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Abstract

For a graph G = (V,E), a Roman {2}-dominating function (R2DF)
f : V → {0, 1, 2} has the property that for every vertex v ∈ V with f(v) = 0,
either there exists a neighbor u ∈ N(v), with f(u) = 2, or at least two
neighbors x, y ∈ N(v) having f(x) = f(y) = 1. The weight of an R2DF f
is the sum f(V ) =

∑

v∈V
f(v), and the minimum weight of an R2DF on G

is the Roman {2}-domination number γ{R2}(G). An R2DF is independent
if the set of vertices having positive function values is an independent set.
The independent Roman {2}-domination number i{R2}(G) is the minimum
weight of an independent Roman {2}-dominating function on G. In this
paper, we show that the decision problem associated with γ{R2}(G) is NP-
complete even when restricted to split graphs. We design a linear time
algorithm for computing the value of i{R2}(T ) in any tree T , which answers
an open problem raised by Rahmouni and Chellali [Independent Roman {2}-
domination in graphs, Discrete Appl. Math. 236 (2018) 408–414]. Moreover,
we present a linear time algorithm for computing the value of γ{R2}(G) in
any block graph G, which is a generalization of trees.
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1. Introduction

Let G = (V,E) be a simple graph. The open neighborhood NG(v) of a vertex
v consists of the vertices adjacent to v and its closed neighborhood is NG[v] =
NG(v)∪{v}. N2

G[v] = {u : dG(u, v) ≤ 2}, where dG(u, v) is the distance between
u and v in graph G. For an edge e = uv, it is said that u (respectively, v) is
incident to e, denoted by u ∈ e (respectively, v ∈ e). A Roman dominating

function (RDF) on graph G is a function f : V → {0, 1, 2} satisfying the condition
that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for
which f(v) = 2. The weight of a Roman dominating function f is the value
f(V ) =

∑

v∈V f(v). The minimum weight of a Roman dominating function
on a graph G is called the Roman domination number γR(G) of G. Roman
domination and its variations have been studied in a number of recent papers
(see, for example, [1, 6, 9]).

Chellali, Haynes, Hedetniemi and McRae [4] introduced a variant of Roman
dominating functions. For a graph G = (V,E), a Roman {2}-dominating func-

tion (R2DF) f : V → {0, 1, 2} has the slightly different property that only for
every vertex v ∈ V with f(v) = 0, f(N(v)) ≥ 2, that is, either there exists
a neighbor u ∈ N(v), with f(u) = 2, or at least two neighbors x, y ∈ N(u)
have f(x) = f(y) = 1. The weight of a Roman {2}-dominating function is the
sum f(V ) =

∑

v∈V f(v), and the minimum weight of a Roman {2}-dominating
function f is the Roman {2}-domination number, denoted γ{R2}(G). Roman {2}-
domination is also called Italian domination by some scholars ([8]). Suppose that
f : V → {0, 1, 2} is an R2DF on a graph G = (V,E). Let Vi = {v : f(v) = i},
for i ∈ {0, 1, 2}. If V1 ∪ V2 is an independent set, then f is called an independent

Roman {2}-dominating function (IR2DF), which was introduced by Rahmouni
and Chellali [11] in a recent paper. The minimum weight of an independent
Roman {2}-dominating function f is the independent Roman {2}-domination

number, denoted i{R2}(G). The authors in [4, 11] have showed that the asso-
ciated decision problems for Roman {2}-domination and independent Roman
{2}-domination are NP-complete for bipartite graphs. The authors in [4] have
showed that γ{R2}(T ) can be computed by a linear time algorithm for any tree
T . In [11], the authors raised some interesting open problems, one of which is
whether there is a linear time algorithm for computing i{R2}(T ) for any tree T .

A graph G = (V,E) is a split graph if V can be partitioned into C and I,
where C is a clique and I is an independent set of G. Split graph is an impor-
tant subclass of chordal graphs, and it turns out to be very important in the
domination theory (see [2, 7]). A maximal connected induced subgraph without
a cut-vertex is called a block of G. We use Kn to denote the complete graph of
order n. A graph G is a block graph if every block in G is a complete graph. If
every block of G is a K2, then G is a tree. Hence, block graphs contain trees
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as its subclass. There are widely research on variations of domination in block
graphs (see, for example, [3, 5, 10, 14]).

In this paper, we first show that the decision problem associated with γ{R2}(G)
is NP-complete for split graphs. Then, we give a linear time algorithm for com-
puting i{R2}(T ) in any tree T . Moreover, we present a linear time algorithm for
computing γ{R2}(G) in any block graph G.

2. Complexity Result

In this section, we consider the decision problem associated with Roman {2}-
dominating functions.

ROMAN {2}-DOMINATING FUNCTION (R2D)

INSTANCE: A graph G = (V,E) and a positive integer k ≤ |V |.

QUESTION: Does G have a Roman {2}-dominating function of weight at
most k?

A vertex cover of G is a subset V ′ ⊆ V such that for each edge uv ∈ E, at
least one of u and v belongs to V ′. Vertex Cover (VC) problem is a well-known
NP-complete problem. We show R2D problem is NP-complete by reducing the
Vertex Cover (VC) to R2D.

