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Abstract

For a graph G = (V,E), a Roman {2}-dominating function (R2DF)
f:V —{0,1,2} has the property that for every vertex v € V with f(v) = 0,
either there exists a neighbor u € N(v), with f(u) = 2, or at least two
neighbors x,y € N(v) having f(z) = f(y) = 1. The weight of an R2DF f
is the sum f(V) = %" . f(v), and the minimum weight of an R2DF on G
is the Roman {2}-domination number y{z}(G). An R2DF is independent
if the set of vertices having positive function values is an independent set.
The independent Roman {2}-domination number i{go}(G) is the minimum
weight of an independent Roman {2}-dominating function on G. In this
paper, we show that the decision problem associated with vgo}(G) is NP-
complete even when restricted to split graphs. We design a linear time
algorithm for computing the value of i oy (T') in any tree T', which answers
an open problem raised by Rahmouni and Chellali [Independent Roman {2}-
domination in graphs, Discrete Appl. Math. 236 (2018) 408-414]. Moreover,
we present a linear time algorithm for computing the value of g2y (G) in
any block graph G, which is a generalization of trees.
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1. INTRODUCTION

Let G = (V, E) be a simple graph. The open neighborhood Ng(v) of a vertex
v consists of the vertices adjacent to v and its closed neighborhood is Nglv] =
Ne(v)u{v}. NE[v] = {u : dg(u,v) < 2}, where dg(u,v) is the distance between
uw and v in graph G. For an edge e = wv, it is said that u (respectively, v) is
incident to e, denoted by u € e (respectively, v € e). A Roman dominating
function (RDF) on graph G is a function f : V' — {0, 1, 2} satisfying the condition
that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for
which f(v) = 2. The weight of a Roman dominating function f is the value
f(V) = > ey f(v). The minimum weight of a Roman dominating function
on a graph G is called the Roman domination number yr(G) of G. Roman
domination and its variations have been studied in a number of recent papers
(see, for example, [1, 6, 9]).

Chellali, Haynes, Hedetniemi and McRae [4] introduced a variant of Roman
dominating functions. For a graph G = (V, E), a Roman {2}-dominating func-
tion (R2DF) f : V — {0,1,2} has the slightly different property that only for
every vertex v € V with f(v) = 0, f(N(v)) > 2, that is, either there exists
a neighbor v € N(v), with f(u) = 2, or at least two neighbors x,y € N(u)
have f(z) = f(y) = 1. The weight of a Roman {2}-dominating function is the
sum f(V) = > oy f(v), and the minimum weight of a Roman {2}-dominating
function f is the Roman {2}-domination number, denoted v(p2y(G). Roman {2}-
domination is also called Italian domination by some scholars ([8]). Suppose that
f:V —{0,1,2} is an R2DF on a graph G = (V, E). Let V; = {v : f(v) = i},
for i € {0,1,2}. If V; U V4 is an independent set, then f is called an independent
Roman {2}-dominating function (IR2DF), which was introduced by Rahmouni
and Chellali [11] in a recent paper. The minimum weight of an independent
Roman {2}-dominating function f is the independent Roman {2}-domination
number, denoted i{goy(G). The authors in [4, 11] have showed that the asso-
ciated decision problems for Roman {2}-domination and independent Roman
{2}-domination are NP-complete for bipartite graphs. The authors in [4] have
showed that 7{goy(T) can be computed by a linear time algorithm for any tree
T. In [11], the authors raised some interesting open problems, one of which is
whether there is a linear time algorithm for computing i;poy (T) for any tree 7.

A graph G = (V, E) is a split graph if V can be partitioned into C and I,
where C' is a clique and [ is an independent set of G. Split graph is an impor-
tant subclass of chordal graphs, and it turns out to be very important in the
domination theory (see [2, 7]). A maximal connected induced subgraph without
a cut-vertex is called a block of G. We use K, to denote the complete graph of
order n. A graph G is a block graph if every block in G is a complete graph. If
every block of G is a Ko, then G is a tree. Hence, block graphs contain trees
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as its subclass. There are widely research on variations of domination in block
graphs (see, for example, [3, 5, 10, 14]).

In this paper, we first show that the decision problem associated with vy o)(G)
is NP-complete for split graphs. Then, we give a linear time algorithm for com-
puting i{poy(7') in any tree 7. Moreover, we present a linear time algorithm for
computing v o} (G) in any block graph G.

2. COMPLEXITY RESULT

In this section, we consider the decision problem associated with Roman {2}-
dominating functions.

ROMAN {2}-DOMINATING FUNCTION (R2D)
INSTANCE: A graph G = (V, E) and a positive integer k < |V].

QUESTION: Does G have a Roman {2}-dominating function of weight at
most k7

A wertex cover of G is a subset V/ C V such that for each edge uv € E, at
least one of u and v belongs to V’. Vertex Cover (VC) problem is a well-known
NP-complete problem. We show R2D problem is NP-complete by reducing the
Vertex Cover (VC) to R2D.

VERTEX COVER (VC)
INSTANCE: A graph G = (V, E) and a positive integer k < |V].

QUESTION: Is there a vertex cover of size k or less for G?
Theorem 1. R2D is NP-complete for split graphs.

Proof. R2D is a member of NP, since we can check in polynomial time that a
function f:V — {0,1,2} has weight at most k and is a Roman {2}-dominating
function. The proof is given by reducing the VC problem in general graphs to
the R2D problem in split graphs.

Let G = (V, E) be agraph with V' = {v1,v2,...,v,} and E = {e1,e2,...,em}.
Let V1 = {v],v)},...,v,}. We construct the graph G’ = (V/,E') with V' =
VIUVUE, E' = {vv; : v; £ vj,v; € V,u; € VIU{vwl:i=1,...,n} U{ve:v €
e,e € E}.

Notice that G’ is a split graph whose vertex set V' is the disjoint union of the
clique V and the independent set V! U E. It is clear that G’ can be constructed
in polynomial time from G.

If G has a vertex cover C of size at most k, let f : V' — {0, 1,2} be a function
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defined as follows.

2, ifvecC,
f(v) =11, if v € V! and let v be a neighbor of v such that v' € V' \ C,

0, otherwise.

It is clear that f is a Roman {2}-dominating function of G’ with weight at most
2k + (n — k).

On the other hand, suppose that G’ has a Roman {2}-dominating function
of weight at most 2k + (n — k). Among all such functions, let g = (Vp, V1, V2) be
one chosen so that:

C1) |V1NVa| is minimized;

(C1)

(C2) subject to condition (C1): |E N Vp| is maximized,;

(C3) subject to conditions (C1) and (C2): |V N V;| is minimized;
(C4)

C4) subject to conditions (C1), (C2) and (C3): the weight of g is minimized.

We make the following remarks.

(i) No vertex in V! belongs to V5. Indeed, suppose to the contrary that
g(v}) = 2 for some i. We reassign 0 to v, instead of 2 and reassign 2 to v;. Then
it provides an R2DF on G’ of weight at most 2k + (n — k) but with less vertices

of V1 assigned 2, contradicting the condition (C1) in the choice of g.

