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Abstract

A subgraph G of H is singular if the vertices of G either have the same
degree in H or have pairwise distinct degrees in H. The largest number
of edges of a graph on n vertices that does not contain a singular copy of
G is denoted by TS(n,G). Caro and Tuza in [Singular Ramsey and Turán

numbers, Theory Appl. Graphs 6 (2019) 1–32] obtained the asymptotics of
TS(n,G) for every graph G, but determined the exact value of this function
only in the case G = K3 and n ≡ 2 (mod 4). We determine TS(n,K3) for all
n ≡ 0 (mod 4) and n ≡ 1 (mod 4), and also TS(n,Kr+1) for large enough n
that is divisible by r.

We also explore the connection to the so-called G-WORM colorings (ver-
tex colorings without rainbow or monochromatic copies ofG) and obtain new
results regarding the largest number of edges that a graph with a G-WORM
coloring can have.
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1. Introduction

Turán’s paper [14] about the maximum number of edges that a graph on n vertices
can have without containing a clique of size k gave birth to extremal graph theory.
The Turán number of a graph G, denoted by ex(n,G), is the maximum number
of edges in an n-vertex G-free graph. It is a much studied and well understood
parameter, if the chromatic number of G is at least 3, but there are lots of open
problems concerning the Turán numbers of bipartite graphs G (see the survey
[9]). Turán numbers were extended to hypergraphs and set systems (see Chapter
5 and Chapter 7 of [10]), and many variants are known.

Motivated by the work of Albertson [1], recently Caro and Tuza [5] introduced
a new variant, the so-called singular Turán number. A copy of a graph G in H is
called singular, if the vertices v1, v2, . . . , v|V (G)| of the copy either have the same
degree in H or have pairwise different degrees in H. The singular Turán number
TS(n,G) is the maximum number of edges that a graph H on n vertices can have
without containing a singular copy of G. Note that we have ex(n,G) ≤ TS(n,G)
for any graph G and integer n.

Caro and Tuza determined the asymptotics of TS(n,G) for every graph
G. The Erdős-Stone-Simonovits theorem [8] states that if χ(G) = p + 1, then

ex(n,G) =
(

1− 1
p + o(1)

)

(

n
2

)

. Caro and Tuza showed that if |V (G)| = r + 1,

then

TS(n,G) =

(

1− 1

pr
+ o(1)

)(

n

2

)

(and clearly TS(n,G) = 0 if G consists of a single edge). However, there was no
exact result for any graph, except for the triangle in case n = 4k+2, where the 4-
partite Turán graph is extremal for TS(n,K3) as well. Therefore, TS(4k+2,K3) =
6k2 + 6k + 1. For other congruence classes modulo 4, they proved the following
bounds.

Theorem 1 (Caro, Tuza [5]). For k ≥ 1 we have the following.

(i) 6k2 − 2 ≤ TS(4k,K3) ≤ 6k2 − 1,

(ii) 6k2 + 2k ≤ TS(4k + 1,K3) ≤ 6k2 + 3k − 1,

(iii) 6k2 + 8k + 1 ≤ TS(4k + 3,K3) ≤ 6k2 + 9k + 2.

For the upper bounds, they used their general upper bound (which relies on
the fact that a singular triangle-free graph is K5-free in this case), and Turán’s
theorem with the characterization of its extremal graphs (which shows that the
K5-free graphs with the largest number of edges contain singular triangles unless
n ≡ 2 (mod 4)).

For the lower bounds, they used the following constructions. If n = 4k,
consider a complete 4-partite graph with parts of size k− 1, k− 1, k+1, k+1. If
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n = 4k+1, consider a complete 4-partite graph with parts each of size k, and join
a new vertex to two of the classes. If n = 4k + 3, consider a complete 4-partite
graph with parts of size k, k, k + 1, k + 1, and connect a new vertex to the 2k
vertices in the two smaller parts.

Here we close the gap for two of the residue classes, and reduce it to 2 in the
third case, by improving the upper bounds. In the tight results the constructions
above turn out to be extremal, and it is very likely that the situation is the same
also for n ≡ 3 (mod 4).

Theorem 2. We have the following.