VERTEX COVER (VC)

INSTANCE: A graph G = (V,E) and a positive integer k ≤ |V |.

QUESTION: Is there a vertex cover of size k or less for G?

Theorem 1. R2D is NP-complete for split graphs.

Proof. R2D is a member of NP, since we can check in polynomial time that a
function f : V → {0, 1, 2} has weight at most k and is a Roman {2}-dominating
function. The proof is given by reducing the VC problem in general graphs to
the R2D problem in split graphs.

LetG = (V,E) be a graph with V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}.
Let V 1 = {v′1, v

′
2, . . . , v

′
n}. We construct the graph G′ = (V ′, E′) with V ′ =

V 1 ∪ V ∪ E, E′ = {vivj : vi 6= vj , vi ∈ V, vj ∈ V } ∪ {viv
′
i : i = 1, ..., n} ∪ {ve : v ∈

e, e ∈ E}.

Notice that G′ is a split graph whose vertex set V ′ is the disjoint union of the
clique V and the independent set V 1 ∪ E. It is clear that G′ can be constructed
in polynomial time from G.

If G has a vertex cover C of size at most k, let f : V ′ → {0, 1, 2} be a function
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defined as follows.

f(v) =











2, if v ∈ C,

1, if v ∈ V 1 and let v′ be a neighbor of v such that v′ ∈ V \ C,

0, otherwise.

It is clear that f is a Roman {2}-dominating function of G′ with weight at most
2k + (n− k).

On the other hand, suppose that G′ has a Roman {2}-dominating function
of weight at most 2k + (n− k). Among all such functions, let g = (V0, V1, V2) be
one chosen so that:

(C1) |V 1 ∩ V2| is minimized;

(C2) subject to condition (C1): |E ∩ V0| is maximized;

(C3) subject to conditions (C1) and (C2): |V ∩ V1| is minimized;

(C4) subject to conditions (C1), (C2) and (C3): the weight of g is minimized.

We make the following remarks.

(i) No vertex in V 1 belongs to V2. Indeed, suppose to the contrary that
g(v′i) = 2 for some i. We reassign 0 to v′i instead of 2 and reassign 2 to vi. Then
it provides an R2DF on G′ of weight at most 2k + (n− k) but with less vertices
of V 1 assigned 2, contradicting the condition (C1) in the choice of g.

(ii) No vertex in E belongs to V2. Indeed, suppose that g(e) = 2 for some
e ∈ E and vj , vk ∈ e. By reassigning 0 to e instead of 2 and reassigning 2 to vj
instead of g(vj), we obtain an R2DF on G′ of weight at most 2k + (n − k) but
with more vertices of E assigned 0, contradicting the condition (C2) in the choice
of g.

(iii) No vertex in E belongs to V1. Suppose that g(e) = 1 for some e ∈ E
and vj , vk ∈ e. If g(v′j) = 0, then g(vj) = 2 (by the definition of R2DF). By
reassigning 0 to e instead of 1, we obtain an R2DF on G′ of weight at most
2k + (n− k) but with more vertices of E assigned 0, contradicting the condition
(C2) in the choice of g. Hence we may assume that g(v′j) = 1 (by (i)). Clearly
we can reassign 2 to vj instead of 0, 0 to v′j instead of 1 and 0 to e instead of
1. We also obtain a R2DF on G′ of weight at most 2k + (n − k) but with more
vertices of E assigned 0, contradicting the condition (C2) in the choice of g.

(iv) No vertex in V belongs to V1. Suppose to the contrary that g(vi) = 1 for
some i, then g(v′i) = 1 (by (i) and the definition of R2DF). We reassign 0 to v′i
instead of 1 and 2 to vi instead of 1. It provides a R2DF on G′ of weight at most
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2k + (n − k) but with less vertices of V assigned 1, contradicting the condition
(C3) in the choice of g.

(v) If a vertex in V is assigned 2, then its neighbor in V 1 is assigned 0 by
the condition (C4) in the choice of g.

(vi) If a vertex in V is assigned 0, then its neighbor in V 1 is assigned 1 by
the definition of R2DF and (i).

Therefore, according to the previous items, we conclude that V 1 ∩ V2 = ∅,
E ⊆ V0, and V ∩ V1 = ∅. Hence V2 ⊆ V . Let C = {v : g(v) = 2}. Since each
vertex in E∪(V \C) belongs to V0 in G′, it is clear that C is a vertex cover of G by
the definition of R2DF. Then g(V 1)+g(V )+g(E) = 2|C|+(n−|C|) ≤ 2k+(n−k),
implying that |C| ≤ k. Consequently, C is a vertex cover for G of size at most k.

Since the vertex cover problem is NP-complete, the Roman {2}-domination
problem is NP-complete for split graphs.

3. Independent Roman {2}-Domination in Trees

In this section, a linear time dynamic programming style algorithm is given to
compute the exact value of the independent Roman {2}-dominating number in
any tree. This algorithm is constructed using the methodology of Wimer [13].