(ii) No vertex in E belongs to V5. Indeed, suppose that g(e) = 2 for some
e € F and v;, v, € e. By reassigning 0 to e instead of 2 and reassigning 2 to v;
instead of g(v;), we obtain an R2DF on G’ of weight at most 2k + (n — k) but
with more vertices of E assigned 0, contradicting the condition (C2) in the choice
of g.

(iii) No vertex in E belongs to Vi. Suppose that g(e) = 1 for some e € E
and vj,vp € e. If g(vj) = 0, then g(v;) = 2 (by the definition of R2DF). By
reassigning 0 to e instead of 1, we obtain an R2DF on G’ of weight at most
2k + (n — k) but with more vertices of E assigned 0, contradicting the condition
(C2) in the choice of g. Hence we may assume that g(v}) = 1 (by (i)). Clearly
we can reassign 2 to v; instead of 0, 0 to U;- instead of 1 and 0 to e instead of
1. We also obtain a R2DF on G’ of weight at most 2k + (n — k) but with more
vertices of E assigned 0, contradicting the condition (C2) in the choice of g.

(iv) No vertex in V' belongs to V;. Suppose to the contrary that g(v;) = 1 for
some 4, then g(v}) = 1 (by (i) and the definition of R2DF). We reassign 0 to v}
instead of 1 and 2 to v; instead of 1. It provides a R2DF on G’ of weight at most
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2k + (n — k) but with less vertices of V assigned 1, contradicting the condition
(C3) in the choice of g.

(v) If a vertex in V is assigned 2, then its neighbor in V! is assigned 0 by
the condition (C4) in the choice of g.

(vi) If a vertex in V is assigned 0, then its neighbor in V! is assigned 1 by
the definition of R2DF and (i).

Therefore, according to the previous items, we conclude that VNV, = 0,
E CVy,and VNV, = 0. Hence Vo C V. Let C = {v: g(v) = 2}. Since each
vertex in EU(V'\C) belongs to Vp in G, it is clear that C is a vertex cover of G by
the definition of R2DF. Then g(V1)+g(V)+g(E) = 2|C|+(n—|C|) < 2k+(n—k),
implying that |C] < k. Consequently, C' is a vertex cover for G of size at most k.

Since the vertex cover problem is NP-complete, the Roman {2}-domination
problem is NP-complete for split graphs. [

3. INDEPENDENT ROMAN {2}-DOMINATION IN TREES

In this section, a linear time dynamic programming style algorithm is given to
compute the exact value of the independent Roman {2}-dominating number in
any tree. This algorithm is constructed using the methodology of Wimer [13].

A rooted tree is a pair (T,r) with T is a tree and r is a vertex of T. We
call r is the root of tree T. A rooted tree (T,r) is trivial if V(T') = r. Given
two rooted trees (T1,71) and (Ty,r2) with V(T1) NV (T2) = 0, the composition
of them is (T1,71) o (To,r2) = (T,r1) with V(T') = V(T1) UV (T3) and E(T) =
E(Th) U E(T3) U {rire}. It is clear that any rooted tree can be constructed
recursively from trivial rooted trees using the defined composition.

Let f: V(T) — {0,1,2} be a function on 7. Then f splits two functions f;
and fo according to this decomposition. We express this as follows: (T f,r) =
(Th, f1,71) o (Ty, fa,72), where r = r1, f; = f|r, is the function f restricted to
the vertices of T;, i = 1,2. On the other hand, let f; : V(T;) — {0,1,2} be a
function on 7T; (i = 1,2). We can define the composition as follows: (71, f1,71) ©
(Tz,fz,’r’g) = (T, 1, T’), where V(T) = V(Tl) U V(Tg), E(T) = E(Tl) U E(Tg) U
{rira}, r=riand f = fio fo: V(T) — {0,1,2} with f(v) = fi(v) if v € V(T3),
1 =1,2. Before presenting the algorithm, let us give the following observation.

Observation 2. Let f be an IR2DF of T =Ty 0T and f; = flr, (i = 1,2).
If fi(r;) # 0, then f; is an IR2DF of T;. If fi(r;) = 0, then f; restricted to the
vertices of T; — r; is an IR2DF of T; — ;.

In order to construct an algorithm for computing the independent Roman
{2}-domination number, we must characterize the possible tree-subset tuples
(T, f,r). For this purpose, we introduce some additional notations as follows:
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IR2DF(T) = {f : f is an IR2DF of T},
IR2DF,(T) ={f : f ¢ IR2DF(T), but f|r_, is an IR2DF of T' — r}.

Then we consider the following five classes:

A={(T, f,r) : f€IR2DF(T) and f(r) = 2},
B={(T,f,r) : fe€IR2DF(T) and f(r) =1},
={(T, f,r) : fe€IR2DF(T) and f(r) =0},
D ={(T, f,r) : f€IR2DF,(T) and f(N]r]) = 1},
F={(T,f,r) : fe€IR2DF,(T) and f(N][r]) = 0}.

Let M,N € {A,B,C,D,F}. If (T1, fi,r1) € M and (T3, fo,7m2) € N, we
use M o N to denote the set of (T, f,r) = (T, f1,71) o (To, fo,72). Let (T,r) =
(Th,r1)0(Ts,r2) and r = r1. Suppose that fi (respectively, f2) is a function on T}
(respectively, To). Define f as the function on T' with f|p, = f1 and f|p, = fo.
Next, we provide some lemmas.

Lemma 3. A= (Ao C)U(AoD)U (Ao F).

Proof. 1t is clear that the following items are true.
(i) If (T, f1,7m1) € A and (T, fa,r2) € C, then (11, f1,7r1) o (T, f2,72) € A.
(i) If (11, f1,7m1) € A and (Tv, fa,72) € D, then (T4, f1,71) o (T3, fa,72) € A.

(111) If (Tl,fl,’l“l) € A and (TQ, f2,7"2) € F, then (Tl,fl,’l“l) o (Tg,fz,’r‘Q) c A.
Thus, (Ao C)U(AoD)U (Ao F) C A.

Now we prove that A C (Ao C)U (Ao D)U (Ao F). Let (T,f,r) € A
and (Tafvr) = (Tlaflvrl) o (TQ?f%TQ): then fl(rl) - f(?“) = 2. Since [ €
IR2DF(T"), then f; € IR2DF(711). So (11, fi,71) € A. From the independence
of V1 UVa, we have fao(ry) = f(re) = 0. If fo € IR2DF(T%), then we obtain
(Tg,fg,’l”g) e C. If fo ¢ IR2DF(T2), then (TQ,fQ,TQ) € D or F. Hence, we
conclude that A C (Ao C)U(AoD)U (Ao F). |

Lemma 4. B=(Bo(C)U(BoD).
Proof. It is easy to check the following items.
(i) If (Tl,fl,rl) € B and (Tg,fQ,TQ) € C, then (Tl, fl,Tl) o (Tg,fQ,Tz) € B.

