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Abstract

Let G be a nontrivial edge-colored connected graph. An edge-cut R of
G is called a rainbow-cut if no two of its edges are colored the same. An
edge-colored graph G is rainbow disconnected if for every two vertices u and
v of G, there exists a u-v-rainbow-cut separating them. For a connected
graph G, the rainbow disconnection number of G, denoted by rd(G), is
defined as the smallest number of colors that are needed in order to make G
rainbow disconnected. In this paper, we first determine the maximum size
of a connected graph G of order n with rd(G) = k for any given integers k
and n with 1 ≤ k ≤ n− 1, which solves a conjecture posed only for n odd in
[G. Chartrand, S. Devereaux, T.W. Haynes, S.T. Hedetniemi and P. Zhang,
Rainbow disconnection in graphs, Discuss. Math. Graph Theory 38 (2018)
1007–1021]. From this result and a result in their paper, we obtain Erdős-
Gallai type results for rd(G). Secondly, we discuss bounds on rd(G) for
complete multipartite graphs, critical graphs with respect to the chromatic
number, minimal graphs with respect to the chromatic index, and regular
graphs, and we also give the values of rd(G) for several special graphs.
Thirdly, we get Nordhaus-Gaddum type bounds for rd(G), and examples
are given to show that the upper and lower bounds are sharp. Finally,
we show that for a connected graph G, to compute rd(G) is NP-hard. In
particular, we show that it is already NP-complete to decide if rd(G) = 3 for
a connected cubic graph. Moreover, we show that for a given edge-colored
(with an unbounded number of colors) connected graph G it is NP-complete
to decide whether G is rainbow disconnected.
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1. Introduction

All graphs considered in this paper are simple, finite and undirected. Let G =
(V (G), E(G)) be a nontrivial connected graph with vertex set V (G) and edge
set E(G). For v ∈ V (G), let dG(v) and NG(v) denote the degree and the
neighborhood of v in G (or simply d(v) and N(v), respectively, when the graph
G is clear from the context). We use δ(G) and ∆(G) to denote the minimum and
maximum degree of G, respectively. By G we denote the complement of G. For
any notation or terminology not defined here, we follow those used in [4].

Throughout this paper, we use Pn, Cn, Kn to denote the path, cycle and
complete graph of order n, respectively. Given two disjoint graphs G and H, the
join of G and H, denoted by G ∨H, is obtained from the vertex-disjoint copies
of G and H by adding all edges between the vertices in V (G) and the vertices in
V (H).

Throughout the paper, [k] denotes the set {1, 2, . . . , k} of integers. Let G be
a graph with an edge-coloring c: E(G) → [k], k ∈ N, where adjacent edges may
be colored the same. When adjacent edges of G receive different colors by c, the
edge-coloring c is called proper. The chromatic index of G, denoted by χ′(G),
is the minimum number of colors needed in a proper edge-coloring of G. By a
famous theorem of Vizing [22], one has that

∆(G) ≤ χ′(G) ≤ ∆(G) + 1

for every nonempty graph G. If χ′(G) = ∆(G), then G is said to be in Class 1;
if χ′(G) = ∆(G) + 1, then G is said to be in Class 2.

A path is called rainbow if no two of its edges are colored the same. An
edge-colored graph G is called rainbow connected if every two vertices of G are
connected by a rainbow path in G. An edge-coloring under which G is rainbow
connected is called a rainbow connection coloring. Clearly, if a graph is rainbow
connected, it must be connected. For a connected graph G, the rainbow connec-

tion number of G, denoted by rc(G), is the smallest number of colors that are
needed in order to make G rainbow connected. The concept of rainbow connec-
tion was introduced by Chartrand et al. [7] in 2008. For more details on rainbow
connection, we refer the reader to a book [18] and two survey papers [17, 19].

In this paper, we investigate a new concept introduced by Chartrand et al.

in [6] that is somehow reverse to the rainbow connection.
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An edge-cut of a connected graph G is a set F of edges such that G − F is
disconnected. The minimum number of edges in an edge-cut of G is the edge-

connectivity of G, denoted by λ(G). We have the well-known inequality λ(G) ≤
δ(G). For two vertices u and v of G, let λG(u, v) (or simply λ(u, v) when the
graph G is clear from the context) denote the minimum number of edges in an
edge-cut F such that u and v lie in different components of G − F . A u-v-path

is a path with ends u and v. The following proposition presents an alternate
interpretation of λ(u, v) (see [12, 13]).

Proposition 1.1. For every two vertices u and v in a graph G, λ(u, v) is equal

to the maximum number of pairwise edge-disjoint u-v-paths in G.

An edge-cut R of an edge-colored connected graph G is called a rainbow-cut

if no two edges in R are colored the same. A rainbow-cut R of G is said to
separate two vertices u and v of G if u and v belong to different components of
G−R. Such a rainbow-cut is called a u-v-rainbow-cut. An edge-colored graph G
is called rainbow disconnected if for every two vertices u and v of G, there exists
a u-v-rainbow-cut in G separating them. In this case, the edge-coloring is called
a rainbow disconnection coloring of G. For a connected graph G, we similarly
define the rainbow disconnection number (or rd-number for short) of G, denoted
by rd(G), as the smallest number of colors that are needed in order to make
G rainbow disconnected. A rainbow disconnection coloring with rd(G) colors is
called an rd-coloring of G.

One of the many interesting problems in extremal graph theory is Erdős-
Gallai type problem which consists in determining the maximum or minimum
size of a graph with a given value of a graph parameter. We will obtain Erdős-
Gallai type results for the graph parameter rd(G).

A Nordhaus-Gaddum type result is a (tight) lower or upper bound on the
sum or product of the values of a parameter for a graph and its complement.
The name “Nordhaus-Gaddum type” is given because Nordhaus and Gaddum
were the first to establish [21] the following type of inequalities for the chromatic
number in 1956. They proved that if G and G are complementary graphs on n
vertices whose chromatic numbers are χ(G) and χ(G), respectively, then

2
√
n ≤ χ(G) + χ(G) ≤ n+ 1,

n ≤ χ(G) · χ(G) ≤
(

n+ 1

2

)2

.

For more results of Nordhaus-Gaddum type, we refer to papers [8, 14, 15]
and a survey paper [2].

