DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

X. Bai

Xuqing Bai

Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China

email: baixuqing0@163.com

R. Chang

Renying Chang

Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China

email: changrysd@163.com

Z. Huang

Zhong Huang

Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China

email: 2120150001@mail.nankai.edu.cn

X. Li

Xueliang Li

Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China

email: lxl@nankai.edu.cn

Title:

More on the rainbow disconnection in graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 42(4) (2022) 1185-1204

Received: 2018-10-08 , Revised: 2020-05-18 , Accepted: 2020-05-18 , Available online: 2020-06-02 , https://doi.org/10.7151/dmgt.2333

Abstract:

Let $G$ be a nontrivial edge-colored connected graph. An edge-cut $R$ of $G$ is called a rainbow-cut if no two of its edges are colored the same. An edge-colored graph $G$ is rainbow disconnected if for every two vertices $u$ and $v$ of $G$, there exists a $u$-$v$-rainbow-cut separating them. For a connected graph $G$, the rainbow disconnection number of $G$, denoted by rd$(G)$, is defined as the smallest number of colors that are needed in order to make $G$ rainbow disconnected. In this paper, we first determine the maximum size of a connected graph $G$ of order $n$ with rd$(G) = k$ for any given integers $k$ and $n$ with $1\leq k\leq n-1$, which solves a conjecture posed only for $n$ odd in [G. Chartrand, S. Devereaux, T.W. Haynes, S.T. Hedetniemi and P. Zhang, Rainbow disconnection in graphs, Discuss. Math. Graph Theory 38 (2018) 1007–1021]. From this result and a result in their paper, we obtain Erdős-Gallai type results for rd$(G)$. Secondly, we discuss bounds on rd$(G)$ for complete multipartite graphs, critical graphs with respect to the chromatic number, minimal graphs with respect to the chromatic index, and regular graphs, and we also give the values of rd$(G)$ for several special graphs. Thirdly, we get Nordhaus-Gaddum type bounds for rd$(G)$, and examples are given to show that the upper and lower bounds are sharp. Finally, we show that for a connected graph $G$, to compute rd$(G)$ is NP-hard. In particular, we show that it is already NP-complete to decide if rd$(G)=3$ for a connected cubic graph. Moreover, we show that for a given edge-colored (with an unbounded number of colors) connected graph $G$ it is NP-complete to decide whether $G$ is rainbow disconnected.

Keywords:

edge-coloring, edge-connectivity, rainbow disconnection coloring (number), Erdős-Gallai type problem, Nordhaus-Gaddum type bounds, complexity, NP-hard (complete)

References:

  1. S. Akbari, D. Cariolaro, M. Chavooshi, M. Ghanbari and S. Zare, Some criteria for a graph to be Class $1$, Discrete Math. 312 (2012) 2593–2598.
    https://doi.org/10.1016/j.disc.2011.09.035
  2. M. Aouchiche and P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Appl. Math. 161 (2013) 466–546.
    https://doi.org/10.1016/j.dam.2011.12.018
  3. T. Beşeri, Edge Coloring of a Graph (İzmir Institute of Technology, İzmir, Turkey, 2004).
  4. J.A. Bondy and U.S.R. Murty, Graph Theory (Grad. Texts in Math. 244 Springer-Verlag, London, 2008).
  5. S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, Hardness and algorithms for rainbow connectivity, J. Comb. Optim. 21 (2011) 330–347.
    https://doi.org/10.1007/s10878-009-9250-9
  6. G. Chartrand, S. Devereaux, T.W. Haynes, S.T. Hedetniemi and P. Zhang, Rainbow disconnection in graphs, Discuss. Math. Graph Theory 38 (2018) 1007–1021.
    https://doi.org/10.7151/dmgt.2061
  7. G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85–98.
  8. L. Chen, X. Li and H. Lian, Nordhaus-Gaddum type theorem for rainbow connection number of graphs, Graphs Combin. 29 (2013) 1235–1247.
    https://doi.org/10.1007/s00373-012-1183-x
  9. A.G. Chetwynd and A.J.W. Hilton, Regular graphs of high degree are $1$-factorizable, Proc. Lond. Math. Soc. {(3)} 50 (1985) 193–206.
    https://doi.org/10.1112/plms/s3-50.2.193
  10. G.A. Dirac, A property of $4$-chromatic graphs and remarks on critical graphs, J. Lond. Math. Soc. 27 (1952) 85–92.
    https://doi.org/10.1112/jlms/s1-27.1.85
  11. G.A. Dirac, Circuits in critical graphs, Monatsh. Math. 59 (1955) 178–187.
    https://doi.org/10.1007/BF01303792
  12. P. Elias, A. Feinstein and C.E. Shannon, A note on the maximum flow through a network, IEE Trans. Inform. Theory, IT 2 (1956) 117–119.
    https://doi.org/10.1109/TIT.1956.1056816
  13. L.R. Ford Jr. and D.R. Fulkerson, Maximal flow through a network, Canad. J. Math. 8 (1956) 399–404.
    https://doi.org/10.4153/CJM-1956-045-5
  14. F. Harary and T.W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs, Discrete Math. 155 (1996) 99–105.
    https://doi.org/10.1016/0012-365X(94)00373-Q
  15. A. Hellwig and L. Volkmann, The connectivity of a graph and its complement, Discrete Appl. Math. 156 (2008) 3325–3328.
    https://doi.org/10.1016/j.dam.2008.05.012
  16. I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10 (1981) 718–720.
    https://doi.org/10.1137/0210055
  17. X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1–38.
    https://doi.org/10.1007/s00373-012-1243-2
  18. X. Li and Y. Sun, Rainbow Connections of Graphs (Springer Briefs Math. Springer, New York, 2012).
    https://doi.org/10.1007/978-1-4614-3119-0
  19. X. Li and Y. Sun, An updated survey on rainbow connections of graphs–-a dynamic survey, Theory Appl. Graphs 0 (2017) Art. 3.
    https://doi.org/10.20429/tag.2017.000103
  20. W. Mader, Ein Extremalproblem des Zusammenhangs von Graphen, Math. Z. 131 (1973) 223–231.
    https://doi.org/10.1007/BF01187240
  21. E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175–177.
    https://doi.org/10.2307/2306658
  22. V.G. Vizing, On an estimate of the chromatic class of a $p$-graph, Diskret. Analiz. 3 (1964) 25–30, in Russian.

Close