(11) If (Tl, fl,T‘l) € B and (Tg, fg,?"z) € D, then (Tl, fl;rl) o (TQ, fQ,T‘Q) € B.
So, (BoC)U(BoD)C B.

Next we need to show B C (BoC') (BoD) Let (T, f,r) € Band (T, f,r) =
(Tl, fl,rl) o (TQ, fo, 7’2), then f1 (?”1) ) = 1. It is clear that f; € IRQDF(Tl)
So we conclude that (71, fi,71) € B. From the definition of IR2DF, we must
have fao(re) = f(re) = 0. If fo € IR2DF(T3), then we obtain (T3, f2,72) € C.
If f2 ¢ IR2DF(T2), then f2(NT2 [TQ]) =1 and f2‘T2 ro S IRQDF( 2 — 7‘2) using
the fact that (7, f,r) € B. Therefore, we have fo € IR2DF,,(7%), implying that
(T, fa,72) € D. Hence, we deduce that B C (BoC)U (Bo D). |
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Lemma 5. C = (CoA)U(CoB)U(CoC)U(DoA)U(DoB)U(FoA).
Proof. 1t is easy to check the following remarks by definitions.

(i) If (T, f1,7m1) € C and (Ty, fo,72) € A, then (11, f1,71) o (T4, fa,72) € C.
ii) If (Th, f1,71) € C and (T4, f2,72) € B, then (11, f1,71) o (T, fa,72) €

iii) If (T4, f1,m1) € C and (Tb, f2,r2) € C, then (T, fi1,71) o (T, f2,72)
iV) If (Tl,fl,’l“l) € D and (Tg,fQ,Tz) € A, then (Tl,fl,’l“l) o (TQ,fQ,TQ)
v) If (11, f1,71) € D and (T3, fa,72) € B, then (11, f1,71) o (T3, f2,72)

(vi) If (Th, f1,71) € F and (T, fo,72) € A, then (11, f1,71) o (1o, f2,12) € C.
Hence, we deduce that (CoA)U(CoB)U(CoC)U(DoA)U(DoB)U(FoA) C C.

Therefore, we need to prove C C (CoA)U(CoB)U(CoC)U(DoA)U(Do
B)U (F o A). Let (T, f,r) € C and (T, f,r) = (11, f1,71) o (T2, f2,r2), then f €
IR2DF(T") and fi(r1) = f(r) = 0. Consider the following cases.

Casel. f(re) = 2. Since f € IR2DF(T'), fo € IR2DF(T%). Hence, (T», f2,1r2) €
A. If f1 € IR2DF(T1), then we obtain that (71, f1,71) € C. If f; ¢ IR2DF(T}),
we have (11, f1,71) € D or F.

Case2. f(rs) = 1. Since f € IR2DF(T), f, € IR2DF(T3). So (Ts, f2,72) € B.
If f1 € IR2DF(T1), then we deduce (11, f1,71) € C. If f1 ¢ IR2DF(T}), therefore,
it implies that (771, fi1,7m1) € D.

Case 3. f(r2) = 0. It is clear that f; and fo are both IR2DF. Then we obtain
that (Tl, fl,Tl) € C and (TQ, fQ,T’Q) eC.
Hence, C C (CoA)U(CoB)U(CoC)U(DoA)U(DoB)U(FoA). =

( C
( eC
( eC.
( eC

Lemma 6. D= (Do C)U(F o B).
Proof. 1t is easy to check the following remarks by definitions.
(i) If (Tl,fl,rl) € D and (Tg,fgﬂ‘z) € C, then (Tl,fl,rl) o (Tg,fg,rz) eD.

(ii) If (Tl, f1,7“1) € F and (Tg,fg,rg) € B, then (Tl,fl,?”l) o (Tg,fg,?”g) eD.
Thus, (Do C)U (F o B) C D.

On the other hand, we show D C (Do C)U (F o B). Let (T, f,r) € D and
(T, f,r) = (T1, f1,71) o (T2, fa,72). Then fi(r1) = f(r) = 0. By the definition of
D, fo € IR2DF(T»). Using the fact that f(Nr[ri]) = 1, we deduce that f(r2) < 2.

Consider the following cases.

Case 1. f(rqg) = 1. It is clear that (7%, fa,72) € B because f5 is an IR2DF of
Ts. Since fi(Nrp,[r1]) = 0, we obtain fi|p,—, € IR2DF (77 —r1). Hence, we have
f1 € IR2DF,, (T1), implying that (71, f1,71) € F.

Case 2. f(r2) = 0. Then fo is an IR2DF of Ty, implying that (T3, fa,72) € C.
Using the fact that f(Nr[ri]) = 1 and f(r2) = 0, we know fi(Np,[r1]) = 1. So
fi1 € IR2DF, (T1). It implies that (11, f1,71) € D. |
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Lemma 7. ' =FoC.

Proof. 1f (Ty, f1,7m1) € F and (Ty, fo,72) € C, then it is clear that (T, f,r) € F.
Hence, (FoC) C F.

On the other hand, let (T, f,r) € F and (T, f,r) = (T4, f1,71) o (T2, fa,72).
Then fi(r;) = f(r) = 0. By the definition of F', we deduce that f(r2) = 0. Using
the fact that (7, f,r) € F, we have that fo € IR2DF(T3). So (T3, f2,72) € C.
Notice that (7 f,r) € F, we have fi(Ng,[r1]) = 0, implying that (T4, fi1,7m1) ¢ D.
We can easily check that f; € IR2DF,,(7T1). Hence, we have (711, f1,71) € F,
implying that F' C (F o C). ]

Let T'= (V, E) be a tree with n vertices. It is well known that the vertices of
T have an ordering vy, v9, ..., v, such that for each 1 <7 < n—1, v; is adjacent to
exactly one vertex v; with j > ¢ (see [12]). The ordering is called a tree ordering
where the only neighbor v; with j > i is called the father of v; and v; is a child
of vj. For each 1 <i < n — 1, the father of v; is denoted by F(v;) = v;.

For each vertex v; (1 < i < n), define a vector {[i,1..5]. Let T}, be a tree such
that v; is the root of T;,,. For each rooted tree (T),,v;), let fy, : V(Ty,) — {0, 1,2}
be a function on T, and define w(fy;) = fu,(V(Ty,)). In this case, for a tree, the
only basis graph is a single vertex. Then, the vector [[i, 1..5] is initialized by

min w( fo, min w( fo, min w( fo, min w( fo,
[(Tvi}f1)i7vi)€A (fU'L)’ (Tvi7f1)i7vi)€B (fvl)’ (E)i)fviﬂ}i)ec (fU'L)’ (Tviyfv,iy”i)ED (f’UZ)j

(Tvi 72;1;21-)6F w(fvl)] .

It means [[i, 1..5] = [2, 1, 00, 00, 0], where ‘o0’ means undefined. Now, we are
ready to present the algorithm.