A rooted tree is a pair (T, r) with T is a tree and r is a vertex of T . We
call r is the root of tree T . A rooted tree (T, r) is trivial if V (T ) = r. Given
two rooted trees (T1, r1) and (T2, r2) with V (T1) ∩ V (T2) = ∅, the composition

of them is (T1, r1) ◦ (T2, r2) = (T, r1) with V (T ) = V (T1) ∪ V (T2) and E(T ) =
E(T1) ∪ E(T2) ∪ {r1r2}. It is clear that any rooted tree can be constructed
recursively from trivial rooted trees using the defined composition.

Let f : V (T ) → {0, 1, 2} be a function on T . Then f splits two functions f1
and f2 according to this decomposition. We express this as follows: (T, f, r) =
(T1, f1, r1) ◦ (T2, f2, r2), where r = r1, fi = f |Ti

is the function f restricted to
the vertices of Ti, i = 1, 2. On the other hand, let fi : V (Ti) → {0, 1, 2} be a
function on Ti (i = 1, 2). We can define the composition as follows: (T1, f1, r1) ◦
(T2, f2, r2) = (T, f, r), where V (T ) = V (T1) ∪ V (T2), E(T ) = E(T1) ∪ E(T2) ∪
{r1r2}, r = r1 and f = f1 ◦ f2 : V (T ) → {0, 1, 2} with f(v) = fi(v) if v ∈ V (Ti),
i = 1, 2. Before presenting the algorithm, let us give the following observation.

Observation 2. Let f be an IR2DF of T = T1 ◦ T2 and fi = f |Ti
(i = 1, 2).

If fi(ri) 6= 0, then fi is an IR2DF of Ti. If fi(ri) = 0, then fi restricted to the

vertices of Ti − ri is an IR2DF of Ti − ri.

In order to construct an algorithm for computing the independent Roman
{2}-domination number, we must characterize the possible tree-subset tuples
(T, f, r). For this purpose, we introduce some additional notations as follows:
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IR2DF(T ) = {f : f is an IR2DF of T},

IR2DFr(T ) = {f : f /∈ IR2DF(T ), but f |T−r is an IR2DF of T − r}.
Then we consider the following five classes:

A = {(T, f, r) : f ∈ IR2DF(T ) and f(r) = 2},

B = {(T, f, r) : f ∈ IR2DF(T ) and f(r) = 1},

C = {(T, f, r) : f ∈ IR2DF(T ) and f(r) = 0},

D = {(T, f, r) : f ∈ IR2DFr(T ) and f(N [r]) = 1},

F = {(T, f, r) : f ∈ IR2DFr(T ) and f(N [r]) = 0}.

Let M,N ∈ {A,B,C,D, F}. If (T1, f1, r1) ∈ M and (T2, f2, r2) ∈ N , we
use M ◦ N to denote the set of (T, f, r) = (T1, f1, r1) ◦ (T2, f2, r2). Let (T, r) =
(T1, r1)◦(T2, r2) and r = r1. Suppose that f1 (respectively, f2) is a function on T1

(respectively, T2). Define f as the function on T with f |T 1
= f1 and f |T 2

= f2.
Next, we provide some lemmas.

Lemma 3. A = (A ◦ C) ∪ (A ◦D) ∪ (A ◦ F ).

Proof. It is clear that the following items are true.

(i) If (T1, f1, r1) ∈ A and (T2, f2, r2) ∈ C, then (T1, f1, r1) ◦ (T2, f2, r2) ∈ A.

(ii) If (T1, f1, r1) ∈ A and (T2, f2, r2) ∈ D, then (T1, f1, r1) ◦ (T2, f2, r2) ∈ A.

(iii) If (T1, f1, r1) ∈ A and (T2, f2, r2) ∈ F , then (T1, f1, r1) ◦ (T2, f2, r2) ∈ A.
Thus, (A ◦ C) ∪ (A ◦D) ∪ (A ◦ F ) ⊆ A.

Now we prove that A ⊆ (A ◦ C) ∪ (A ◦ D) ∪ (A ◦ F ). Let (T, f, r) ∈ A
and (T, f, r) = (T1, f1, r1) ◦ (T2, f2, r2), then f1(r1) = f(r) = 2. Since f ∈
IR2DF(T ), then f1 ∈ IR2DF(T1). So (T1, f1, r1) ∈ A. From the independence
of V1 ∪ V2, we have f2(r2) = f(r2) = 0. If f2 ∈ IR2DF(T2), then we obtain
(T2, f2, r2) ∈ C. If f2 /∈ IR2DF(T2), then (T2, f2, r2) ∈ D or F . Hence, we
conclude that A ⊆ (A ◦ C) ∪ (A ◦D) ∪ (A ◦ F ).

Lemma 4. B = (B ◦ C) ∪ (B ◦D).

Proof. It is easy to check the following items.

(i) If (T1, f1, r1) ∈ B and (T2, f2, r2) ∈ C, then (T1, f1, r1) ◦ (T2, f2, r2) ∈ B.

(ii) If (T1, f1, r1) ∈ B and (T2, f2, r2) ∈ D, then (T1, f1, r1) ◦ (T2, f2, r2) ∈ B.
So, (B ◦ C) ∪ (B ◦D) ⊆ B.