The remainder of this paper will be organized as follows. In Section 2, we
determine the maximum size of a connected graph G of order n with rd(G) = k



1188 X. Bai, R. Chang, Z. Huang and X. Li

for given integers k and n with 1 ≤ k ≤ n − 1. This solves a conjecture posed
only for n odd by Chartrand et al. in [6]. From this and a result in [6], we
obtain Erdős-Gallai type results for rd(G). In Section 3, we discuss bounds on
the rainbow disconnection number of graphs depending on some parameters, and
we also give the values of rd(G) for some well-known special graphs. In Section 4,
we obtain Nordhaus-Gaddum type bounds for rd(G) and show that these bounds
are sharp. In Section 5, we show that to compute rd(G) for a connected graph
G is NP-hard. In particular, we show that it is already NP-complete to decide
if rd(G) = 3 for a connected cubic graph G. Moreover, we show that for a
given edge-colored (with an unbounded number of colors) connected graph G,
it is NP-complete to decide whether G is rainbow disconnected under the given
edge-coloring.

2. Erdős-Gallai Type Results

In this section, we consider two kinds of Erdős-Gallai type problems for rd(G).

Problem A. Given two positive integers n and k with 1 ≤ k ≤ n−1, compute the
maximum integer g(n, k) such that for any graph G of order n, if |E(G)| ≤ g(n, k),
then rd(G) ≤ k.

Problem B. Given two positive integers n and k with 1 ≤ k ≤ n−1, compute the
minimum integer f(n, k) such that for any graph G of order n, if |E(G)| ≥ f(n, k),
then rd(G) ≥ k.

It is worth mentioning that the two parameters f(n, k) and g(n, k) are equiv-
alent to the following two parameters. Let t(n, k) = min{|E(G)| : G is a con-
nected graph with |V (G)| = n and rd(G) ≥ k} and s(n, k) = max{|E(G)| : G
is a connected graph with |V (G)| = n and rd(G) ≤ k}. It is easy to see that
g(n, k) = t(n, k + 1) − 1 for 1 ≤ k ≤ n − 2 and f(n, k) = s(n, k − 1) + 1 for
2 ≤ k ≤ n− 1.

To solve Problems A and B, the following results will be used.

For given integers k and n with 1 ≤ k ≤ n− 1, the authors in [6] determined
the minimum size of a connected graph G of order n with rd(G) = k.

Lemma 2.1 [6]. For integers k and n with 1 ≤ k ≤ n− 1, the minimum size of

a connected graph of order n with rd(G) = k is n+ k − 2.

For the maximum size, they posed the following conjecture only for n odd.

Conjecture 2.2. Let k and n be integers with 1 ≤ k ≤ n− 1 and n ≥ 5 is odd.

Then the maximum size of a connected graph G of order n with rd(G) = k is
(k+1)(n−1)

2 .
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We will show the following result for the maximum size, regardless of whether
n is odd or even.

Theorem 2.3. Let k and n be integers with 1 ≤ k ≤ n− 1. Then the maximum

size of a connected graph G of order n with rd(G) = k is
⌊

(k+1)(n−1)
2

⌋

.

Before we give the proof of Theorem 2.3, some auxiliary lemmas are stated
as follows.

Lemma 2.4 [6]. If G is a nontrivial connected graph, then

λ(G) ≤ λ+(G) ≤ rd(G) ≤ χ′(G) ≤ ∆(G) + 1,

where the upper edge-connectivity λ+(G) is defined by λ+(G) = max{λ(u, v) :
u, v ∈ V (G)}.

Lemma 2.5 [6]. Let G be a nontrivial connected graph. Then rd(G) = 1 if and

only if G is a tree.

Lemma 2.6 [6]. If G is a cycle of order n ≥ 3, then rd(G) = 2.

Lemma 2.7 [6]. For each integer n ≥ 2, rd(Kn) = n− 1.

Lemma 2.8 [6]. Let G be a connected graph of order n ≥ 2. Then rd(G) = n−1
if and only if G contains at least two vertices of degree n− 1.

Lemma 2.9 [20]. Let G be a graph of order n (n ≥ k + 2 ≥ 3). If |E(G)| >
k+1
2 (n− 1)− 1

2σk(G), where σk(G) =
∑

x ∈ V (G)
d(x) ≤ k

(k − d(x)), then λ+(G) ≥ k + 1.

We give an observation before the proof of Lemma 2.11.

Observation 2.10. Let G be a graph and u be a vertex of G. If G admits an

edge-coloring c with k colors such that the set Ex of edges incident with x is

rainbow for every vertex x in V (G− u), then rd(G) ≤ k.

Lemma 2.11. For a graph G, the following results hold.

(i) For any vertex u of G, let H = G− u. Then rd(G) ≤ ∆(H) + 1.

(ii) If there exists a vertex u of G such that H = G − u is in Class 1 and

dH(x) ≤ ∆(H)− 1 for every x ∈ NG(u), then rd(G) ≤ ∆(H).

(iii) Let uυ be an edge of G and H = G− uυ. If χ′(H) = ∆(H) = ∆(G), then
rd(G) ≤ ∆(G).
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Proof. (i) LetH = G−u. Then we construct a proper edge-coloring c0 ofH using
colors from the set [∆(H) + 1]. For each vertex x ∈ V (H), since dH(x) ≤ ∆(H),
there is an ax ∈ [∆(H) + 1] such that ax is not assigned to any edge incident
with x in H. Since E(G) = E(H) ∪ {ux : x ∈ NG(u)}, we now extend the edge-
coloring c0 of H to an edge-coloring c of G by assigning c(ux) = ax for every
vertex x ∈ NG(u). Note that the set Ex of edges incident with x is a rainbow set
for each vertex x ∈ V (H). Hence, rd(G) ≤ ∆(H) + 1 by Observation 2.10.

(ii) SinceH is in Class 1, we have χ′(H) = ∆(H). Then we construct a proper
edge-coloring c0 of H using colors from [∆(H)]. For each vertex x ∈ NG(u), since
dH(x) ≤ ∆(H) − 1, there is an ax ∈ [∆(H)] such that ax is not assigned to
any edge incident with x in H. Since E(G) = E(H) ∪ {ux : x ∈ NG(u)}, we
now extend the edge-coloring c0 of H to an edge-coloring c of G by assigning
c(ux) = ax for every vertex x ∈ NG(u). Note that the set Ex of edges incident
with x is a rainbow set for every vertex x ∈ V (H). Hence, rd(G) ≤ ∆(H) by
Observation 2.10.