Algorithm 1: INDEPENDENT-ROMAN {2}-DOM-IN-TREE

Input: A tree T = (V, E) with a tree ordering v, ve, -+ , Up.
Output: The independent Roman {2}-domination number i goy (7).

1 if T = K; then

2 | return ijpy(T) =1;

3 fori:=1tondo

4 | initialize [[7,1..5] to [2, 1, 00, 00,0] ;

5 for j:=1ton—1do

6 | vp=F(vj);

v |1k, 1] = min{ifk, 1) + 10, 3], 1k, 1 + 1, 4], 1[5, 1] + 15,5}
s | [k, 2] = min{l[k, 2] + 1[j, 3], [k, 2] + 1[5, 4]}

9 [k, 3] = min{l[k, 3] +[4, 1], L[k, 3] + 1[J, 2], l[k, 3] + [4, 3], L[k, 4] + 1[4, 1],
10 [k, 4] + 1[4, 2], 1[k, 5] + 1[5, 1]}:

11 l[k,4] = min{l[k, 4] + 1[5, 3], [k, 5] + [4,2]};

12 | ik 5) = min{i{k,5] + 1[7.3]};

13 return igpoy (T') = min{l[n, 1],1[n, 2], {[n, 3]};
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From the above argument, we can obtain the following theorem.

Theorem 8. Algorithm INDEPENDENT-ROMAN {2}-DOM-IN-TREEFE can out-
put the independent Roman {2}-domination number of any tree T' = (V,E) in
linear time O(n), where n = |V|.

Proof. 1t is clear that the running time of Algorithm 1 is linear. We only need
to show i{poy(T) = min{l[n,1],{[n,2],l[n,3]}. Suppose that f € IR2DF(T).
Then, (T, f,r) € AUBUC. By the Algorithm 1 and Lemmas 3-7, we have

In,1] = min f(V), I[n,2] = min f(V), and I[n,3] = min F£(V). B
[n,1] (T?;?eAf( ), U[n,2] (Tf}fi?er( ), and I[n, 3] (Tfﬁi?ecf( ). By

the definition of iy oy (7T'), we deduce that

Y{R2} (T) = (T,f,r?elglUBuC f(V) = mln{l[na 1]7 l[”? 2}3 l[n7 3]}

4. ROMAN {2}-DOMINATION IN BLOCK GRAPH

Let G(% K,) be a connected block graph. The block-cutpoint graph of G is a
bipartite graph T = (C U B, E) in which one partite set C consists of the cut-
vertices of G, and the other B has a vertex h for each block H of G. Let v € C
and h € B. We include vh as an edge of Ty if and only if v is in H, where H is the
block of G represented by h. Obviously, T is a tree and can be constructed from
G in linear time (see [12]). In this section, we call each vertex in C a C-vertex
and each vertex in B a B-vertex.

Let H be a block of G. Suppose that S = {v : v € H and v is a cut-
vertex of G}. We say H is a block of type 0 if |H| = |S| and H is a block of
type 1if |H| = |S|+ 1. If |[H| > |S| + 2, we say H is a block of type 2. Let
f:V(G) = {0,1,2} be a function of a block graph G(% K,,). f«: V(Tg) — Z is
defined as follows:

o) f(v), if v is a C-vertex,
*\V) =
f(H) — f(9), if v is a B-vertex representing the block H.

We say that f, is the function induced by f. Now we present a key result on
the relationship between f and f,.

Theorem 9. Let f : V(G) — {0,1,2} be a function of a connected block graph G

(G 2 K,,) and f, be the function induced by f. Then, f satisfies the following

properties:

(1) f(v) =0 or1ifv e H is not a cut-vertex of G, where H is a block of type 1
of G.
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(2) flv) =0 ifv € H is not a cut-vertex of G, where H is a block of type 2
of G.

(3) f is an R2DF of G.
if and only if f. satisfies the following properties:

(a) fe(v) =0 orl ifv is a B-vertex and the block H represented by v is type 1.

(b) fi(v) =0 if v is a B-vertex and the block H represented by v is not type 1.

(¢) If v is a C-vertex with f.(v) = 0, then there exists either u € N%G (v) with
fe(u) =2 orug,ug € N%G(U) with fi(ur) = fe(uz) = 1.

(d) Ifv is a B-vertex with f.(v) = 0 and the block H represented by v is not type

0, then there exists either u € Nr,(v) with fi(u) = 2 or u1,ug € Np,(v)
with fi(u1) = fe(uz) = 1.

Proof. If f satisfies the above properties, it is clear that f, satisfies the above
items (a), (b). Suppose that v is a C-vertex with f.(v) = 0. By the definition
of fi, f(v) = 0. If there exists a vertex u € Ng(v) with f(u) = 2, then u is a
cut-vertex of G, and hence u € N%G [v] with f.(u) = 2. Otherwise, there exists
at least two vertices z,y € Ng(v) having f(x) = f(y) = 1. If x and y are both
cut-vertices of G, then we obtain x,y € N%G [v] having f.(x) = fu(y) =1. If x is
not a cut-vertex of G and H is the block containing z, we deduce that H is type
1 by the second property of f. It implies that f.(h) =1 and vh € E(T¢), where
h is the B-vertex representing the block H. In this case, fi also satisfies item
(c). Suppose that v is a B-vertex with f.(v) = 0 and the block H represented
by v is not type 0. Let S = {u : u € H and u is a cut-vertex of G}. By the
definition of fi, we know that f(z) =0 for each z € H \ S. Since f is an R2DF
of G, then there exists either u € N¢(v) with f(u) = 2 or u,us € Ng(v) such
that f(u1) = f(u2) = 1. It is clear that w,uj,uy are cut-vertices. It means that
fe(u) =2 and fi(u1) = fi(uz) = 1. So f, satisfies item (d).

On the other hand, if f, satisfies the above properties, by the definition of
fx, it is easy to know that f satisfies items (1) and (2).

We now need to show that f is an R2DF of G. Suppose that v is a cut-vertex
with f(v) = 0. Hence, fi(v) = f(v) = 0. If there exists u € N%G [v] such that
f«(u) = 2, we deduce that u is a cut-vertex of G, f(u) = 2 and u € Ng(v).
Otherwise, there exists hi,ha € N7, [v] such that fu(h1) = fu(he) = 1. If hy
and hg are both C-vertex, then we have hi, ho € Ng(v) and f(hy) = f(h2) = 1.
If hy is a B-vertex and hq represent block Hy in T. We deduce that Hy is a
block of type 1. Hence, there exists v; € H; and v; is not a cut-vertex of G such
that f(v1) = f«(h1) = 1. Therefore, we obtain f(N(v)) > 2. Suppose that H
is a block containing v and v is not a cut-vertex with f(v) = 0. Then f.(h) =
f(v) = 0, where h is the B-vertex representing the block H. As H is not type
0, there either exists u € N, (h) such that f.(u) = 2 or exists uj,us € Np,(h)
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such that f.(u1) = fi(uz) = 1. It is clear that u,u;,us are cut-vertices and
u,u1,uy € Ng(v). We also obtain f(u) = fi(u) = 2 and f(u1) = f(uz) = 1.
Therefore, we deduce f(N(v)) > 2. |

Lemma 10. There exists an R2DF f of G with weight {rey(G), which satisfies

the following properties:

(1) f(v)=0orl ifve H is not a cut-vertex of G, where H is a block of type 1
of G.