(i) TS(4k,K3) = 6k2 − 2 if k ≥ 2, and TS(4,K3) = 5,

(ii) TS(4k + 1,K3) = 6k2 + 2k, and

(iii) 6k2 + 8k + 1 ≤ TS(4k + 3,K3) ≤ 6k2 + 8k + 3.

We then apply some of our techniques to obtain better bounds on TS(n,
Kr+1). As Caro and Tuza observed, a graph G without a singular copy of Kr+1

must be Kr2+1-free, as otherwise in a clique of size r2 +1 there are r+1 vertices
either of the same degree in G or of pairwise distinct degrees in G. Turán’s result
tells us that the graph with the largest number of edges without a Kr2+1 is a
balanced complete r2-partite graph. We denote by t(n, q) the number of edges in
the balanced complete q-partite graph. Unless r = 2 and n = 4k+2, the balanced
complete r2-partite graph does contain singular copies of Kr+1. Moreover, it is
not hard to see that there exist complete r2-partite graphs without singular copies
of Kr+1 if and only if r divides n and n is at least r2(r + 1)/2. In this case, we
denote by t′(n, r2) the largest number of edges contained in an n-vertex r2-partite
graphs with no singular Kr+1. With this notation we have the following result.

Theorem 3. For any r ≥ 3 the following holds.

(i) If n is large enough and n is divisible by r, then we have

TS(n,Kr+1) = t′
(

n, r2
)

.

Moreover, any extremal graph is isomorphic to the unique complete r2-partite
graph with r possible part sizes each appearing r times such that the smallest

and largest parts differ by at most r.

(ii) If n = rk +m with 1 ≤ m < r, then

t
(

n, r2
)

−m
r − 1

r2
n+ Cr ≤ TS(n,Kr+1) ≤ t

(

n, r2
)

− n

r2
+
√
n

for some absolute constant Cr.

Even with the theorems above, there was no F 6= K2 for which TS(n, F ) was
known for every n. Now we give an example for this by determining TS(n, P3)
for all cases where P3 is the path on three vertices.
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Proposition 4.

TS(n, P3) =



























2 if n = 3,
5 if n = 4,
n2+2n

4 − 2 if n > 4 and n is divisible by 4,
n2+2n−4

4 if n is even, but not divisible by 4,
n2+2n−3

4 if n 6= 3 is odd.

1.1. F -WORM colorings

Given graphs F and G, an F -WORM coloring of G is an assignment of colors
to the vertices of G such that every copy of F in G has more than one, but
fewer than |V (F )| colors appearing on V (F ). In other words, there are neither
monochromatic, nor rainbow copies of F in the coloring of G (WORM stands
for ‘WithOut Rainbow or Monochromatic’). Note that WORM-colorings do not
need to be proper colorings. WORM coloring was introduced by Goddard, Wash
and Xu [11].

Most of the research regarding WORM colorings dealt with complexity issues,
or the number of colors used. However, in the same paper [11], Goddard, Wash
and Xu introduced wex(n, F ), the largest number of edges in a graph on n vertices
that has an F -WORM coloring. They determined wex(n, P3).

Let us describe first how WORM colorings are related to singular graphs.
Observe that if G does not contain a singular F , then coloring the vertices of
G by their degrees, we obtain an F -WORM-coloring. This implies TS(n, F ) ≤
wex(n, F ). Also note that in the proof of the general upper bounds on TS(n, F )
Caro and Tuza [5] do not use the special properties of singularity and the proof
works for wex as well. Thus we can restate their upper bound in the following
form.

Theorem 5 (Caro, Tuza, [5]).

(i) wex(n,Kr+1) ≤ ex (n,Kr2+1).

(ii) If F has r+1 ≥ 3 vertices and chromatic number p+1 ≥ 2, then wex(n, F ) ≤
ex(n,Kpr+1) + o(n2).

Observe that we have equality in (i). Indeed, consider the r2-partite Turán
graph, and color it with r colors such that each color class is the union of r parts.
Then each color class is Kr+1-free, and there is no rainbow Kr+1 as there are
fewer than r+1 colors. Similarly in (ii) ex(n,Kpr+1) is a lower bound, as we can
color the pr-partite Turán graph with r colors (thus avoiding rainbow F ) such
that each color class is p-partite, thus F -free.