Next we need to show B ⊆ (B ◦C)∪(B ◦D). Let (T, f, r) ∈ B and (T, f, r) =
(T1, f1, r1) ◦ (T2, f2, r2), then f1(r1) = f(r) = 1. It is clear that f1 ∈ IR2DF(T1).
So we conclude that (T1, f1, r1) ∈ B. From the definition of IR2DF, we must
have f2(r2) = f(r2) = 0. If f2 ∈ IR2DF(T2), then we obtain (T2, f2, r2) ∈ C.
If f2 /∈ IR2DF(T2), then f2(NT2

[r2]) = 1 and f2|T2−r2 ∈ IR2DF(T2 − r2) using
the fact that (T, f, r) ∈ B. Therefore, we have f2 ∈ IR2DFr2(T2), implying that
(T2, f2, r2) ∈ D. Hence, we deduce that B ⊆ (B ◦ C) ∪ (B ◦D).
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Lemma 5. C = (C ◦A) ∪ (C ◦B) ∪ (C ◦ C) ∪ (D ◦A) ∪ (D ◦B) ∪ (F ◦A).

Proof. It is easy to check the following remarks by definitions.

(i) If (T1, f1, r1) ∈ C and (T2, f2, r2) ∈ A, then (T1, f1, r1) ◦ (T2, f2, r2) ∈ C.

(ii) If (T1, f1, r1) ∈ C and (T2, f2, r2) ∈ B, then (T1, f1, r1) ◦ (T2, f2, r2) ∈ C.

(iii) If (T1, f1, r1) ∈ C and (T2, f2, r2) ∈ C, then (T1, f1, r1) ◦ (T2, f2, r2) ∈ C.

(iv) If (T1, f1, r1) ∈ D and (T2, f2, r2) ∈ A, then (T1, f1, r1) ◦ (T2, f2, r2) ∈ C.

(v) If (T1, f1, r1) ∈ D and (T2, f2, r2) ∈ B, then (T1, f1, r1) ◦ (T2, f2, r2) ∈ C.

(vi) If (T1, f1, r1) ∈ F and (T2, f2, r2) ∈ A, then (T1, f1, r1) ◦ (T2, f2, r2) ∈ C.
Hence, we deduce that (C ◦A)∪(C ◦B)∪(C ◦C)∪(D◦A)∪(D◦B)∪(F ◦A) ⊆ C.

Therefore, we need to prove C ⊆ (C ◦A)∪ (C ◦B)∪ (C ◦C)∪ (D ◦A)∪ (D ◦
B) ∪ (F ◦ A). Let (T, f, r) ∈ C and (T, f, r) = (T1, f1, r1) ◦ (T2, f2, r2), then f ∈
IR2DF(T ) and f1(r1) = f(r) = 0. Consider the following cases.

Case 1. f(r2) = 2. Since f ∈ IR2DF(T ), f2 ∈ IR2DF(T2). Hence, (T2, f2, r2) ∈
A. If f1 ∈ IR2DF(T1), then we obtain that (T1, f1, r1) ∈ C. If f1 /∈ IR2DF(T1),
we have (T1, f1, r1) ∈ D or F .

Case 2. f(r2) = 1. Since f ∈ IR2DF(T ), f2 ∈ IR2DF(T2). So (T2, f2, r2) ∈ B.
If f1 ∈ IR2DF(T1), then we deduce (T1, f1, r1) ∈ C. If f1 /∈ IR2DF(T1), therefore,
it implies that (T1, f1, r1) ∈ D.

Case 3. f(r2) = 0. It is clear that f1 and f2 are both IR2DF. Then we obtain
that (T1, f1, r1) ∈ C and (T2, f2, r2) ∈ C.

Hence, C ⊆ (C ◦A) ∪ (C ◦B) ∪ (C ◦ C) ∪ (D ◦A) ∪ (D ◦B) ∪ (F ◦A).

Lemma 6. D = (D ◦ C) ∪ (F ◦B).

Proof. It is easy to check the following remarks by definitions.

(i) If (T1, f1, r1) ∈ D and (T2, f2, r2) ∈ C, then (T1, f1, r1) ◦ (T2, f2, r2) ∈ D.

(ii) If (T1, f1, r1) ∈ F and (T2, f2, r2) ∈ B, then (T1, f1, r1) ◦ (T2, f2, r2) ∈ D.
Thus, (D ◦ C) ∪ (F ◦B) ⊆ D.

On the other hand, we show D ⊆ (D ◦ C) ∪ (F ◦ B). Let (T, f, r) ∈ D and
(T, f, r) = (T1, f1, r1) ◦ (T2, f2, r2). Then f1(r1) = f(r) = 0. By the definition of
D, f2 ∈ IR2DF(T2). Using the fact that f(NT [r1]) = 1, we deduce that f(r2) < 2.
Consider the following cases.

Case 1. f(r2) = 1. It is clear that (T2, f2, r2) ∈ B because f2 is an IR2DF of
T2. Since f1(NT1

[r1]) = 0, we obtain f1|T1−r1 ∈ IR2DF(T1 − r1). Hence, we have
f1 ∈ IR2DFr1(T1), implying that (T1, f1, r1) ∈ F .