(2) flv) =0 ifv € H is not a cut-vertex of G, where H is a block of type 2
of G.

Proof. Let f be an R2DF of weight v(p2)(G) and u € H be a cut-vertex of G,
where H is not a block of type 0, S = {v : v € H and v is a cut-vertex of G}
and f(u) = max,,es f(vo). Suppose v € H is not a cut-vertex of G. If f(v) =2,
we can reassign 0 to v and 2 to u. Hence, f(v) = 0 or 1. Furthermore, if H is a
block of type 2, we suppose that there exists a vertex v € H such that f(v) = 1.
If f(u) > 1, then we can reassign 2 to v and 0 to v, a contradiction. Suppose
that f(u) =0, then there exists a vertex w € H, such that w is not a cut-vertex
and f(w) > 1. We reassign 2 to v and 0 to v, w, a contradiction. [ ]

Let f be an R2DF of block graph G(% K,) and f,. be the function induced
by f. We say f, is an induced Roman {2}-domination function (R2DF,) of T
if it satisfies the four properties in Theorem 9. By Theorem 9 and Lemma 10,
we can transform the Roman {2}-domination problem on block graph G into the
induced Roman {2}-domination problem on tree 7. Then, we can also use the
method of tree composition and decomposition in Section 3. For convenience,
Te = (CUB,E) is denoted by T and v € C (respectively, v € B) is used
to represent that v is a C-vertex (respectively, B-vertex) of T if there is no
ambiguity.

Suppose that T is a tree rooted at r and f : V(T') — {0, 1,2} is a function on
T. T' is defined as a new tree rooted at " and f': V(T") — {0, 1, 2} is a function
on T, where V(T') = V(T)U {r'} and E(T") = E(T) U {rr'}, f' :r=f.

In order to construct an algorithm for computing the Roman {2}-domination
number, we must characterize the possible tree-subset tuples (7', f,r). For this
purpose, we introduce some additional notations as follows:

R2DF.(T) = {f : f is an R2DF, of T'},

F(T) = {f : f € R2DF,(T) with f(r) = 1},

Fo(T) = {f : f € R2DF,(T) with f(r) = 2},

R2DF.(TH) = {f : f ¢ R2DF.(T), f' € Fy(T') and f'|7 = f},

R2DF.(T+?) = {f : f ¢ R2DF.(T), f' € F»(T') and f'|;r = f}—R2DF,(T+1).
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Then we consider the following eleven classes:
Ay ={(T, f,r): f € R2DF(T), r € C and f(r) = 2},

Ao ={(T, f,r): f € R2DF.(T), r € C and f(r) = 1},

As ={(T, f,r) : f € R2DF.(T), r € C and f(r) = 0},

Ay ={(T, f,7): f € R2DF.(T*), r € C},

As = {(T, f,r) : f € R2DF.(T*?), r € C},

By ={(T, f,r): f € R2DF.(T), r € B and f(N]r]) > 2},
By ={(T, f,r) : f € R2DF.(T'), r € B and f(N][r]) =1},
Bs ={(T, f,r) : f € R2DF.(T), r € B and f(N|[r]) = 0},
By={(T, f,r): f € R2DF,(T*'), r € B and f(N]r]) = 1},
Bs = {(T, f,r) : f € R2DF.(T*!), r € B and f(N][r]) = 0},
Bs = {(T, f,r): f € R2DF.(T*?), r € B}.

Let (T,r) = (T1,71) 0 (T2, 72) and r = 1. Suppose that f; (respectively, f2) is
a function on T} (respectively, T5). Define f as the function on T with f|p, = fi
and f|r, = f2. In order to give the algorithm, we present the following lemmas.

Lemma 11. Al = (AlOBl)U(AlOBQ)U(AlOBg)U(AlOB4)U(AloB5)U(AloB6).

Proof. For each 1 < ¢ < 6, if (11, f1,71) € A1 and (Tn, fo,72) € B, it is clear
that f is an R2DF, of T, r € C and f(r) = f(r1) = 2. We deduce that
(T1,f1,’l”1) o (TQ, f2,7’2) € A;. So (Al o Bl) U (Al o Bg) U (Al o Bg) U (A1 o B4) U
(Al (e] B5) U (Al 9] B@) Q Al‘

Now we prove that A1 C (A; 0 By) U (Aj0By)U(Aj0B3)U(A]0By)U
(A1 0Bs)U(Aj0Bg). Let (T, f,r) € Ay and (T, f,r) = (T4, f1,71) o (T3, fa,72),
then f1(r1) = f(r) = 2. Since f € R2DF.(T), fi € R2DF,(11) and r; € C. So
(Th, f1,7m1) € A1 and o € B. If fo € R2DF,(T%), then we obtain (7%, f2,r2) € By,
Bs or Bs. If fo ¢ R2DF, (1), then (Tv, fa,72) € By, Bs or Bg. Hence, we conclude
that A, C (AloBl) (AlOBQ)U(AIOBg)U(A10B4)U(A1 OB5)U(A1036). |

Lemma 12. AQ = (AQ e} Bl) U (AQ e} BQ) U (AQ @) Bg) U (AQ e} B4) U (A2 e} B5)

Proof. For each 1 < ¢ < 5, if (11, f1,71) € A2 and (T3, fa,72) € B;, it is clear
that f is an R2DF, of T, » € C and f(r) = f(r1) = 1. We conclude that
(Tl, f1, Tl) o (TQ, f2,7"2) € Ao, implying that (A2 o Bl) U (AQ o Bg) U (AQ o Bg) U
(AQ (0] B4) U (AQ e} B5) Q AQ.

Then we need to show As C (As o By) U (Ag o Bg) U (Ag o B3) U (Ay o
B4) U (AQ o B5) Let (T, 1 7") € As and (T, 7 7‘) = (Tl, fl,T1> o (TQ, fg,?“g), then
fi(r1) = f(r) = 1. It is clear that (71, fi,71) € Ay and ry € B. If fy is
an R2DF, of Ty, then we obtain (T3, fa,72) € By, By or Bs. If fy is not an
R2DF, of Ty, then fo(Npy[ra]) < 1 and fo € R2DF.(T5) by using the fact
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that (T, f,r) € Ay. Therefore, we have (15, fa,72) € By or Bs. Hence, Ay C
(AQOBI)U(A2OBQ)U(A2OB:J,)U(A2OB4)U(AQOB5). |

Lemma 13. Ag = (AgOBl)U(AgOBQ)U(AgOBg)U(A4OBl)U(A4OBQ)U(A5OBl).

Proof. We make some remarks.