(iii) Since χ′(H) = ∆(H) = ∆(G), we construct a proper edge-coloring c0 of
H using colors from [∆(G)]. Since ∆(H) = ∆(G), we have dH(u) < ∆(G), and
thus there is an au ∈ [∆(G)] such that au is not assigned to any edge incident
with u in H. Now we extend c0 to an edge-coloring c of G by defining c(uυ) = au.
Note that the set Ex of edges incident with x in G is a rainbow set for every vertex
x ∈ V (G) \ υ. Hence, rd(G) ≤ ∆(G) by Observation 2.10.

Proof of Theorem 2.3. If k = n− 1, the maximum size of a connected graph
G of order n with rd(G) = n − 1 is n(n−1)

2 since rd(Kn) = n − 1 by Lemma 2.7,
and thus the result is true. Now we consider k with 1 ≤ k ≤ n− 2. Suppose that
|E(G)| > (k+1)(n−1)

2 − 1
2σk(G). Then rd(G) ≥ λ+(G) ≥ k+1 by Lemmas 2.4 and

2.9. Therefore, if rd(G) = k, then |E(G)| ≤ (k+1)(n−1)
2 − 1

2σk(G) ≤ (k+1)(n−1)
2

since σk(G) is nonnegative.
It remains to show that for each pair of integers k and n with 1 ≤ k ≤ n− 2,

there exists a connected graph Gk with order n and size
⌊

(k+1)(n−1)
2

⌋

such that

rd(Gk) = k. We distinguish the following two cases.

Case 1. n is odd. For n = 3, it is easy to verify that the result is true for
Gk = P3. For n ≥ 5, the construction of the graph Gk was already given in [6],
where the inequality rd(Gk) ≤ k was proved. Here we restate it as follows. Set
Gk = Hk ∨K1, where Hk is a (k− 1)-regular graph of order n− 1 and K1 = {u}.
Since n− 1 is even, such graphs Hk exist. Then Gk is a connected graph of order
n having one vertex u of degree n− 1 and n− 1 vertices of degree k, and the size
of Gk is (k+1)(n−1)

2 .
Since ∆(Hk) = k − 1, we obtain that rd(Gk) ≤ ∆(Hk) + 1 = k by Lemma

2.11(i). Note that |E(Gk)| = (k+1)(n−1)
2 > k(n−1)

2 ≥ k(n−1)
2 − 1

2σk−1(Gk) since
σk−1(Gk) is nonnegative. Thus, λ+(Gk) ≥ k by Lemma 2.9. Combining with
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Lemma 2.4, we have rd(Gk) ≥ k. Therefore, the maximum size of a connected

graph G of order n with rd(G) = k is
⌊

(k+1)(n−1)
2

⌋

when 1 ≤ k ≤ n− 2 and n is

odd.

Case 2. n is even. For n = 2t ≥ 4, we construct a graph Gk as follows. Let
G = K2t and V (G) = {u, υ0, υ1, . . . , υ2t−2}. Arrange υ0, υ1, . . . , υ2t−2 in order on
the vertices of a regular (2t − 1) polygon, and let u be the center of the regular
(2t − 1) polygon. Figure 1 shows the vertex order of a regular (2t − 1) polygon
with t = 15. For 0 ≤ i ≤ 2t − 2, let Ei = {uυi} ∪ {e : e is perpendicular to
the line containing uυi, e ∈ E(K2t)}. In Figure 1, the edges of the sets E0 and
E2 are drawn for t = 15. Obviously, each G[Ei] forms a 1-factor of K2t, and
E0, E1, . . . , E2t−2 are edge-disjoint. Let Hk−1 = G[E1 ∪ E2 ∪ · · · ∪ Ek−1] where
2 ≤ k ≤ 2t − 1. In particular, H0 is an empty graph. It follows that Hk−1 is
(k − 1)-regular and Hk−1 is 1-factorable, that is, χ′(Hk−1) = k − 1.

v8

u

v0 v2v1
v4v3

v6v5

v7

v9

v28v27

v25

v23
v26

v24

v10

v21 v22

Figure 1. Graph for the proof of Theorem 2.3.

By the previous construction, E(Hk−1), {uυ0},
2t−2
⋃

i=k

{uυi}, and the edge set
{

υ1υ2, υ3υ4, . . . , υ2⌊ k−1
2 ⌋−1υ2⌊ k−1

2 ⌋
}

are edge-disjoint. Let Gk = Hk−1 + {uυ0}+
2t−2
⋃

i=k

{uυi} +
{

υ1υ2, υ3υ4, . . . , υ2⌊ k−1
2 ⌋−1υ2⌊ k−1

2 ⌋
}

. Then Gk is a graph of order n

with |E(Gk)| = (k−1)n
2 +1+(n−k−1)+

⌊

k−1
2

⌋

=
⌊

(k+1)(n−1)
2

⌋

. Since χ′(Hk−1) =
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k − 1, we obtain a proper edge-coloring c0 of Hk−1 using colors from [k − 1]. We
can extend c0 to an edge-coloring c of Gk by assigning a new color k to all newly
added edges in Hk−1. Note that the set Ex of edges incident with x in Gk is a
rainbow set for each vertex x ∈ V (Gk)\u. Therefore, rd(Gk) ≤ k by Observation

2.10. On the other hand, E(Gk) =
⌊

(k+1)(n−1)
2

⌋

> k(n−1)
2 since n ≥ 4. It follows

by Lemmas 2.4 and 2.9 that rd(Gk) ≥ k. Therefore, the maximum size of a

connected graph G of order n with rd(G) = k is
⌊

(k+1)(n−1)
2

⌋

when 1 ≤ k ≤ n−2

and n is even.

We are now in the position to solve Problem A by giving the exact value of
g(n, k), using Lemma 2.1.

Theorem 2.12. For integers k and n with 1 ≤ k ≤ n− 1,

g(n, k) =

{

n(n−1)
2 , if k = n− 1,

n+ k − 2, if 1 ≤ k ≤ n− 2.