Having an asymptotic result does not leave much room for improvement in
general, but we obtain a better result for every bipartite graph.
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Proposition 6. If F is bipartite and has r + 1 ≥ 3 vertices, then wex(n, F ) ≤
ex(n,Kr+1) + ex(n, F ).

Note that as F is bipartite, the quadratic term remains the same, but we
replace the error term o(n2) with ex(n, F ). Also, the proof remains valid for any
graph, but if χ(F ) ≥ 3, then the upper bound is useless as ex(n,Kr+1)+ex(n, F )
is more than the number of edges in Kn.

2. Singular Turán Numbers

We will use the following theorem of Brouwer [4].

Theorem 7. If H is a Kr+1-free graph on n vertices which is not r-partite, then
H has at most t(n, r)− ⌊n/r⌋+ 1 edges, assuming n ≥ 2r + 1.

Hanson and Toft [12] also characterized the extremal graphs (the same result
was independently obtained in [2, 13]).

The extremal graphs in the result of Hanson and Toft are somewhat similar
to the constructions of Caro and Tuza described in the Introduction. One takes
a complete r-partite graph, and adds a new vertex v, that is connected first to
every vertex in all but two of the classes (in case of r = 4, so far this construction
is the same as the construction of Caro and Tuza). For the remaining two classes,
one picks a vertex u from one of them and a non-empty set A of vertices from
another. We assume that in both classes there remains at least one unpicked
vertex, i.e., one of the classes has more than one, the other has more than |A|
vertices. Now one connects v to u and to the vertices of A, while one deletes
the edges between u and A. It is easy to see that this construction has indeed
chromatic number more than r, but does not contain Kr+1. It does, however,
contain a singular triangle in case r = 4.

Let us mention that part (i) of Theorem 2 could be deduced (with some
simple case analysis for k ≤ 2) from the above result of Hanson and Toft, but we
give a self-contained proof. We restate (i) of Theorem 2 for convenience.

Theorem 8. TS(4k,K3) = 6k2 − 2 if k ≥ 2, and TS(4,K3) = 5.

Proof. We use induction on k, the statement is obvious for k = 1. Let k > 1 and
assume the statement is valid for k− 1. Let G be graph on 4k vertices that does
not contain a singular triangle. Recall that G must be K5-free. If G is K4-free,
we are done by Turán’s theorem. Let A be a set of 4 vertices that induces a
K4 and B be the set of the remaining vertices. Every other vertex has at most
3 neighbors in A, otherwise they would form a K5. Thus, there are at most
3(4k − 4) edges between A and B and there are at most 6(k − 1)2 edges inside
B by Turán’s theorem, as G is K5-free. This means we are done, unless at least
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12k − 13 edges go between A and B, i.e., all but (at most) one of the vertices
in B are connected to exactly three vertices of A. Let a, b, c, d be the number
of edges from vertices of A to B, i.e., their degree minus three. By the above,
12k−13 ≤ a+ b+ c+d ≤ 12k−12. If three of the numbers a, b, c, d are the same,
or three are different, the corresponding vertices of A form a singular triangle.
Thus, say, a = b 6= c = d. Then a + b + c + d is even, thus equal to 12k − 12.
In this case every vertex of B is incident to the same number (3) of edges that
go outside B, hence the edges inside B cannot contain a singular triangle. By
induction, if k > 2, there are at most 6(k − 1)2 − 2 edges inside B and we are
done.

If k = 2, we are left with the case, when the vertices of A form a K4, and
there are 5 edges inside B, so they form a K4 minus an edge and there are 12
edges between A and B, so in this case, say, a = b = 4 and c = d = 2. The vertex
v ∈ A corresponding to a has degree of 7, and a vertex w ∈ A corresponding to
c has degree of 5, and they are connected. Easy case analysis shows that either
they have a common neighbor of degree 6, or there is a vertex in B of degree 7.
We have a singular triangle in both cases.

We continue with (ii) of Theorem 2. We restate it here for convenience.

Theorem 9. TS(4k + 1,K3) = 6k2 + 2k.