(i) For each 1 < ¢ < 3, if (11, fi,m1) € As and (T3, fa,72) € B;, then
(T4, f1,71) o (T, f2,72) € As. Indeed, if (T1, f1,71) € Az and (T3, f2,72) € Bi,
then fi is an R2DF, of T1 and f3 is an R2DF, of T5. Hence, f is an R2DF, of
T, r € C' and f(’l") =0. So (Tl,fl,’l“l) o (Tg,fg,’l"g) S A3.

(ii) For each 1 < ¢ < 2, if (11, fi,m1) € A4 and (1n, fo,72) € B;, then
(Th, f1,7m1) o (T3, f2,72) € As. Indeed, if (T1, f1,71) € A4, then we have that f; €
R2DF,(T{HY), r € C, f(r) = 0 and f(N? [r]) = 1. By the definition of B;, we
obtain f(NZ[r]) > 2 and f € R2DF.(T). Hence, (T1, f1,71) © (T, f2,72) € As.

(iii) If (Tl, f1,7“1) € As and (TQ,fQ,Tg) € By, then (Tl, fl,T'l) o (Tg,fg,?’g) €
Asz. Indeed, if (Ty, f1,71) € As, then we have that f; € R2DF.(T}?), r € C,
f(r) = 0 and f(N7 [r]) = 0. By the definition of Bj, we obtain f(Nz[r]) >
2 and f € R2DF,.(T). It means that (71, f1,71) o (1o, f2,72) € As. Hence,
(A3 o Bl) U (Ag @) Bg) U (Ag (¢] Bg) U (A4 (¢] Bl) U (A4 (e] BQ) U (A5 9] Bl) g A3.

Therefore, we need to prove As C (AsoBy)U(AsoBy)U(As0B3)U(As0By)U
(A4OB2)U(A5OBl). Let (T, 1 7“) € Az and (T, f ’I") = (Tl, fi, Tl)O(TQ, f2, 7"2), then
we have that fi(r1) = f(r) =0, r1 € C and fo € R2DF.(T2). Sory € B. If f1 €
R2DF*(T1), then we obtain (Tl, f1,7“1) € As, implying that (TQ, f2, 7‘2) € By, By
or Bs. Suppose that f; ¢ R2DF,(T1). Consider the following cases.

Case 1. fl(N%l [r1]) = 1. Then we obtain f; € R2DF,(T;™"), implying that
(Th, f1,7m1) € Ay. Since (T, f,r) € As, we have fo(Np,[ra]) > 1. So (T4, fa,72) €
Bl or BQ.

Case 2. fi1(N7,[r1]) = 0. So we have f € R2DF,(T;"?). Then (11, f1,71) €
As. Since (T, f,r) € As, we obtain fo(Ngp,[r2]) > 2. Hence, (15, fa,72) € B;. =
Lemma 14. Ay = (A4 0 B3) U (A5 0 Bo).

Proof. 1t is easy to check the following remarks by definitions.
(1) If (T1, f1,m1) € Ag and (T3, fo,72) € Bs, then (11, f1,71)0(1%, f2,72) € A4

(ii) If (Tl, f1, 7”1) € As and (TQ, fo, 7’2) € Bs, then (Tl, f1, Tl)O(TQ, f, 7"2) € Ay.
Therefore, (A4 @) Bg) U (A5 @) BQ) - A4.

On the other hand, we show Ay C (A4 0 B3) U (A5 0 Bs). Let (T, f,r) € Ay
and (T, f,r) = (T1, f1,71) o (T%, f2,72). Then we have that f € R2DF,(T!) and
r1 € O, implying that f(N2[r1]) = 1. It means that 7o € B. By the definition
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of Ay, fo € R2DF,(T2). Using the fact that f(NZ[r1]) = 1, we deduce that
f2(Nra]) < 2. Consider the following cases.

Case 1. fa(N[ra]) = 1. It is clear that (75, fa2,72) € Ba. Since fl(N%l [r1]) =
F(NZ[r1]) — fo(Nlra]) = 0, we obtain (T3, fi,71) € 4s.

Case 2. f2(N[ro])=0. Then (T3, fo,r2) € Bs. Since f1(NF, [r1]) = f(N7F[r1])—
f2(N[re]) =1, we have (T4, f1,71) € As.
Consequently, we deduce that A4 C (A4 0 B3) U (As o Bs). |

Lemma 15. A5 = A0 Bs.

Proof. Tt is easy to check that (As o Bs) C As by the definitions. On the
other hand, let (7, f,r) € As and (T, f,r) = (11, f1,71) o (T3, f2,72). Then we
obtain f € R2DF.(T*?), 11 € C and fi(N?[r1]) = f(N?[r]) = 0. It implies
that (11, fi,71) € As and ro € B. Using the fact that (T, f,r) € As, we deduce
f2(N[re]) =0 and fo € R2DF,(T%). Therefore, (T3, f2,72) € Bs. Then we obtain
As C (A5 o Bg). |

Lemma 16. B1 = (Bl @) Al) U (Bl @) AQ) U (Bl o A3) U (Bl o A4) U (Bl @) A5) U
(BQ o Al) U (BQ o Ag) U (B3 o Al) U (B4 o Al) U (B4 o Ag) U (B5 o Al) U (BG o Al)

Proof. We make some remarks.

(i) For each 1 < ¢ < 5, if (11, fi,71) € Bi and (1%, fa,72) € A;, then
(Th, f1,7m1) © (Ta, fa,m2) € By. It is easy to check it by the definitions of By
and Al

(ii) For each 2 < i < 6, if (11, f1,m1) € B; and (T3, fa,72) € Aj, then
(Th, f1,71) o (T, f2,72) € B1. We can easily check it by definitions too.

(iii) For each i € {2,4}, if (T1, f1,71) € B; and (T3, fa,72) € Ag, then
(Th, f1,7m1) o (To, fa,r2) € By. Indeed, it is clear that f € R2DF.(T), r € B
and f(N[T]) = fl(N[rl]) + f?(TQ) = 2. Hence, (Tlv flarl) o (TZ, f2ar2) € Bi.

Therefore, we need to prove By C (B1oA;)U(ByoA2)U(BioAs)U(BioAy)U
(BlOA5)U(BQOA1)U(BQOA2)U(BgOAl)U(B4OA1)U(B4OA2)U(B5OA1)U(BGOA1).
Let (T, f,r) € By and (T, f,r) = (11, f1,71) o (T2, f2,72), then we have f €
R2DF.(T), r1 € B and f(N[r]) > 2. It means that ro € C. Consider the
following cases.

Case 1. f(re) = 2. Then we have fo € R2DF,(T3), impling that (T3, fa,72) €
Ay If fi € R2DF,(T}), we obtain (T4, f1,71) € B1, B or Bs. Suppose that f1 ¢
R2DF,(T1), then f; € R2DF,(T;™) or f; € R2DF.(T;'?). Hence, (T1, f1,71) €
B4, B5 or BG-

Case2. f(re) = 1. It is clear that (1%, f2,r2) € Aa. We also have fi(N]ri]) =
f(N[r])—fa(re) > 2—1 > 1. If f; € R2DF,(T}), we obtain (11, f1,71) € Bj or Bs.
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Suppose that f; ¢ R2DF.(Ty), then f; € R2DF.(T;™"). Therefore, (Ty, f1,71) €
By.