Case 2. f(r2) = 0. Then f2 is an IR2DF of T2, implying that (T2, f2, r2) ∈ C.
Using the fact that f(NT [r1]) = 1 and f(r2) = 0, we know f1(NT1

[r1]) = 1. So
f1 ∈ IR2DFr1(T1). It implies that (T1, f1, r1) ∈ D.
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Lemma 7. F = F ◦ C.

Proof. If (T1, f1, r1) ∈ F and (T2, f2, r2) ∈ C, then it is clear that (T, f, r) ∈ F .
Hence, (F ◦ C) ⊆ F .

On the other hand, let (T, f, r) ∈ F and (T, f, r) = (T1, f1, r1) ◦ (T2, f2, r2).
Then f1(r1) = f(r) = 0. By the definition of F , we deduce that f(r2) = 0. Using
the fact that (T, f, r) ∈ F , we have that f2 ∈ IR2DF(T2). So (T2, f2, r2) ∈ C.
Notice that (T, f, r) ∈ F , we have f1(NT1

[r1]) = 0, implying that (T1, f1, r1) /∈ D.
We can easily check that f1 ∈ IR2DFr1(T1). Hence, we have (T1, f1, r1) ∈ F ,
implying that F ⊆ (F ◦ C).

Let T = (V,E) be a tree with n vertices. It is well known that the vertices of
T have an ordering v1, v2, . . . , vn such that for each 1 ≤ i ≤ n−1, vi is adjacent to
exactly one vertex vj with j > i (see [12]). The ordering is called a tree ordering

where the only neighbor vj with j > i is called the father of vi and vi is a child

of vj . For each 1 ≤ i ≤ n− 1, the father of vi is denoted by F (vi) = vj .
For each vertex vi (1 ≤ i ≤ n), define a vector l[i, 1..5]. Let Tvi be a tree such

that vi is the root of Tvi . For each rooted tree (Tvi , vi), let fvi : V (Tvi) → {0, 1, 2}
be a function on Tvi and define w(fvi) = fvi(V (Tvi)). In this case, for a tree, the
only basis graph is a single vertex. Then, the vector l[i, 1..5] is initialized by
[ min
(Tvi

,fvi ,vi)∈A
w(fvi), min

(Tvi
,fvi ,vi)∈B

w(fvi), min
(Tvi

,fvi ,vi)∈C
w(fvi), min

(Tvi
,fvi ,vi)∈D

w(fvi),

min
(Tvi

,fvi ,vi)∈F
w(fvi)].

It means l[i, 1..5] = [2, 1,∞,∞, 0], where ′∞′ means undefined. Now, we are
ready to present the algorithm.

Algorithm 1: INDEPENDENT-ROMAN {2}-DOM-IN-TREE

Input: A tree T = (V,E) with a tree ordering v1, v2, · · · , vn.
Output: The independent Roman {2}-domination number i{R2}(T ).

1 if T = K1 then
2 return i{R2}(T ) = 1;
3 for i := 1 to n do
4 initialize l[i, 1..5] to [2, 1,∞,∞, 0] ;

5 for j := 1 to n− 1 do
6 vk = F (vj);
7 l[k, 1] = min{l[k, 1] + l[j, 3], l[k, 1] + l[j, 4], l[k, 1] + l[j, 5]};
8 l[k, 2] = min{l[k, 2] + l[j, 3], l[k, 2] + l[j, 4]};
9 l[k, 3] = min{l[k, 3] + l[j, 1], l[k, 3] + l[j, 2], l[k, 3] + l[j, 3], l[k, 4] + l[j, 1],

10 l[k, 4] + l[j, 2], l[k, 5] + l[j, 1]};
11 l[k, 4] = min{l[k, 4] + l[j, 3], l[k, 5] + l[j, 2]};
12 l[k, 5] = min{l[k, 5] + l[j, 3]};

13 return i{R2}(T ) = min{l[n, 1], l[n, 2], l[n, 3]};



Roman {2}-Domination Problem in Graphs 649

From the above argument, we can obtain the following theorem.

Theorem 8. Algorithm INDEPENDENT-ROMAN {2}-DOM-IN-TREE can out-

put the independent Roman {2}-domination number of any tree T = (V,E) in

linear time O(n), where n = |V |.

Proof. It is clear that the running time of Algorithm 1 is linear. We only need
to show i{R2}(T ) = min{l[n, 1], l[n, 2], l[n, 3]}. Suppose that f ∈ IR2DF(T ).
Then, (T, f, r) ∈ A ∪ B ∪ C. By the Algorithm 1 and Lemmas 3–7, we have
l[n, 1] = min

(T,f,r)∈A
f(V ), l[n, 2] = min

(T,f,r)∈B
f(V ), and l[n, 3] = min

(T,f,r)∈C
f(V ). By

the definition of i{R2}(T ), we deduce that

i{R2}(T ) = min
(T,f,r)∈A∪B∪C

f(V ) = min{l[n, 1], l[n, 2], l[n, 3]}.

4. Roman {2}-Domination in Block Graph

Let G( 6∼= Kn) be a connected block graph. The block-cutpoint graph of G is a
bipartite graph TG = (C ∪ B,E) in which one partite set C consists of the cut-
vertices of G, and the other B has a vertex h for each block H of G. Let v ∈ C
and h ∈ B. We include vh as an edge of TG if and only if v is in H, where H is the
block of G represented by h. Obviously, TG is a tree and can be constructed from
G in linear time (see [12]). In this section, we call each vertex in C a C-vertex
and each vertex in B a B-vertex.