Proof. The statement is trivial for k = 1, thus we assume k ≥ 2. Consider a
graph G on 4k+1 vertices without a singular triangle and recall that G is K5-free
then. Assume first χ(G) ≥ 5. We can apply Theorem 7, obtaining that G has at
most 6k2 + 3k − k + 1 edges. Moreover, G cannot be the extremal graph in the
construction of Hanson and Toft, thus G has fewer than 6k2 + 3k − k + 1 edges,
which is the desired bound.

Assume now G is 4-partite, and let A,B,C and D be the parts. If any of
them is empty, G is 3-partite, thus has at most (4k + 1)2/3 edges, finishing the
proof as k ≥ 2. Let G′ be the complement of G with respect to this 4-partition,
i.e., uv ∈ E(G′) if u and v are in different parts and uv 6∈ E(G). We claim that
|E(G′)| ≥ min{|A|, |B|, |C|, |D|}.

Assume first |A| = |B| = |C|. If there are vertices a ∈ A, b ∈ B and c ∈ C
such that none of them is incident to an edge of G′, they all have the same degree
in G and they form a triangle in G, a contradiction. To avoid that, for one of the
classes all the vertices in it have to be incident to an edge of G′, which proves
the claim. In the case |A| < |B| < |C|, the same argument works. The only
remaining case is when two parts have the same size |A| = |B| and the other
two parts have the same size |C| = |D|, but that would mean an even number of
vertices, a contradiction.

It is left to show that the complete 4-partite graph with classes A,B,C,D
has at most 6k2 + 2k + min{|A|, |B|, |C|, |D|} edges. Indeed, we can prove this
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by induction on l = k − min{|A|, |B|, |C|, |D|}. This is trivial for l = 0, and
whenever l increases, we can look at it as moving a vertex from the smallest class
to another class. Each time we do that, the number of edges decreases by at
least 1.

The proof of (iii) of Theorem 2 (which we restate below) goes similarly, so
we only give a sketch.

Theorem 10. TS(4k + 3,K3) ≤ 6k2 + 8k + 3.

Sketch of proof. If k = 1, then 6k2 + 8k + 3 = 17, and the upper bound by
Caro and Tuza [5] is the same number. Thus, we can assume k ≥ 2. Consider a
graph G on 4k+3 vertices without a singular triangle and recall that G is K5-free
then. Assume first χ(G) ≥ 5. We can apply Theorem 7, obtaining that G has at
most 6k2 + 9k + 3 − k + 1 edges. Moreover, G cannot be the extremal graph in
the construction of Hanson and Toft, thus G has fewer than 6k2 + 8k + 4 edges,
finishing the proof.

Assume now G is 4-partite, and let A,B,C and D be the parts. If any of
them is empty, G is 3-partite, thus has at most ⌊(4k + 3)2/3⌋ edges, finishing
the proof as k ≥ 2. From here, the proof is exactly the same as the proof of
Theorem 9.

Ideas from the proofs above can be applied to obtain bounds on TS(n,Kr+1)
for larger values of r, too. Let us start with introducing some constructions.

We distinguish two cases according whether r divides n or not. Suppose
n = rk and let k = l1 + l2 + · · ·+ lr with li 6= lj for any 1 ≤ i < j ≤ r. Then the
complete r2-partite graph Ks1,s2,...,s

r
2
with sir+1 = sir+2 = · · · = s(i+1)r = li+1

for any i = 0, 1, . . . , r − 1 does not contain any singular copy of Kr+1. Indeed,
there are r different degrees in Ks1,s2,...,s

r
2
, and for any accessible degree d there

are r parts such that the vertices of that part have degree d. We say that a
complete r2-partite graph has property R, if there are r possible sizes of parts,
each appearing exactly r times. Observe that the parameter t′(n, r2) defined in
the Introduction is the same as the maximum number of edges in an r2-partite
graph on n vertices satisfying property R. In particular, t′(n, r2) > 0 if and only
if r divides n and n ≥ r2(r + 1)/2. Moreover, for these values of n and r, it is
quite simple to determine t′(n, r2). If there exist i, j with li < lj − 2 such that
none of li + 1 and lj − 1 appear among the lh’s, then replacing li by li + 1 and
lj by lj − 1 increases the number of edges. This shows that if l1 < l2 < · · · < lr
holds, then we have lr ≤ l1 + r. Moreover, there is exactly one partition of k
into l1, l2, . . . , lr with this property. If r is odd and n ≡ 0 (mod r2), then the
li’s are consecutive integers with l1 = n

