DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

P. Patkós

Balázs Patkós

Alfréd Rényi Institute of Mathematics

email: patkos.balazs@renyi.hu

Zs. Tuza

Zsolt Tuza

Alfréd Rényi Institute of Mathematics,ű;
Department of Computer Science and Systems Technology, University of Pannonia, Hungarian Academy of Sciences

email: tuza.zsolt@renyi.hu

M. Vizer

Máté Vizer

MTA Rényi Institute, H-1053, Budapest, Reáltanoda utca 13-15

email: vizermate@gmail.com

Title:

Singular Turán numbers and WORM-colorings

PDF

Source:

Discussiones Mathematicae Graph Theory 42(4) (2022) 1061-1074

Received: 2019-09-12 , Revised: 2020-04-26 , Accepted: 2020-04-30 , Available online: 2020-06-04 , https://doi.org/10.7151/dmgt.2335

Abstract:

A subgraph $G$ of $H$ is singular if the vertices of $G$ either have the same degree in $H$ or have pairwise distinct degrees in $H$. The largest number of edges of a graph on $n$ vertices that does not contain a singular copy of $G$ is denoted by $T_S(n,G)$. Caro and Tuza in [Singular Ramsey and Turán numbers, Theory Appl. Graphs 6 (2019) 1–32] obtained the asymptotics of $T_S(n,G)$ for every graph $G$, but determined the exact value of this function only in the case $G=K_3$ and $n\equiv 2$ (mod 4). We determine $T_S(n,K_3)$ for all $n\equiv 0$ (mod 4) and $n\equiv 1$ (mod 4), and also $T_S(n,K_{r+1})$ for large enough $n$ that is divisible by $r$. We also explore the connection to the so-called $G$-WORM colorings (vertex colorings without rainbow or monochromatic copies of $G$) and obtain new results regarding the largest number of edges that a graph with a $G$-WORM coloring can have.

Keywords:

Turán number, WORM-coloring, singular Turán numbers

References:

  1. M. Albertson, Turán theorems with repeated degrees, Discrete Math. 100 (1992) 235–241.
    https://doi.org/10.1016/0012-365X(92)90644-U
  2. K. Amin, J. Faudree, R.J. Gould and E. Sidorowicz, On the non-$(p-1)$-partite $K_p$-free graphs, Discuss. Math. Graph Theory 33 (2013) 9–23.
    https://doi.org/10.7151/dmgt.1654
  3. B. Andrásfai, Graphentheoretische Extremalprobleme, Acta Math. Hungar. 15 (1964) 413–418.
    https://doi.org/10.1007/BF01897150
  4. A. Brouwer, Some lotto numbers from an extension of Turán's theorem, in: Afdeling Zuivere Wiskunde 152, (Stichting Mathematish Centrum, Amsterdam 1981).
  5. Y. Caro and Zs. Tuza, Singular Ramsey and Turán numbers, Theory Appl. Graphs 6 (2019) 1–32.
  6. P. Erdős, Extremal problems in graph theory, in: Theory of Graphs and its Applications, Proc. Sympos. Smolenice, 1963 (1964) 29–36.
  7. P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Hungar. 10 (1959) 337–356.
    https://doi.org/10.1007/BF02024498
  8. P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966) 51–57.
  9. Z. Füredi and M. Simonovits, The history of degenerate $($bipartite$)$ extremal graph problems, in: Erdős Centennial, Bolyai Soc. Math. Stud. 25, (Springer, Berlin, Heidelberg 2013) 169–264.
    https://doi.org/10.1007/978-3-642-39286-3_7
  10. D. Gerbner and B. Patkós, Extremal Finite Set Theory (CRC Press, 2018).
  11. W. Goddard, K. Wash and H. Xu, WORM colorings, Discuss. Math. Graph Theory 35 (2015) 571–584.
    https://doi.org/10.7151/dmgt.1814
  12. D. Hanson and B. Toft, $k$-saturated graphs of chromatic number at least $k$, Ars Combin. 31 (1991) 159–164.
  13. M. Kang and O. Pikhurko, Maximum $K_{r+1}$-free graphs which are not $r$-partite, Mat. Stud. 24 (2005) 12–20.
  14. P. Turán, Egy gráfelméleti szélsőértékfeladatról, Mat. Fiz. Lapok 48 (1941) 436–452.

Close