Proof. First, since rd(Kn) = n − 1, we get g(n, n − 1) = n(n−1)
2 . Next, it

follows from Lemma 2.1 that t(n, k) = n + k − 2 for 1 ≤ k ≤ n − 1. Thus,
g(n, k) = t(n, k + 1)− 1 = n+ k − 2 for 1 ≤ k ≤ n− 2.

Now we solve Problem B by giving the exact value of f(n, k).

Theorem 2.13. For integers k and n with 1 ≤ k ≤ n− 1,

f(n, k) =

{

n− 1, if k = 1,
⌊

k(n−1)
2

⌋

+ 1, if 2 ≤ k ≤ n− 1.

Proof. First, let T be a nontrivial tree of order n. Since rd(T ) = 1 by Lemma
2.5, we get f(n, 1) = n − 1. Next, it follows from Theorem 2.3 that s(n, k) =
(k+1)(n−1)

2 for 1 ≤ k ≤ n− 1. Thus, f(n, k) = s(n, k − 1) + 1 =
⌊

k(n−1)
2

⌋

+ 1 for

2 ≤ k ≤ n− 1.

3. The rd-Numbers of Some Classes of Graphs

In this section, we investigate the rainbow disconnection numbers of complete
multipartite graphs, critical graphs with respect to the chromatic number, mini-
mal graphs with respect to the chromatic index, and regular graphs.

First, we give the rainbow disconnection number of complete multipartite
graphs.
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Theorem 3.1. If G = Kn1,n2,...,nk
is a complete k-partite graph with order n

where k ≥ 2 and n1 ≤ n2 ≤ · · · ≤ nk, then

rd(Kn1,n2,...,nk
) =

{

n− n2, if n1 = 1,

n− n1, if n1 ≥ 2.

To prove Theorem 3.1 we need a lemma below. Let G∆ denote the core of
G, that is, the subgraph of G induced by the vertices of maximum degree ∆(G).

Lemma 3.2 [1]. Let G be a connected graph. If every connected component of

G∆ is a unicyclic graph or a tree, and G∆ is not a disjoint union of cycles, then

G is in Class 1.

Proof of Theorem 3.1. Let V1, V2, . . . Vk be the k-partition of the vertices of G
with Vi = {vi,1, vi,2, . . . , vi,ni

} for every i, 1 ≤ i ≤ k. We distinguish the following
two cases.

Case 1. n1 = 1. First, we have V1 = {v1,1} and d(v1,1) = n − 1. Let
H = G − {v1,1}. Then ∆(H) = n − n2 − 1. By Lemma 2.11(i), we obtain
rd(G) ≤ ∆(H) + 1 = n− n2.

If n2 = 1, then rd(G) = n − 1 by Lemma 2.8, and thus the result is true.
Otherwise, for any two vertices u and v of V2, since they are adjacent with all
the vertices of V (G) \ V2, we get λ(u, v) ≥ n − n2. It follows from Lemma 2.4
that rd(G) ≥ n− n2. Hence, rd(G) = n− n2.

Case 2. n1 ≥ 2. Pick a vertex u of V1 and let F = G−u. Then ∆(F ) = n−n1

since n1 ≥ 2 and F∆ = G[V1 − u]. It follows from Lemma 3.2 that F is in Class
1. For each vertex x ∈ NG(u), since dF (x) ≤ ∆(F ) − 1 = n − n1 − 1, we have
rd(G) ≤ n− n1 by Lemma 2.11(ii).

For any two vertices of V1, since all vertices of V (G) \ V1 are their common
neighbors, we get λ+(G) ≥ n−n1. It follows from Lemma 2.4 that rd(G) ≥ n−n1.
Hence, rd(G) = n− n1.

A graph G is said to be color-critical if χ(H) < χ(G) for every proper
subgraph H of G. The study of critical k-chromatic graphs was initiated by
Dirac ([10, 11]). Here, for simplicity, we abbreviate the term “color-critical” to
“critical.” A k-critical graph is one that is k-chromatic and critical. We get a
lower bound of the rainbow disconnection number for (k + 1)-critical graphs.

Theorem 3.3. If G is a connected (k + 1)-critical graph, then rd(G) ≥ k.

Our proof will follow from the next two lemmas. First, we give a lower bound
on the rainbow disconnection number of a graph depending on its average degree.

Lemma 3.4. If G is a connected graph of order n with average degree d, then
rd(G) ≥ ⌊d⌋.



1194 X. Bai, R. Chang, Z. Huang and X. Li

Proof. If G is a tree, then 1 ≤ d < 2 since d = 2(n−1)
n

. By Lemma 2.5 we
have rd(G) = 1. Obviously rd(G) = 1 ≥ ⌊d⌋ and the result is true. If G is

not a tree, then d ≥ 2 since 2|E(G)|
n

≥ 2n
n

= 2. We have |E(G)| = 1
2dn ≥

1
2 ⌊d⌋n > 1

2 ⌊d⌋ (n− 1). So λ+(G) ≥ ⌊d⌋ by Lemma 2.9. Therefore, rd(G) ≥ ⌊d⌋
by Lemma 2.4.

Lemma 3.5 [10]. If G is a connected (k + 1)-critical graph, then δ(G) ≥ k.

Proof of Theorem 3.3. Let G be a (k + 1)-critical graph with average degree
d. We know that δ(G) ≥ k by Lemma 3.5. Obviously, d ≥ δ(G) ≥ k. Therefore,
it follows from Lemma 3.4 that rd(G) ≥ ⌊d⌋ ≥ k since k is an integer.

A graph G with at least two edges is called minimal with respect to the

chromatic index if χ′(G − e) < χ′(G) for every edge e of G, i.e., χ′(G − e) =
χ′(G)−1 for every edge e of G. We show that the rainbow disconnection number
of a connected minimal graph G with respect to the chromatic index is no more
than the maximum degree of G.

Theorem 3.6. If G is a connected minimal graph with respect to the chromatic

index, then rd(G) ≤ ∆(G).

In order to prove Theorem 3.6, we need the next two lemmas.

Lemma 3.7 [22]. Let G be a connected graph in Class 2 that is minimal with

respect to the chromatic index. Then every vertex of G is adjacent to at least two

vertices of degree ∆(G). In particular, G contains at least three vertices of degree

∆(G).