r2
− r−1

2 , while if n ≡ ir (mod r2), then
lr−i + 2 = lr−i+1. The situation is similar for r even, but then the gap-free
sequence corresponds to n ≡ r2/2 (mod r2). Observe that whenever t′(n, r2) is
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defined, then t(n, r2)− t′(n, r2) ≤ r4 holds. This can be seen by noting that if in
a complete r-partite graph we move a vertex from a part of size α to a part of
size β ≥ α, then the number of edges decreases by α− β + 1. To obtain a graph
with property R from the Turán graph, one has to move O(r3) vertices and part
sizes differ by at most r.

Suppose next n = rk +m with 1 ≤ m ≤ r − 1. Then consider the complete
r2-partite graph Ks1,s2,...,s

r
2
on rk vertices with property R, that has the largest

number, i.e., t′(rk, r2) edges. Suppose s1 < s2 < · · · < sr. Add m new vertices
and join them to each other and each of them to all the vertices in parts of
size s1, s2, . . . , sr−1, to obtain Gn,r2 . We claim that Gn,r2 does not contain any
singular copy of Kr+1. Clearly, newly added vertices have lower degree than any
of the old vertices. As we joined the new vertices to those old vertices that had
one of the r − 1 highest degrees, the r − 1 highest degrees increased by m, the
smallest degree remained the same, and we added a new degree. Therefore, there
are r+1 different degrees in Gn,r2 . Vertices whose degrees are all different cannot
form a Kr+1 as newly added vertices are not joined to old vertices of the lowest
degree. Vertices of the same degree cannot form a copy of Kr+1 either, as there
are fewer than r newly added vertices and the other degree classes remained
the same. Observe that t(n, r2) − e(Gn,r2) ≤ m r−1

r2
n + Cr for some absolute

constant Cr.

Let us show a better construction that works only if n = rk + m with 1 ≤
m ≤ r − 2. Let n′ = r(k + 1) and let Gn′ be the complete r2-partite graph
Ks1,s2,...,s

r
2
with property R having t′(n′, r2) edges. Observe that property R and

r ≥ 3 ensures that there exists at least one si that is odd. Remove one vertex from
r − m partite sets S1, S2, . . . , Sr−m of size si to obtain S′

1, S
′
2, . . . , S

′
r−m. Then

the degree of any vertex in unchanged partite sets decreases by r −m, while the
degree of vertices in

⋃r−m
j=1 S′

j decreases by r−m− 1. Observe that the size of S′
j

is even, therefore, as r−m ≥ 2, there exists a perfect matching in Gn′

[

⋃r2

j=1 S
′
j

]

.

Let us remove this perfect matching to obtain Gn. Observe that for every vertex
v of Gn we have dG

n
′
(v) − dGn

(v) = r − m and thus Gn admits r degrees and
the degree classes are r-partite. Therefore, Gn does not contain a singular copy
of Kr+1. Finally, observe that the number of edges in Gn is t(n, r)− r−m

2r2
n−Cr.

Proof of Theorem 3. The lower bounds are given by the constructions above.
To obtain the upper bounds, let us repeat the observation of Caro and Tuza: if a
graph G does not contain a singular copy of Kr+1, then it is Kr2+1-free. Indeed,
among the r2 + 1 vertices of a Kr2+1, either r + 1 have the same degree or there
are r + 1 of them of pairwise distinct degrees. Suppose first that χ(G) > r2 + 1.
Then Theorem 7 implies that e(G) ≤ t(n, r2) − n

r2
+ 1 holds, and we saw that

all extremal graphs contain singular copies of Kr+1, so e(G) ≤ t(n, r2)− n
r2

must
hold. Therefore we can assume that G is a subgraph of a complete r2-partite
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graph Ks1,s2,...,s
r
2
(s1 ≤ s2 ≤ · · · ≤ sr2). If Ks1,s2,...,s

r
2
does not have property

R, then Ks1,s2,...,s
r
2
contains either r+ 1 parts of pairwise different sizes or r+ 1

parts of the same size. In both cases, there must exist a part U such that every
u ∈ U is adjacent to an edge in Ks1,s2,...,s

r
2
\ G. Indeed, otherwise the isolated

vertices of Ks1,s2,...,s
r
2
\G would form a singular copy of Kr+1. This shows that

e(G) ≤ e(Ks1,s2,...,s
r
2
)− s1.