Case 3. f(r2) = 0. Then we obtain fi(N[r1]) = f(N]r]) — fa(r2) > 2 and
f1 € R2DF,(T1), implying that (71, f1,71) € By. If fo € R2DF,(1%), we deduce
(Th, f1,71) € As. Suppose that fo ¢ R2DF,(T%), then f; € R2DF*(T2+1) or fo €
R2DF, (T, ?). Therefore, (Ty, fa,m2) € Ay or As.

Hence, B1 g (Bl 9} Al) U (Bl e} Az) U (Bl 9} Ag) U (Bl O A4) U (B1 o) A5) U (BQ o
Al) U (BQ o Ag) U (Bg o Al) U (B4 o Al) U (B4 o Ag) U (B5 o Al) U (B6 o Al) |

Lemma 17. B2 = (B2 o Ag) U (BQ o A4) U (Bg @) Ag) U (B5 @) AQ)

Proof. We make some remarks.

(i) For each 3 < ¢ < 4, if (Th, fi,m1) € Bz and (Tb, fo,72) € A;, then
(T, f1,71) © (T4, fa,72) € Bo. It is easy to check it by the definitions.

(ii) For each i € {3,5}, if (T4, f1,m1) € B; and (Tv, fa,r2) € Ag, then
(Tl,fl,m) o (TQ, f2,7"2) € Bs. Indeed, if (Tl, fl,rl) € B; and (Tg,fz,’l“g) € AQ, we
obtain that f € R2DF.(T'), r € B and f(N[r]) = fi(N[r1]) + f2(r2) = 1. Hence,
we deduce (Tl, fl, 7"1) o (TQ, f2, T‘Q) S B2. Thus, (BQ o Ag) U (B2 o) A4) U (Bg o) Ag) @]
(B5 (¢] AQ) g Bg.

Now we need to prove By C (B o Az) U (B o Ay) U (Bso Ay) U (Bs o Asg).
Let (T, f,r) € By and (T, f,r) = (T4, f1,71) o (T3, f2,72), then we have that f €
R2DF.(T), r1 € B and f(N[r]) = 1. It implies 7o € C. Consider the following
cases.

Case 1. f(r2) = 1. Then we have fi(N[ri]) = f(N][r]) — f(r2) = 0 and
fQ(TQ) = 1, implying that fo € RQDF*(TQ). So (TQ,fQ,TQ) € Ay, If f1 €
R2DF.(T1), we obtain (T4, fi1,71) € Bs. Suppose that f; ¢ R2DF,(T}), then
fi(r1) = 0 because f € R2DF,(T). Since fi(N[r1]) = 0, we have that (11, f1,71) €
Bs.

Case2. f(rq) = 0.Itis clear that f1(N[r1]) = f(N[r])—f(r2) = 1. Since fi =
flmy, and f € R2DF,(T), we have f1 € R2DF,(T1). Hence, (11, f1,71) € Bo. If
f2 € R2DF(T3), we deduce that (1%, fa,72) € As. Suppose that fo ¢ R2DF, (1),
then fo(N?[rg]) = 1. Tt implies fo € R2DF.(T5™'). Therefore, (T, fa,72) € Aj.

Hence, By C (Bz o A3) U (B2 o A4) U (Bg o AQ) U (B5 o Ag) [ ]

Lemma 18. By = B3 o As.

Proof. 1t is easy to check that (B3 o A3) C Bs by the definitions. On the other
hand, let (T, f,r) € Bs and (T, f,r) = (11, f1,71) o (T2, f2,72). Then we obtain
fi(N[r1]) = f(N[r]) =0, r1 € B and f(r2) = 0. It means that ro € C. Since
f € R2DF.(T) and f(r2) = 0, we obtain that f; € R2DF.(711), implying that
(T1, f1,7m1) € Bs. Using the fact that fi(N[ri]) = 0 and f(r2) = 0, we deduce
that fo € R2DF,(T3). Therefore, (T3, f2,72) € As. Then Bs C (B o A3). |



656 H. CHEN AND C. LU

Lemma 19. By = (Bg o A5) U (B4 o Ag) U (B4 o A4) U (B4 o A5) U (BG o Ag)

Proof. 1t is easy to check the following remarks by definitions.
(1) If (T1, f1,m1) € B2 and (T3, f2,72) € As, then (T3, f1,71)0(13, f2,72) € Ba.

(ii) For each 3 < i < 5, if (11, f1,71) € By and (Ty, fa,72) € A;, then
(11, f1,7m1) o (Ts, f2,72) € By.

(111) If (Tl, fl,rl) S BG and (Tg,fg,’r'g) € AQ, then (Tl, fl,T‘l) o (Tz,fg,’l"g) €
By.

Therefore, we need to prove By C (By o As) U (Bgo A3) U (Bgo Ay) U (Byo
A5) U (BG o AQ). Let (T, 1 7’) € B, and (T, 1 7’) = (Tl, fl,rl) o (T, f2,72), then
we have f € R2DF,(T*!), r; € B and f(N[r]) = 1. It implies 7, € C. Consider
the following cases.

Case 1. f(r2) = 1. Then we have fi(N[r1]) = f(N[r]) — f(r2) = 0 and
fa(re) = 1, implying that fo € R2DF.(T%). So (T3, fa,72) € Az and f1 ¢
R2DF,(T1). Since f1(N]r1]) =0 and (T, f,r) € By, we obtain (T3, f1,71) € Bs.

Case 2. f(ra) = 0. It is clear that f1(N[ri]) = f(N][r]) — f(r2) = 1. If fo €
R2DF.(T3), we deduce that (T5, fo,72) € As, implying (T4, f1,71) € Bys. Suppose
that fo ¢ R2DF.(Ty), then fo(N?%[rs]) = 0 or 1. If fo(N?[rg]) = 0, we obtain
(Ty, fa,72) € As. Then, we have (Ty, f1,71) € Bo or By. If fo(N?[rs]) = 1, we
obtain (T3, fa,72) € A4. Then, we have (T4, f1,71) € By.

Hence, B4 C (B2 o A5) U (B4 o Ag) U (B4 o A4) U (B4 o A5) U (B6 o AQ) |

Lemma 20. B; = (Bg o A4) @) (B5 o Ag) U (B5 o A4)

Proof. 1t is easy to check the following remarks by definitions.
(i) If (T1, f1,m1) € Bz and (13, f2,72) € Aq, then (T3, f1,71)0(13, f2,72) € Bs.

(ii) For each 3 < i < 4, if (T4, f1,71) € Bs and (T4, fa,72) € A;, then
(Tl, fl,rl) o) (TQ, f2, 7"2) S B5. Thus, (Bg o A4) @] (B5 o) Ag) U (B5 e} A4) g B5.