Let H be a block of G. Suppose that S = {v : v ∈ H and v is a cut-
vertex of G}. We say H is a block of type 0 if |H| = |S| and H is a block of
type 1 if |H| = |S| + 1. If |H| ≥ |S| + 2, we say H is a block of type 2. Let
f : V (G) → {0, 1, 2} be a function of a block graph G( 6∼= Kn). f∗ : V (TG) → Z is
defined as follows:

f∗(v) =

{

f(v), if v is a C-vertex,

f(H)− f(S), if v is a B-vertex representing the block H.

We say that f∗ is the function induced by f . Now we present a key result on
the relationship between f and f∗.

Theorem 9. Let f : V (G) → {0, 1, 2} be a function of a connected block graph G
(G 6∼= Kn) and f∗ be the function induced by f . Then, f satisfies the following

properties:

(1) f(v) = 0 or 1 if v ∈ H is not a cut-vertex of G, where H is a block of type 1
of G.
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(2) f(v) = 0 if v ∈ H is not a cut-vertex of G, where H is a block of type 2
of G.

(3) f is an R2DF of G.

if and only if f∗ satisfies the following properties:

(a) f∗(v) = 0 or 1 if v is a B-vertex and the block H represented by v is type 1.

(b) f∗(v) = 0 if v is a B-vertex and the block H represented by v is not type 1.

(c) If v is a C-vertex with f∗(v) = 0, then there exists either u ∈ N2
TG

(v) with

f∗(u) = 2 or u1, u2 ∈ N2
TG

(v) with f∗(u1) = f∗(u2) = 1.

(d) If v is a B-vertex with f∗(v) = 0 and the block H represented by v is not type

0, then there exists either u ∈ NTG
(v) with f∗(u) = 2 or u1, u2 ∈ NTG

(v)
with f∗(u1) = f∗(u2) = 1.

Proof. If f satisfies the above properties, it is clear that f∗ satisfies the above
items (a), (b). Suppose that v is a C-vertex with f∗(v) = 0. By the definition
of f∗, f(v) = 0. If there exists a vertex u ∈ NG(v) with f(u) = 2, then u is a
cut-vertex of G, and hence u ∈ N2

TG
[v] with f∗(u) = 2. Otherwise, there exists

at least two vertices x, y ∈ NG(v) having f(x) = f(y) = 1. If x and y are both
cut-vertices of G, then we obtain x, y ∈ N2

TG
[v] having f∗(x) = f∗(y) = 1. If x is

not a cut-vertex of G and H is the block containing x, we deduce that H is type
1 by the second property of f . It implies that f∗(h) = 1 and vh ∈ E(TG), where
h is the B-vertex representing the block H. In this case, f∗ also satisfies item
(c). Suppose that v is a B-vertex with f∗(v) = 0 and the block H represented
by v is not type 0. Let S = {u : u ∈ H and u is a cut-vertex of G}. By the
definition of f∗, we know that f(x) = 0 for each x ∈ H \ S. Since f is an R2DF
of G, then there exists either u ∈ NG(v) with f(u) = 2 or u1, u2 ∈ NG(v) such
that f(u1) = f(u2) = 1. It is clear that u, u1, u2 are cut-vertices. It means that
f∗(u) = 2 and f∗(u1) = f∗(u2) = 1. So f∗ satisfies item (d).

On the other hand, if f∗ satisfies the above properties, by the definition of
f∗, it is easy to know that f satisfies items (1) and (2).

We now need to show that f is an R2DF of G. Suppose that v is a cut-vertex
with f(v) = 0. Hence, f∗(v) = f(v) = 0. If there exists u ∈ N2

TG
[v] such that

f∗(u) = 2, we deduce that u is a cut-vertex of G, f(u) = 2 and u ∈ NG(v).
Otherwise, there exists h1, h2 ∈ N2

TG
[v] such that f∗(h1) = f∗(h2) = 1. If h1

and h2 are both C-vertex, then we have h1, h2 ∈ NG(v) and f(h1) = f(h2) = 1.
If h1 is a B-vertex and h1 represent block H1 in TG. We deduce that H1 is a
block of type 1. Hence, there exists v1 ∈ H1 and v1 is not a cut-vertex of G such
that f(v1) = f∗(h1) = 1. Therefore, we obtain f(N(v)) ≥ 2. Suppose that H
is a block containing v and v is not a cut-vertex with f(v) = 0. Then f∗(h) =
f(v) = 0, where h is the B-vertex representing the block H. As H is not type
0, there either exists u ∈ NTG

(h) such that f∗(u) = 2 or exists u1, u2 ∈ NTG
(h)
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such that f∗(u1) = f∗(u2) = 1. It is clear that u, u1, u2 are cut-vertices and
u, u1, u2 ∈ NG(v). We also obtain f(u) = f∗(u) = 2 and f(u1) = f(u2) = 1.
Therefore, we deduce f(N(v)) ≥ 2.

Lemma 10. There exists an R2DF f of G with weight γ{R2}(G), which satisfies

the following properties:

(1) f(v) = 0 or 1 if v ∈ H is not a cut-vertex of G, where H is a block of type 1
of G.