If s1 ≥ n
r2

−√
n, then this implies

e(G) ≤ t
(

n, r2
)

− n

r2
+

√
n.

On the other hand if s1 <
n
r2

−√
n, then

e(G) ≤ e
(

Ks1,s2,...,s
r
2

)

≤ t
(

n, r2
)

− n

2
.

This is because the standard symmetrization proof shows that for fixed s1 the
number of edges in Ks1,s2,...,s

r
2
is maximized when sr2 − s2 ≤ 1, so to obtain this

graph from the Turán graph, one has to pick a part and remove n
r2

− s1 ≥ √
n

vertices from this part and distribute these vertices among other parts as evenly
as possible. Placing these vertices one after the other, we see that the number of
edges decreases at least by 1, 2, . . . , n

r2
, so by a total of at least n/2.

This finishes the proof of (ii) because if r does not divide n, then there does
not exist a complete r2-partite graph with property R. The proof of (i) is also
done as, by definition, complete r2-partite graphs with property R have at most
t′(n, r2) edges.

We finish this section with the proof of Proposition 4, which states the fol-
lowing.

TS(n, P3) =



























2 if n = 3,
5 if n = 4,
n2+2n

4 − 2 if n > 4 and n is divisible by 4,
n2+2n−4

4 if n is even, but not divisible by 4,
n2+2n−3

4 if n is odd.

Proof of Proposition 4. The cases n = 3 and n = 4 are trivial. For the other
cases, as we have mentioned in the introduction, TS(n, F ) ≤ wex(n, F ). Goddard,
Wash and Xu [11] showed

wex(n, P3) =











n2+2n
4 if n is divisible by 4,

n2+2n−4
4 if n is even, but not divisible by 4,

n2+2n−3
4 if n is odd.
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The extremal constructions are K⌊n/2⌋,⌈n/2⌉ supplemented with maximal match-
ings in both parts, which avoids singular P3 in case n is odd, hence extremal for
TS as well. In case n is even, but not divisible by four, a further extremal graph
for wex is Kn/2−1,n/2+1 with maximal matchings in both parts. This one avoids
singular P3. Thus we are done, except in the case n = 4k. Our lower bound is
given by the graph Kn/2−1,n/2+1 with maximal matchings in both parts.

To obtain the same upper bound, let G be a singular P3-free graph on n > 4
vertices, and partition E(G) into two parts: E1 consists of the edges between
vertices of the same degree, while E2 consists of the edges between vertices of dif-
ferent degrees. By definition, E1 is a matching, thus |E1| ≤ n/2. If E2 contained
a triangle, those three vertices would have different degrees, thus we could find a
singular P3 among them. Therefore, |E2| ≤ n2/4. Note that if |E2| ≤ n2/4 − 2
or |E1| ≤ n/2− 2, then we are done, as |E(G)| = |E1|+ |E2| ≤ n2/4 + n/2− 2.

If the graph with E2 as its edge set has chromatic number at least 3, then we
can use Theorem 7 to obtain |E2| ≤ n2/4−⌊n/2⌋+1 ≤ n2/4−2. Thus E2 defines
a bipartite graph with parts A and B. If |A| ≤ n/2− 2, then |E2| ≤ n2/4− 4. If
|A| = n/2 − 1, then we are done, unless E2 consists of all the edges between A
and B. In that case every edge of E1 is inside A or B, which have odd size, thus
E1 avoids two vertices, hence |E1| ≤ n/2−1. This implies |E(G)| = |E1|+ |E2| ≤
n2/4− 1 + n/2− 1.