Lemma 3.8 [3]. Let G be a connected graph with ∆(G) ≥ 2. Then G is minimal

with respect to the chromatic index if and only if either

(i) G is in Class 1 and G = K1,∆(G), or

(ii) G is in Class 2 and G− e is in Class 1 for every edge e of G.

Proof. Here we restate the proof. Assume first that G = K1,∆(G). Then χ′(G) =
∆(G) ≥ 2 and χ′(G − e) = ∆(G) − 1 for every edge e of G. Since G is in Class
1, χ′(G − e) = χ′(G) − 1. Next suppose that G is in Class 2 and G − e is in
Class 1 for every edge e of G. Then for every edge e of G, we have χ′(G − e) =
∆(G− e) < ∆(G) + 1 = χ′(G). Therefore, χ′(G− e) = χ′(G)− 1.

Conversely, assume that χ′(G− e) < χ′(G) for every edge e of G. If G is in
Class 1, then ∆(G) ≤ ∆(G− e) + 1 ≤ χ′(G− e) + 1 = χ′(G) = ∆(G). Therefore,
∆(G− e) = ∆(G)− 1 for every edge e of G, which implies that G = K1,∆(G). If
G is in Class 2, then χ′(G− e) + 1 = χ′(G) = ∆(G) + 1, i.e., χ′(G− e) = ∆(G)
for every edge e of G. Suppose that G contains an edge e1 such that G − e1 is
in Class 2. Then χ′(G − e1) = ∆(G − e1) + 1. Thus, ∆(G) = ∆(G − e1) + 1,
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which implies that G has at most two vertices of degree ∆(G), which contradicts
Lemma 3.7.

Proof of Theorem 3.6. Let G be a minimal connected graph with respect to
the chromatic index. We distinguish the following two cases according to Lemma
3.8.

Case 1. G is in Class 1 and G = K1,d with d ≥ 2. It follows from Lemma 2.5
that rd(G) = 1 . Obviously, rd(G) < d = ∆(G).

Case 2. G is in Class 2 and for every edge e ∈ E(G), χ′(G− e) = ∆(G− e).
We pick a vertex v ∈ V (G) such that dG(v) = ∆(G). Let H = G − uv for some
vertex u ∈ NG(v). Then χ′(H) = ∆(H) and χ′(H) = χ′(G) − 1 = ∆(G) since
G is minimal with respect to the chromatic index and G is in Class 2. Thus,
it implies that χ′(H) = ∆(H) = ∆(G). Therefore, we have rd(G) ≤ ∆(G) by
Lemma 2.11(iii).

For regular graphs, we know that not all k-regular graphs have rd(G) = k.
For example, we know from [6] that the Petersen graph P is a 3-regular graph
but rd(P ) = 4. The following results give some regular graphs with rd(G) = k.

Theorem 3.9. If G is a connected k-regular graph of even order satisfying k ≥
6
7 |V (G)|, then rd(G) = k.

Theorem 3.10. If G is a connected k-regular bipartite graph, then rd(G) = k.

Theorem 3.11. If G is a connected (n − k)-regular graph of order n, where

1 ≤ k ≤ 4, then rd(G) = n− k.

To prove these results, we need the following lemmas.

Lemma 3.12 [9]. Let G be a regular graph of even order n and degree d(G) equal
to n− 3, n− 4, or n− 5. Let d(G) ≥ 2

⌊

1
2(

n
2 + 1)

⌋

− 1. Then G is in Class 1.

Lemma 3.13 [9]. Let G be a regular graph of even order n whose degree d(G)
satisfies d(G) ≥ 6

7n. Then G is in Class 1.

For regular graphs, we can easily get the following result.

Lemma 3.14. If G is a connected k-regular graph, then k ≤ rd(G) ≤ k + 1.

Proof. Since the average degree of a k-regular graph G is k, it follows from
Lemma 3.4 that rd(G) ≥ k. On the other hand, it follows from Lemma 2.4 that
rd(G) ≤ χ′(G) ≤ ∆(G) + 1 = k + 1.

Proof of Theorem 3.9. Let G be a connected k-regular graph of even order n
satisfying k ≥ 6

7n. We have that G is in Class 1 by Lemma 3.13. Thus χ′(G) = k.
The result then follows from Lemmas 2.4 and 3.14.
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Proof of Theorem 3.10. Since G is a bipartite graph, χ′(G) = ∆(G) = k (see
[4]). The result then follows from Lemmas 2.4 and 3.14.

Proof of Theorem 3.11. We distinguish the following three cases.

Case 1. k = 1. We have G = Kn. Hence, the result is true by Lemma 2.7.

Case 2. k = 2 or k = 3. Let u ∈ V (G) and consider the graph H = G − u.
Then ∆(H) = n − k and the number of vertices of H with maximum degree is
1 or 2. So each component of H∆ is a tree. Therefore, it follows from Lemma
3.2 that H is in Class 1 and dH(x) ≤ ∆(H) − 1 = n − k − 1 for each vertex
x ∈ NG(u). By Lemma 2.11(ii), we have rd(G) ≤ n− k. On the other hand, by
Lemma 3.14, we get rd(G) ≥ n− k. Thus, rd(G) = n− k.

Case 3. k = 4. Let G be an (n − 4)-regular graph of order n, where n ≥ 5.
Then we know that n must be even since 2|E(G)| = n(n− 4). First, we consider
n ≥ 8. It is easy to verify that d(G) = n − 4 ≥ 2

⌊

1
2(

n
2 + 1)

⌋

− 1. It follows
from Lemma 3.12 that G is in Class 1. So, χ′(G) = n − 4. Furthermore, we
get rd(G) = n − 4 by Lemmas 2.4 and 3.14. Secondly, it remains to consider
the case n = 6. In this case, we have G = C6. By Lemma 2.6, we obtain
rd(G) = 2 = n− 4.

4. Nordhaus-Gaddum Type Results

In this section, we consider Nordhaus-Gaddum type results for the rainbow dis-
connection number of graphs. We know that if G is a connected graph with
n vertices, then the number of edges in G is at least n − 1. Since 2(n − 1) ≤
|E(G)| + |E(G)| = |E(Kn)| = n(n−1)

2 , if both G and G are connected, then n is
at least 4.

