such that γc(Xn) > g(n) and, if so, whether such integers can have arbitrarily
many distinct prime factors. At the end of this same section, we ask whether
there exists a single integer n such that γt(Xn) ≤ g(n)− 3.

We calculate the irredundance and lower independence numbers of direct
products of at most three complete graphs in Section 4. It remains open to
determine these parameters for larger products of complete graphs. From these
calculations, it follows that ir(Xn) = i(Xn) when n is prime, n = 2p, or n = 3p
for some prime p, or n is squarefree with exactly three prime divisors. We pose
the problem of finding other squarefree integers n for which equality is achieved
in the lower portion of the domination chain.

We note that the irredundance, domination, and lower independence numbers
of Ka × Kb depend on min(a, b), whereas in the case of Ka × Kb × Kc these
parameters are independent of a, b, and c. We show that the domination number
of a direct product of four complete graphs is dependent on the size of all four
graphs in the product. We pose the question of determining for which integers
t do the irredundance, domination, or lower independence numbers of

∏t
i=1Kni

depend on all of n1, n2, . . . , nt, where n1 ≤ n2 ≤ · · · ≤ nt.
In 2007, Klotz and Sander [19] introduced the notion of the gcd-graph Xn(D),

the graph on {0, . . . , n − 1} where vertices x and y are adjacent if and only if
gcd(|x−y|, n) ∈ D ⊆ N. In particular, Klotz and Sander show that all eigenvalues
of Xn(D) are integral. It may be interesting to investigate domination parameters
in the more general case of gcd-graphs.
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[7] B. Brešar, S. Klavžar and D.F. Rall, Dominating direct products of graphs, Discrete
Math. 307 (2007) 1636–1642.
https://doi.org/10.1016/j.disc.2006.09.013

[8] K. Budadoddi and A. Mallikarjuna Reddy, Cycle dominating sets of Euler totient
Cayley graphs, Math. Sci. Int. Res. J. 3 (2014) 727–730.

[9] G.A. Cheston and G.H. Fricke, Classes of graphs for which the upper fractional
domination equals independence, upper domination, and upper irredundance, Dis-
crete Appl. Math. 55 (1994) 241–258.
https://doi.org/10.1016/0166-218X(94)90011-6

[10] C. Defant, Unitary Cayley graphs of Dedekind domain quotients, AKCE Int. J.
Graphs Comb. 13 (2016) 65–75.
https://doi.org/10.1016/j.akcej.2016.03.001

[11] C. Defant and S. Iyer, Domination and upper domination of direct product graphs,
Discrete Math. 341 (2018) 2742–2752.
https://doi.org/10.1016/j.disc.2018.06.031
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