Finally, if |A| = n/2 = |B|, observe that we are done, if there are at least
two edges between A and B that are not in E2. Let A

′ ⊆ A be the set of vertices
connected to each vertex of B with an edge in E2, and similarly B′ ⊆ B be the set
of vertices connected to each vertex of A with an edge in E2. Then |A′| ≥ n/2−1
and |B′| ≥ n/2 − 1, otherwise we are done. Also, the degrees of the vertices
in A′ are different from those in B′, by the definition of E2. But they are all
incident to the same number of edges in E2, thus the difference has to come from
E1. It means every vertex of, say A′ is incident to an edge of E1 and no vertex
of B′ is incident to an edge of E1. But then E1 avoids |B′| ≥ 3 vertices, thus
|E1| ≤ n/2− 2, finishing the proof.

3. WORM-Colorings

Let us start with the proof of Proposition 6, which states that if a bipartite graph
F has r + 1 ≥ 3 vertices, then wex(n, F ) ≤ ex(n,Kr+1) + ex(n, F ).

Proof of Proposition 6. Let us consider a graph G on n vertices with an F -
WORM coloring. Let G1 be the subgraph spanned by the edges that connect
vertices of the same color and G2 be the subgraph spanned by the edges that
connect vertices of different colors. Then G1 is F -free, thus has at most ex(n, F )
edges.
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Graph G2 is not necessarily F -free, as it can contain a copy of F with two
nonadjacent vertices from the same color class, which is not rainbow. But if
G2 contained a copy of Kr+1, that would necessarily be rainbow, thus contain
a rainbow copy of F , a contradiction. This shows G2 has at most ex(n,Kr+1)
edges, finishing the proof.

Observe that in the above proof, if the F -WORM coloring of G has t colors,
then G1 consists of t vertex-disjoint graphs, thus has fewer than ex(n, F ) edges
if t > 1 and F is not a forest. On the other hand, if t < p− 1, then G2 has fewer
than ex(n,Kp) edges. This shows that a careful analysis could improve the above
bound.

In case F is a forest, there is a chance the bound given in Proposition 6 is
sharp. Let T be a tree on k + 1 vertices. Erdős and Sós [6] conjectured that
ex(n, T ) ≤ (k − 1)n/2, with equality in case k divides n, shown by the vertex-
disjoint union of n/k copies of Kk. This conjecture is known to hold for several
classes of trees, including paths due to the Erdős-Gallai theorem [7], and stars,
trivially.

Proposition 11. Let T be a tree on k + 1 vertices such that the Erdős-Sós

conjecture holds for T . Let n be divisible by k2. Then wex(n, T ) = t(n, k) + (k −
1)n/2.

Proof. For the upper bound, observe that the properly colored edges do not
contain Kk+1, while the monochromatic edges do not contain T .

For the lower bound, consider the balanced complete k-partite graph, let the
colors correspond to the parts, and place n/k2 copies of Kk into every part.

If T = Sk, the star with k leaves and k is odd, then the Erdős-Sós conjecture
holds with equality if n is large enough, as shown by any (k − 1)-regular graph.
Therefore, we do not need the divisibility condition.

Proposition 12. Let k be odd and n large enough. Then wex(n, Sk) = t(n, k) +
(k − 1)n/2.

Proof. The upper bound, again, follows from the fact that the properly colored
edges do not contain Kk+1, while the monochromatic edges do not contain Sk.
For the lower bound we take the Turán graph, let the colors correspond to the
parts, and place a (k − 1)-regular graph into each part.

Let us consider now a general construction. For a graph F with r+1 vertices,
consider the balanced complete r-partite graph T (n, r) on n vertices, and add
into each part A an F -free graph with ex(|A|, F ) edges. Let T (n, F ) denote an
arbitrary one of the graphs obtained this way. Then T (n, F ) admits an F -WORM
coloring, namely the r-coloring according to the parts of T (n, r).
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Recall that Proposition 6 shows that for a graph F with r + 1 vertices we
have

wex(n, F )− ex(n,Kr+1) ≤ ex(n, F )

(recall Proposition 6 holds for all graphs, but only gives a meaningful bound when
F is bipartite). The next proposition shows that this difference is Θp(ex(n, F )).

