DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

H. Chen

Hangdi Chen

East China Normal University

email: 471798693@qq.com

C. Lu

Changhong Lu

East China Normal University

email: chlu@math.ecnu.edu.cn

Title:

Roman $\{2\}$-domination problem in graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 42(2) (2022) 641-660

Received: 2019-12-13 , Revised: 2020-05-18 , Accepted: 2020-05-20 , Available online: 2020-05-29 , https://doi.org/10.7151/dmgt.2332

Abstract:

For a graph $G=(V,E)$, a Roman $\{2\}$-dominating function (R2DF) $f:V\rightarrow \{0,1,2\}$ has the property that for every vertex $v\in V$ with $f(v)=0$, either there exists a neighbor $u\in N(v)$, with $f(u)=2$, or at least two neighbors $x,y\in N(v)$ having $f(x)=f(y)=1$. The weight of an R2DF $f$ is the sum $f(V)=\sum_{v\in V}{f(v)}$, and the minimum weight of an R2DF on $G$ is the Roman $\{2\}$-domination number $\gamma_{\{R2\}}(G)$. An R2DF is independent if the set of vertices having positive function values is an independent set. The independent Roman $\{2\}$-domination number $i_{\{R2\}}(G)$ is the minimum weight of an independent Roman $\{2\}$-dominating function on $G$. In this paper, we show that the decision problem associated with $\gamma_{\{R2\}}(G)$ is NP-complete even when restricted to split graphs. We design a linear time algorithm for computing the value of $i_{\{R2\}}(T)$ in any tree $T$, which answers an open problem raised by Rahmouni and Chellali [Independent Roman $\{2\}$-domination in graphs, Discrete Appl. Math. 236 (2018) 408–414]. Moreover, we present a linear time algorithm for computing the value of $\gamma_{\{R2\}}(G)$ in any block graph $G$, which is a generalization of trees.

Keywords:

Roman $\{2\}$-domination, domination, algorithms

References:

  1. E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, Extremal problems for Roman domination, SIAM J. Discrete Math. 23 (2009) 1575–1586.
    https://doi.org/10.1137/070699688
  2. G.J. Chang, Algorithmic Aspects of Domination in Graphs (Handbook of Combinatorial Optimization, Kluwer Academic Pub., 1998).
  3. G.J. Chang, Total domination in block graphs, Oper. Res. Lett. 8 (1989) 53–57.
    https://doi.org/10.1016/0167-6377(89)90034-5
  4. M. Chellali, T.W. Haynes, S.T. Hedetniemi and A.A. McRae, Roman $\{2\}$-domination, Discrete Appl. Math. 204 (2016) 22–28.
    https://doi.org/10.1016/j.dam.2015.11.013
  5. L. Chen, C. Lu and Z. Zeng, Labelling algorithms for paired-domination problems in block and interval graphs, J. Comb. Optim. 19 (2010) 457–470.
    https://doi.org/10.1007/s10878-008-9177-6
  6. E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22.
    https://doi.org/10.1016/j.disc.2003.06.004
  7. M. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Acad. Press, New York, 1980).
  8. M.A. Henning and W.F. Klostermeyer, Italian domination in trees, Discrete Appl. Math. 217 (2017) 557–564.
    https://doi.org/10.1016/j.dam.2016.09.035
  9. C.H. Liu and G.J. Chang, Upper bounds on Roman domination numbers of graphs, Discrete Math. 312 (2012) 1386–1391.
    https://doi.org/10.1016/j.disc.2011.12.021
  10. D. Pradhan and A. Jha, On computing a minimum secure dominating set in block graphs, J. Comb. Optim. 35 (2018) 613–631.
    https://doi.org/10.1007/s10878-017-0197-y
  11. A. Rahmouni and M. Chellali, Independent Roman $\{2\}$-domination in graphs, Discrete Appl. Math. 236 (2018) 408–414.
    https://doi.org/10.1016/j.dam.2017.10.028
  12. D.B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, 2001).
  13. T.V. Wimer, Linear Algorithms on $k$-Terminal Graphs, PhD Thesis (Clemson University, 1987).
  14. G. Xu, L. Kang, E. Shan and M. Zhao, Power domination in block graphs, Theoret. Comput. Sci. 359 (2006) 299–305.
    https://doi.org/10.1016/j.tcs.2006.04.011

Close