(2) f(v) = 0 if v ∈ H is not a cut-vertex of G, where H is a block of type 2
of G.

Proof. Let f be an R2DF of weight γ{R2}(G) and u ∈ H be a cut-vertex of G,
where H is not a block of type 0, S = {v : v ∈ H and v is a cut-vertex of G}
and f(u) = maxv0∈S f(v0). Suppose v ∈ H is not a cut-vertex of G. If f(v) = 2,
we can reassign 0 to v and 2 to u. Hence, f(v) = 0 or 1. Furthermore, if H is a
block of type 2, we suppose that there exists a vertex v ∈ H such that f(v) = 1.
If f(u) ≥ 1, then we can reassign 2 to u and 0 to v, a contradiction. Suppose
that f(u) = 0, then there exists a vertex w ∈ H, such that w is not a cut-vertex
and f(w) ≥ 1. We reassign 2 to u and 0 to v, w, a contradiction.

Let f be an R2DF of block graph G( 6∼= Kn) and f∗ be the function induced
by f . We say f∗ is an induced Roman {2}-domination function (R2DF∗) of TG

if it satisfies the four properties in Theorem 9. By Theorem 9 and Lemma 10,
we can transform the Roman {2}-domination problem on block graph G into the
induced Roman {2}-domination problem on tree TG. Then, we can also use the
method of tree composition and decomposition in Section 3. For convenience,
TG = (C ∪ B,E) is denoted by T and v ∈ C (respectively, v ∈ B) is used
to represent that v is a C-vertex (respectively, B-vertex) of TG if there is no
ambiguity.

Suppose that T is a tree rooted at r and f : V (T ) → {0, 1, 2} is a function on
T . T ′ is defined as a new tree rooted at r′ and f ′ : V (T ′) → {0, 1, 2} is a function
on T ′, where V (T ′) = V (T ) ∪ {r′} and E(T ′) = E(T ) ∪ {rr′}, f ′ :T= f .

In order to construct an algorithm for computing the Roman {2}-domination
number, we must characterize the possible tree-subset tuples (T, f, r). For this
purpose, we introduce some additional notations as follows:

R2DF∗(T ) = {f : f is an R2DF∗ of T},

F1(T ) = {f : f ∈ R2DF∗(T ) with f(r) = 1},

F2(T ) = {f : f ∈ R2DF∗(T ) with f(r) = 2},

R2DF∗(T
+1) = {f : f /∈ R2DF∗(T ), f

′ ∈ F1(T
′) and f ′|T = f},

R2DF∗(T
+2) = {f : f /∈ R2DF∗(T ), f

′ ∈ F2(T
′) and f ′|T = f}−R2DF∗(T

+1).
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Then we consider the following eleven classes:

A1 = {(T, f, r) : f ∈ R2DF∗(T ), r ∈ C and f(r) = 2},

A2 = {(T, f, r) : f ∈ R2DF∗(T ), r ∈ C and f(r) = 1},

A3 = {(T, f, r) : f ∈ R2DF∗(T ), r ∈ C and f(r) = 0},

A4 = {(T, f, r) : f ∈ R2DF∗(T
+1), r ∈ C},

A5 = {(T, f, r) : f ∈ R2DF∗(T
+2), r ∈ C},

B1 = {(T, f, r) : f ∈ R2DF∗(T ), r ∈ B and f(N [r]) ≥ 2},

B2 = {(T, f, r) : f ∈ R2DF∗(T ), r ∈ B and f(N [r]) = 1},

B3 = {(T, f, r) : f ∈ R2DF∗(T ), r ∈ B and f(N [r]) = 0},

B4 = {(T, f, r) : f ∈ R2DF∗(T
+1), r ∈ B and f(N [r]) = 1},

B5 = {(T, f, r) : f ∈ R2DF∗(T
+1), r ∈ B and f(N [r]) = 0},

B6 = {(T, f, r) : f ∈ R2DF∗(T
+2), r ∈ B}.

Let (T, r) = (T1, r1)◦(T2, r2) and r = r1. Suppose that f1 (respectively, f2) is
a function on T1 (respectively, T2). Define f as the function on T with f |T 1

= f1
and f |T 2

= f2. In order to give the algorithm, we present the following lemmas.

Lemma 11. A1 = (A1◦B1)∪(A1◦B2)∪(A1◦B3)∪(A1◦B4)∪(A1◦B5)∪(A1◦B6).

Proof. For each 1 ≤ i ≤ 6, if (T1, f1, r1) ∈ A1 and (T2, f2, r2) ∈ Bi, it is clear
that f is an R2DF∗ of T , r ∈ C and f(r) = f(r1) = 2. We deduce that
(T1, f1, r1) ◦ (T2, f2, r2) ∈ A1. So (A1 ◦B1) ∪ (A1 ◦B2) ∪ (A1 ◦B3) ∪ (A1 ◦B4) ∪
(A1 ◦B5) ∪ (A1 ◦B6) ⊆ A1.