In the rest of this section, we always assume that all graphs have at least
four vertices, and that both G and G are connected. For any vertex u ∈ V (G),
let ū denote the vertex in G corresponding to the vertex u. Now we give a
Nordhaus-Gaddum type result for the rainbow disconnection number.

Theorem 4.1. If G is a connected graph such that G is also connected, then

n − 2 ≤ rd(G) + rd(G) ≤ 2n − 5 and n − 3 ≤ rd(G) · rd(G) ≤ (n − 2)(n − 3).
Furthermore, these bounds are sharp.

For the proof of Theorem 4.1, we need the following four lemmas.

Lemma 4.2 [6]. If H is a connected subgraph of a graph G, then rd(H) ≤ rd(G).

Lemma 4.3 [6]. Let G be a connected graph, and let B be a block of G such that

rd(B) is maximum among all blocks of G. Then rd(G) = rd(B).
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Lemma 4.4. Let G be a connected graph of order n ≥ 4. If G has at least two

vertices of degree 1, then rd(G) ≤ n− 3.

Proof. Let B be a block of G such that rd(B) is maximum among all blocks
of G. Then |V (B)| ≤ n − 2 since G has at least two vertices of degree 1. It
follows from Lemmas 2.7 and 4.2 that rd(B) ≤ rd(Kn−2) = n− 3. Thus, we have
rd(G) =rd(B) ≤ n− 3 by Lemma 4.3.

Lemma 4.5. If G is a connected graph of order n which contains at most one

vertex of degree at least n− 2, then rd(G) ≤ n− 3.

Proof. We distinguish the following three cases.

Case 1. There exists exactly one vertex, say u, of degree n−1. Let F = G−u.
We have ∆(F ) ≤ n − 4 since dG(u) = n − 1 and dG(v) ≤ n − 3 for every vertex
v ∈ V (G) \ u. Therefore, rd(G) ≤ ∆(F ) + 1 ≤ n− 3 by Lemma 2.11(i).

Case 2. There exists exactly one vertex, say u, of degree n−2. Let F = G−u.
If ∆(F ) ≤ n − 4, as discussed in Case 1, we obtain rd(G) ≤ ∆(F ) + 1 ≤ n − 3.
Otherwise, if ∆(F ) = n − 3, then there exists exactly one vertex, say v, with
degree n−3 in F . Then F is in Class 1 by Lemma 3.2. Since v /∈ NG(u), we have
dF (x) ≤ ∆(F )− 1 = n− 4 for each vertex x ∈ NG(u). So rd(G) ≤ ∆(F ) = n− 3
by Lemma 2.11(ii).

Case 3. ∆(G) ≤ n − 3. If ∆(G) ≤ n − 4, then rd(G) ≤ χ′(G) ≤ n − 3 by
Lemma 2.4. Thus, we may assume that ∆(G) = n − 3. Let d(u) = n − 3 and
F = G− u. If ∆(F ) ≤ n− 4, then rd(G) ≤ ∆(F ) + 1 ≤ n− 3 by Lemma 2.11(i).
If ∆(F ) = n− 3, then there exist at most two vertices of degree n− 3 in F . So,
each component of F∆ is a tree. It follows from Lemma 3.2 that F is in Class
1. Since ∆(G) ≤ n − 3, we have dF (x) ≤ ∆(F ) − 1 = n − 4 for each vertex
x ∈ NG(u). It follows from Lemma 2.11(ii) that rd(G) ≤ ∆(F ) = n− 3.

By the above Lemma 4.5, we can immediately get the following result.

Corollary 4.6. Let G be a connected graph with order n. If rd(G) ≥ n− 2, then
there are at least two vertices of degree at least n− 2.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let d and d̄ be the average degree of G and G, respec-
tively. Then rd(G) ≥ ⌊d⌋ and rd(G) ≥

⌊

d̄
⌋

by Lemma 3.4. Thus,

rd(G) + rd(G) ≥ ⌊d⌋+
⌊

d̄
⌋

≥
⌊

d+ d̄
⌋

− 1 =

⌊

2|E(G)|
n

+
2|E(G)|

n

⌋

− 1

=

⌊

2

n
· n(n− 1)

2

⌋

− 1 = n− 2.
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One can see that the minimum value n − 2 of rd(G) + rd(G) can be reached if
rd(G) = 1 and rd(G) = n−3, or rd(G) = 1 and rd(G) = n−3. Furthermore, since
both G and G are connected, it follows that both ∆(G) and ∆(G) are at most
n− 2. Thus, both rd(G) and rd(G) are at most n− 2 by Lemma 2.8. Therefore,
n− 2 ≤ rd(G) + rd(G) ≤ 2n− 4 and n− 3 ≤ rd(G) · rd(G) ≤ (n− 2)2. Now we
claim that for a graph G we cannot have both rd(G) = n− 2 and rd(G) = n− 2.
Assume that rd(G) = rd(G) = n − 2. Then G has at least two vertices of
degree n − 2 by Corollary 4.6, which implies that G has at least two vertices
of degree 1. It follows from Lemma 4.4 that rd(G) ≤ n − 3, which contradicts
that rd(G) = n − 2. Finally, we get that n − 2 ≤ rd(G) + rd(G) ≤ 2n − 5 and
n− 3 ≤ rd(G) · rd(G) ≤ (n− 2)(n− 3).

Next we will show that the four bounds are sharp. First, for the lower bound,
let G = P4. We then have G = P4. Since rd(P4) = 1, we get rd(G)+rd(G) = 2 =
n− 2, and rd(G) · rd(G) = 1 = n− 3. Second, for the upper bound, we construct
a graph G of order n, where n ≥ 6, satisfying rd(G)+rd(G) = 2n− 5 and rd(G)·
rd(G) = (n− 2)(n− 3) as follows. Let G be a graph of order n ≥ 6 constructed
as follows. Let u, v, w, x ∈ V (G). We then set E(G) = {uv, wx} ∪ {uy, vy : y ∈
V (G) \ {u, v, w}}. Obviously, G and G are both connected. Now we claim that
rd(G)+rd(G) = 2n− 5 and rd(G)·rd(G) = (n− 2)(n− 3). We only need to show
that rd(G) + rd(G) ≥ 2n − 5 and rd(G)·rd(G) ≥ (n − 2)(n − 3). First, we have
λ(u, v) = n − 2 by the construction of G, and so rd(G) ≥ n − 2 by Lemma 2.4.
Next, for any two vertices p, q ∈ V (G) \ {ū, v̄, w̄, x̄}, we have λ(p, q) = n− 3 since
y is a common neighbor of p and q for each vertex y ∈ V (G) \ {ū, v̄, p, q} and pq
is an edge in G. So, rd(G) ≥ n− 3 by Lemma 2.4. Hence, rd(G)+rd(G) ≥ 2n− 5
and rd(G)·rd(G) ≥ (n− 2)(n− 3).