Therefore, we need to prove B C (Bsgo Ay) U (Bs o Ag) U (Bs o Ay). Let
(T, f,r)€Bs and (T, f,r)=(T1, f1,71)o(T%, f2,72), then we have f € R2DF,(T+}),
r1 € B and f(N[r]) = 0. It implies ro € C and fa(r2) = f(r2) = 0. Consider the
following cases.

Case 1. If fo € R2DF.(T3), then we have (Tb, fo,72) € A3 and f; ¢
R2DF,(T1). Since f1(N]r1]) =0 and (T, f,r) € Bs, we obtain (T3, f1,71) € Bs.

Case 2. If fo ¢ R2DF.(T3), we deduce that (Ts, f2,72) € Ay. It is clear that
(T1, f1,7m1) € Bs or Bs.
Hence, Bs C (Bg o A4) U (B5 o Ag) U (B5 o A4) [ ]

Lemma 21. BG = (Bg o A5) U (B5 o A5) U (BG [0) Ag) U (Bﬁ o) A4) U (BG o A5)
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Proof. 1t is easy to check the following remarks by definitions.

(i) For each i € {3,5}, if (11, fi,r1) € B; and (T3, fa,m2) € As, then
(T4, f1,71) o (T, f2,72) € Be.

(ii) For each 3 < i < 5, if (T4, f1,71) € Bg and (T4, fa,72) € A;, then
(T4, f1,m1) o (T, f2,72) € Be.

Therefore, we need to prove Bg C (B3 o As) U (Bs o0 As) U (Bg o As) U (Bg o
A4) U (B6 o A5) Let (T, f, 7") € Bg and (T, f, 7") = (Tlafla""l) o (Tg,fg,’l“g), then
we have f € R2DF,(T72), r; € B and f(N|[r]) = 0. It implies 72 € C. Consider
the following cases.

Casel. f1 € R2DF.(T1). Since fi(N[r1]) = f(N]r]) = 0, we have (T4, f1,71) €
Bs. Tt implies (T3, fa,72) € As.

Case 2. f1 ¢ R2DF.(T1). Since fi(N[ri]) = f(N[r]) = 0, then we obtain
(Ty, f1,71) € Bs or Bg. If (T4, f1,71) € Bs, we have f; € R2DF,(T}™). Since f €
R2DF, (T"?), it means that fo € R2DF,(T5?). Then we deduce (T3, fa,72) € As.
If (T1, f1,71) € Be, we have f; € R2DF,(T}"?). Since (T, f,r) € B, we deduce
that fa(re) = 0. So we obtain (1%, f2,72) € A3, Ay or As.

Hence, Bg C (Bg o A5) U (B5 o A5) U (Bﬁ o A3) U (Bﬁ o A4) U (B(; o A5) |

The final step is to define the initial vector. In this case, for block-cutpoint
graphs, the only basis graph is a single vertex. We can use the similar method in
Section 3 to initialize the vector. It is clear that if v is a C-vertex, then the initial
vector is [2,1, 00,00, 0, 00]; if v is a B-vertex and v represents a block of type 0,
then the initial vector is [00, 00,0, 00, 00, 00]; if v is a B-vertex and v represents
a block of type 1, then the initial vector is [00, 1, 00, 00, 00, 0]; if v is a B-vertex
and v represents a block of type 2, then the initial vector is [00, 00, 00, 00, 00, 0].
Among them, ‘o0’ means undefined. From the above argument, we can obtain
the following theorem.

Theorem 22. Algorithm ROMAN {2}-DOM-IN-BLOCK can output the Roman
{2}-domination number of any block graphs G = (V,E) in linear time O(n),
where n = |V|.

Proof. One can prove Theorem 22 by the similar argument as in the proof of
Theorem 8. u

Now, we are ready to present the algorithm.
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Algorithm 2: ROMAN {2}-DOM-IN-BLOCK

Input: A connected block graph G (G 2 K,,) and its corresponding
block-cutpoint graph 7' = (V, E) with a tree ordering
V1,V2,...,Un.

Output: The Roman {2}-domination number g2} (G).

1 fori:=1tondo

2 if v; is a C-vertexr then

3 | initialize i, 1..6] to [2, 1, 00, 00,0, 0] ;

4 else if v; is a B-vertex representing a block of type 0 then
5 | initialize h[i, 1..6] to [00, 00,0, 00, 00, 00] ;

6 else if v; is a B-vertex representing a block of type 1 then
7 | initialize h[i, 1..6] to [00, 1,00, 00, 00,0] ;

8 else

9 | initialize A, 1..6] to [0o, 00, 00, 00, 00, 0];

10 for j:=1ton—1do
11 v = F(v));

12 if vy is a C-verter then

1 | | hlk,1] = min{hlk, ]+h[j, 1], Alk, 1]+h1j,2], bk, 1]+A1j, 3], hlk, 1]+
" hlj, 4], hlk, 1] + h[j, 5], ALk, 1] + h[j, 6]}

15 Wik, 2] = min{hlk, 2)+Alj, 1], hk, 21+ hlj, 21, bk, 2)+h[j, 3], hlk, 2]+
16 BLj. 4], hlk, 2] + h[j.5]};

17 hlk, 3] = min{hlk, 3]+h[j, 1], hlk, 3]+ h[j, 2], hlk, 3]+ h[j, 3], h[k, 4]+
18 hlj, 1), hlk, 4) + h[j, 2], Bk, 5] + h[j, 1}

10 | | hlk,4] = min{Alk, 4+ h[j, 3], Ak, 5] + h[j,2]};

20 | | hlk,5] = min{hlk, 5]+ h[j,3]}:

21 else

22 S1 = hlk,2];

23 Sy = hlk, 3];

24 S3 = hlk, 5];

2 | | hlk,1] = min{hlk, +h[j,1], hlk, 1]+h1j,2], hlk, 1]+A1j, 3], hlk, 1]+
20 BLj. 4], hlk, 1)+-hlj. 5], Alk, 2]+ hlj, 1], hik. 2]+ h1j, 2], hlk, 3
21 B, 1), Alk, 4]+ B[j, 1], Ak, 4] + k{3, 2], hlk, 5] + h[j, 1],
2 Ik, 6] + h[j. 1]};

29 hlk,2] = min{h[k, 2] + h[j, 3], h|k, 2] + hlj,4], hlk, 3] + h[j, 2], h[k, 5]
30 + h[j,2]};

31 hlk,3] = min{h[k, 3] + hlj, 3]|};

32 hlk,4] = min{S; + hlj, 5], h[k: 4] + h[j, 3], hlk, 4] + hlj, 4], h[k, 4]+
33 hj,5]; hlk, 6] + hlj, 2] };

34 hlk,5] = mm{Sg + h[ j, 4], h[k 5] + hlj, 3], hlk, 5] + hlj,4]};

35 hlk,6] = min{Ss +h[j, 5], S3+h[j, 5], hlk, 6]+ h[j, 3], h[k, 6] + R[], 4],
30 Ik, 6] + h[j. 5]};

87 return y(poy(G) = min{hn, 1], h[n, 2], hln, 3]};
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