Proposition 13. If F has r + 1 ≥ 3 vertices and chromatic number p + 1 ≥ 2,
then wex(n, F ) = ex(n,Kr+1) + Θ(ex(n, F )).

Proof. The upper bound follows from Proposition 6. The lower bound is given
by T (n, F ), observing that it has at least p · ex(⌊n/p⌋, F ) = Θ(ex(n, F )) edges
added to the original ex(n,Kr+1).

4. Concluding Remarks

Let us return to the connection of singular Turán problems and WORM colorings.
The upper bound given in Proposition 6 for wex(n, F ) immediately implies the
same upper bound on TS(n, F ), but the lower bound given by the construction
T (n, F ) usually contains singular copies of F , as the degrees in different parts of
T (n, p) can be the same. Moreover, the additional F -free graphs may make the
degrees different.

The first problem we can deal with, the same way as earlier: instead of
the balanced complete r-partite graph T (n, r), we consider T ∗(n, r), which is
a complete r-partite graph that is as balanced as possible, with respect to the
condition that any two parts have different size. In T ∗(n, r) the degrees indeed
give the coloring we want. However, this coloring can be ruined by the graphs we
add inside the parts. To avoid this, we will add regular graphs. We still have to
be careful, if we add graphs inside the parts with different regularities, then we
have to avoid the final degrees coinciding in different parts. Still, if we only want
to obtain a result similar to Proposition 13, i.e., we are only interested in the
order of magnitude, it is enough to add an F -free regular graph into the smallest
part; then only the largest degrees increase.

This motivates us to initiate the study of regular Turán problems: what is
the largest number rex(n, F ) of edges in an F -free regular graph on n vertices?
Note that it is equivalent to determining the largest regularity that an F -free
graph on n vertices can have.

Observe first that rex(n, F ) is not monotone in n. For example rex(6,K3) =
9 as shown by K3,3, but rex(7,K3) = 7, as a 4-regular triangle-free graph on
7 vertices would have more edges than the Turán graph, there is no 3-regular
graph on 7 vertices, and the 2-regular graph C7 shows the equality. For larger
n, asymptotically large flops also happen. If n = 2k, we have rex(2k,K3) =
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k2, as the Turán graph Kk,k is k-regular. If n = 2k + 1, a bipartite graph
cannot be regular. A theorem of Andrásfai [3] states that if a triangle-free graph
on n vertices is not bipartite, its minimum degree is at most 2n/5, showing
rex(2k + 1,K3) ≤ (2k + 1)2/5.

We can show a quadratic lower bound for rex(n, F ) for every nonbipartite
graph F .

Theorem 14. If a nonbipartite graph F has odd girth g, then

rex(n, F ) ≥ n2/(g + 6)−O(n).

Proof. The case of n even is settled by Kn/2,n/2. If n is odd, let us write it in the
form n = (g+6)q+2r where 0 ≤ r ≤ g+5 (and of course q is odd). We construct
an F -free (2q)-regular graph with two connected components. One component is
a bipartite graph of order 4q+2r, which is obtained from K2q+r,2q+r, removing r
mutually edge-disjoint perfect matchings. The other component is obtained from
Cg+2, replacing each of the vertices by an independent set of size q and each of
the edges by a copy of Kq,q.

Problem 15. For any non-bipartite graph F , determine lim inf rex(n, F )/n2.

For any F with chromatic number p + 1 ≥ 3, we know that rex(n, F ) =
(1 + o(1))ex(n, F ) for infinitely many values of n, namely for n divisible by p,
as the Turán graph is regular in that case. If F is a tree with r + 1 vertices,
the Erdős-Sós conjecture states ex(n, F ) ≤ (r − 1)n/2. If it holds, it also implies
ex(n, F ) = rex(n, F ) for n divisible by r, as shown by the vertex-disjoint union
of n/r copies of Kr. In case F is a forest, this construction might contain F , but
it is easy to see that if F 6= K2, then rex(2k, F ) ≥ k.

However, if F is bipartite and not a forest, we do not know how close ex(n, F )
and rex(n, F ) can be. In particular, we do not know if lim inf ex(n, F )/rex(n, F )
is bounded for every F .
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