5. Hardness Results

The following result is due to Holyer [16].

Theorem 5.1 [16]. It is NP-complete to determine whether the chromatic index

of a cubic graph is 3 or 4.

First, we show that our problem is in NP for any fixed integer k.

Lemma 5.2. For a fixed positive integer k, given a k-edge-colored graph G,

deciding whether G is rainbow disconnected under this coloring is in P .

Proof. Let n and m be the number of vertices and edges of G, respectively.
Let s and t be two vertices of G. Since G is k-edge-colored, each rainbow-cut S
contains at most k edges, and so, we have no more than

(

m
k

)

choices for S. Given
a set S of edges, it is checkable in polynomial time to decide whether s and t lie



More on the Rainbow Disconnection in Graphs 1199

in different components of G \ S. There are at most
(

n
2

)

pairs of vertices in G.
Then, we can deduce that deciding whether G is rainbow disconnected can be
checked in polynomial time.

Let G be a graph and let X be a proper subset of V . To shrink X is to delete
all the edges between the vertices of X and then identify the vertices of X into
a single vertex. We denote the resulting graph by G/X. We say that a vertex of
G is proper if the edges incident with this vertex have distinct colors in G. The
next lemma is crucial for the proof of our result.

Lemma 5.3. Let G be a 3-edge-connected cubic graph. Then χ′(G) = 3 if and

only if rd(G) = 3.

Proof. Suppose χ′(G) = 3, and let us show that rd(G) = 3. Since G is 3-
edge-connected, we have λ(G) = 3. It follows from Lemma 2.4 that λ(G) ≤
rd(G) ≤ χ′(G). Thus, we have rd(G) = 3.

Suppose rd(G) = 3. Let f be an rd-coloring of G. We say that a graph
G has Property 1 if G has a rainbow 3-edge-cut S such that G \ S has two
non-trivial components C1 and C2, i.e., no component is a singleton. Note that
none of the edges in S are adjacent. Otherwise, if the three edges of S share a
common vertex, then one of C1 and C2 is a singleton, a contradiction. If two
edges of S are adjacent, say e1, e2, let e3 be the third edge adjacent to e1, e2.
Then S∪{e3}\{e1, e2} is a 2-edge-cut of G, a contradiction. We do an operation
on G, when graph G has Property 1, described as follows. We shrink the vertices
of component C1 to a vertex x1. If there exists a 2-edge-cut of G/V (C1), then it
is also a 2-edge-cut of G, a contradiction. So, we have that G/V (C1) is a 3-edge
connected cubic graph.

Claim 1. The restriction of f to G/V (C1) is a rainbow disconnection coloring

of G/V (C1).

Proof. Observe that V (G/V (C1)) = V (C2) ∪ {x1}. Let s, t be two vertices of
V (G/V (C1)). Suppose s, t ∈ V (C2). Let S′ be a rainbow 3-edge-cut separating
s and t in G. Since C2 is 2-edge-connected, there are at least two edges of S′ in
E(C2). When two edges of S′ are in E(C2), the third edge of S′ cannot belong
to E(C1) since C1 is 2-edge-connected. Hence, we have S′ ⊆ E(C2) ∪ S. Then,
S′ is also a rainbow 3-edge-cut separating s and t in G/V (C1). Suppose that one
of the vertices, say s, is x1. As S is a rainbow 3-edge-cut, the set Ex1 of edges
incident with x1 in G/V (C1) has distinct colors. Thus, the set Ex1 is a rainbow
3-edge-cut separating s and t in G/V (C1).

Therefore, the restriction of f to G/V (C1) is a rainbow disconnection coloring
of G/V (C1). A similar argument can be made for G/V (C2).
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After this shrinking operation, we get two edge-colored cubic graphsG/V (C1)
and G/V (C2). Since the choice of the rainbow 3-edge-cut S is arbitrary, we can
use lexicographical order to fix the choice of S by giving an order to the edges of
graph G. Let p be a positive integer, and each Gi (i ∈ [p]) be a 3-edge-connected
cubic graph with an associated rainbow disconnection coloring. Then we define
the operation functions o and O as follows.

o({G}) =
{

{G/V (C1), G/V (C2)}, if a graph G has Property 1,

{G}, otherwise.

O
({

G1, G2, . . . , Gp

})

=

p
⋃

i=1

o({Gi}).

Since the graph is split into two pieces when we do the operation, the operation
cannot last endlessly. Hence, there exists an integer r such that Or({G}) =
Or+1({G}). Finally, we get a finite set of edge-colored cubic graphs Or({G}) =
{H1, H2, . . . , Hq}, where q is a positive integer. Moreover, the edge-colored graph
Hj does not have Property 1 for each j ∈ [q].

Claim 2. Every vertex of Hj is proper, for every j ∈ [q].

Proof. Assume that there exist two vertices of Hj which are not proper, for some
j ∈ [q]. Since there exists a rainbow 3-edge-cut separating these two vertices
by Claim 1, the rainbow 3-edge-cut separates a non-trivial component and a
singleton by the definition of Hj . Therefore, one of these two vertices is proper, a
contradiction. Then we deduce that every vertex of Hj is proper except for one,
say s0. Let H12 be the subgraph of Hj induced by the set of edges with color 1 or
2. Then we have that the degree of every vertex v ∈ V (H12) equals 2 except for s0.
Let ki denote the number of edges incident with s0 with color i. Since the degree
sum of H12 is an even number, we have k1 + k2 + 2(|V (H12)| − 1) ≡ 0 (mod 2),
which gives k1 ≡ k2 (mod 2). Similarly, k2 ≡ k3 (mod 2) if we consider H23, the
subgraph of Hj induced by the set of edges with color 2 or 3. As k1+k2+k3 = 3,
we have that k1 = k2 = k3 = 1. Then vertex s0 is also proper. As a result, every
vertex of Hj is proper, for each j ∈ [q].

Let u be a vertex of the graph G. Then u is also a vertex of some Hj , which
gives that u is proper in Hj , for some j ∈ [q]. Since the operation preserves the
coloring, u is also proper in G. Thus, the coloring f is a proper edge-coloring of
G. Hence, we have χ′(G) = 3.

Corollary 5.4. It is NP-complete to determine whether the rainbow disconnec-

tion number of a cubic graph is 3 or 4.
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Proof. The problem is in NP by Lemma 5.2. Let φ =
∧m

i=1 ci be a 3-SAT formula
in conjunctive normal form on variables x1, x2, . . . , xn. Then we can construct
a 3-SAT formula φ′ in polynomial time by the addition of new variables and
clauses, as follows. Let φ′ = φ ∧

(
∧n

j=1(xj ∨ y ∨ z)
)

, where y and z are two new
variables. Obviously, φ′ is satisfiable if and only if φ is satisfiable. Let the 3-SAT
formula C in Hoyler’s proof [16] be φ′ and let Gφ′ be the graph corresponding to
φ′ in the Main Result of [16]. Then χ′(Gφ′) = 3 if and only if φ′ is satisfiable.
One can verify that Gφ′ is 3-edge-connected. Then the result is a corollary of
Lemma 5.3.

Lemma 5.2 tells us that deciding whether a given k-edge-colored graph G is
rainbow disconnected for a fixed integer k is in P. However, it is NP-complete
to decide whether a given edge-colored (with an unbounded number of colors)
graph is rainbow disconnected. The proof of the following result uses a technique
similar to the one used in [5].

Theorem 5.5. Given an edge-colored graph G and two vertices s, t of G, deciding

whether there is a rainbow-cut between s and t is NP-complete.

Proof. Clearly, the problem is in NP, since checking whether a given edge set
is a rainbow edge-cut can be done in polynomial time. We now show that the
problem is NP-complete by giving a polynomial reduction from 3-SAT to our
problem. Given a 3CNF formula φ =

∧m
i=1 ci over n variables x1, x2, . . . , xn, we

construct a graph Gφ with two special vertices s, t and an edge-coloring f such
that there is a rainbow-cut between s and t in Gφ if and only if φ is satisfiable.

We define Gφ as follows.

V (Gφ) =
{

c0i , c
1
i , c

2
i , c

3
i : i ∈ [m]

}

∪
{

x0j , x
1
j : j ∈ [n]

}

∪ {s, t},

E(Gφ) =
{

x0jc
0
i , x

1
jc

k
i : If variable xj is positive in the k-th literal of clause ci,

i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}
}

∪
{

x1jc
0
i , x

0
jc

k
i : If variable xj is negative in the k-th literal of clause ci,

i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}
}

∪
{

cki c
0
i : i ∈ [m], k ∈ {1, 2, 3}

}

∪
{

sx0j , sx
1
j : j ∈ [n]

}

∪
{

tc0i : i ∈ [m]
}

∪ {st}.

The edge-coloring f is defined as follows (see Figure 1).

• The edges
{

st, tc0i : i ∈ [m]
}

are colored with a special color r00;

• The edges
{

sx0j , sx
1
j : j ∈ [n]

}

are colored with a special color r0j , j ∈ [n];

• The edge x0jc
0
i or x1jc

0
i is colored with a special color rki when xj is the k-th

literal of clause ci, i ∈ [m], j ∈ [n], k ∈ {1, 2, 3};
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• The edge cki x
0
j or cki x

1
j is colored with a special color r4i , i ∈ [m], j ∈ [n], k ∈

{1, 2, 3};
• The edge cki c

0
i is colored with a special color r5i , i ∈ [m], k ∈ {1, 2, 3}.

r
0
0

s t

x
0
j

x
1
j

c
1
i

c
0
i

r
0
j

r
1
i

r
0
j r

5
i

r
0
0

c
2
i

c
3
i

r
2
i

r
3
i

r
5
i

r
5
i

r
4
i

r
4
i

r
4
i

Figure 2. Variable xj is negative in the first literal of clause ci.

We now claim that there is a rainbow-cut separating s and t in Gφ if and
only if φ is satisfiable.

Suppose that there is a rainbow edge-cut S separating s and t in Gφ under
f , and let us show that φ is satisfiable. First, we consider the color r00. Since s
and t are adjacent in Gφ, the edge st is in S. Next, the color r0j appears twice in

Gφ. If sx0j ∈ S, then we set xj = 0. If sx1j ∈ S, then we set xj = 1. Finally, the

colors r4i and r5i each appear three times in Gφ. If the literal associated with xj
in clause ci is false, then at least one edge colored with r4i or r5i is in S. Suppose
that the three literals of ci are false. Then there are three edges colored with
r4i or r5i in S. So, S cannot be a rainbow edge-cut, a contradiction. Hence, φ is
satisfiable.

Suppose that φ is satisfiable, and let us construct a rainbow edge-cut S
separating s and t in Gφ under f . Clearly, edge st is in S. Suppose xj = 0 for
some j ∈ [n]. Then the edge sx0j is in S. If the vertex x0j is adjacent to c0i , then

one edge of cki x
1
j , c

k
i c

0
i is in S for each i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}. If the vertex x0j

is adjacent to cki , then the edge x1jc
0
i is in S for each i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}.

Suppose xj = 1 for some j ∈ [n]. Then the edge sx1j is in S. If the vertex x1j is

adjacent to c0i , then one edge of cki x
0
j , c

k
i c

0
i is in S for each i ∈ [m], j ∈ [n], k ∈
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{1, 2, 3}. If the vertex x1j is adjacent to cki , then the edge x0jc
0
i is in S for each

i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}. Now we verify that S is indeed a rainbow edge-cut.
In fact, if a literal of ci is false, then one edge colored with r4i or r5i is in S. Since
the three literals of ci cannot be false at the same time, we can find a rainbow
edge-cut S separating s and t in Gφ under f .

The proof is thus complete.
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