Now we prove that A1 ⊆ (A1 ◦ B1) ∪ (A1 ◦ B2) ∪ (A1 ◦ B3) ∪ (A1 ◦ B4) ∪
(A1 ◦ B5) ∪ (A1 ◦ B6). Let (T, f, r) ∈ A1 and (T, f, r) = (T1, f1, r1) ◦ (T2, f2, r2),
then f1(r1) = f(r) = 2. Since f ∈ R2DF∗(T ), f1 ∈ R2DF∗(T1) and r1 ∈ C. So
(T1, f1, r1) ∈ A1 and r2 ∈ B. If f2 ∈ R2DF∗(T2), then we obtain (T2, f2, r2) ∈ B1,
B2 orB3. If f2 /∈ R2DF∗(T2), then (T2, f2, r2) ∈ B4, B5 orB6. Hence, we conclude
that A1 ⊆ (A1 ◦B1)∪ (A1 ◦B2)∪ (A1 ◦B3)∪ (A1 ◦B4)∪ (A1 ◦B5)∪ (A1 ◦B6).

Lemma 12. A2 = (A2 ◦B1) ∪ (A2 ◦B2) ∪ (A2 ◦B3) ∪ (A2 ◦B4) ∪ (A2 ◦B5).

Proof. For each 1 ≤ i ≤ 5, if (T1, f1, r1) ∈ A2 and (T2, f2, r2) ∈ Bi, it is clear
that f is an R2DF∗ of T , r ∈ C and f(r) = f(r1) = 1. We conclude that
(T1, f1, r1) ◦ (T2, f2, r2) ∈ A2, implying that (A2 ◦ B1) ∪ (A2 ◦ B2) ∪ (A2 ◦ B3) ∪
(A2 ◦B4) ∪ (A2 ◦B5) ⊆ A2.

Then we need to show A2 ⊆ (A2 ◦ B1) ∪ (A2 ◦ B2) ∪ (A2 ◦ B3) ∪ (A2 ◦
B4) ∪ (A2 ◦ B5). Let (T, f, r) ∈ A2 and (T, f, r) = (T1, f1, r1) ◦ (T2, f2, r2), then
f1(r1) = f(r) = 1. It is clear that (T1, f1, r1) ∈ A2 and r2 ∈ B. If f2 is
an R2DF∗ of T2, then we obtain (T2, f2, r2) ∈ B1, B2 or B3. If f2 is not an
R2DF∗ of T2, then f2(NT2

[r2]) ≤ 1 and f2 ∈ R2DF∗(T
+1
2 ) by using the fact
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that (T, f, r) ∈ A2. Therefore, we have (T2, f2, r2) ∈ B4 or B5. Hence, A2 ⊆
(A2 ◦B1) ∪ (A2 ◦B2) ∪ (A2 ◦B3) ∪ (A2 ◦B4) ∪ (A2 ◦B5).

Lemma 13. A3 = (A3◦B1)∪(A3◦B2)∪(A3◦B3)∪(A4◦B1)∪(A4◦B2)∪(A5◦B1).

Proof. We make some remarks.

(i) For each 1 ≤ i ≤ 3, if (T1, f1, r1) ∈ A3 and (T2, f2, r2) ∈ Bi, then
(T1, f1, r1) ◦ (T2, f2, r2) ∈ A3. Indeed, if (T1, f1, r1) ∈ A3 and (T2, f2, r2) ∈ Bi,
then f1 is an R2DF∗ of T1 and f2 is an R2DF∗ of T2. Hence, f is an R2DF∗ of
T , r ∈ C and f(r) = 0. So (T1, f1, r1) ◦ (T2, f2, r2) ∈ A3.

(ii) For each 1 ≤ i ≤ 2, if (T1, f1, r1) ∈ A4 and (T2, f2, r2) ∈ Bi, then
(T1, f1, r1) ◦ (T2, f2, r2) ∈ A3. Indeed, if (T1, f1, r1) ∈ A4, then we have that f1 ∈
R2DF∗(T

+1
1 ), r ∈ C, f(r) = 0 and f(N2

T1
[r]) = 1. By the definition of Bi, we

obtain f(N2
T [r]) ≥ 2 and f ∈ R2DF∗(T ). Hence, (T1, f1, r1) ◦ (T2, f2, r2) ∈ A3.

(iii) If (T1, f1, r1) ∈ A5 and (T2, f2, r2) ∈ B1, then (T1, f1, r1) ◦ (T2, f2, r2) ∈
A3. Indeed, if (T1, f1, r1) ∈ A5, then we have that f1 ∈ R2DF∗(T

+2
1 ), r ∈ C,

f(r) = 0 and f(N2
T1
[r]) = 0. By the definition of B1, we obtain f(N2

T [r]) ≥
2 and f ∈ R2DF∗(T ). It means that (T1, f1, r1) ◦ (T2, f2, r2) ∈ A3. Hence,
(A3 ◦B1) ∪ (A3 ◦B2) ∪ (A3 ◦B3) ∪ (A4 ◦B1) ∪ (A4 ◦B2) ∪ (A5 ◦B1) ⊆ A3.

Therefore, we need to prove A3 ⊆ (A3◦B1)∪(A3◦B2)∪(A3◦B3)∪(A4◦B1)∪
(A4◦B2)∪(A5◦B1). Let (T, f, r) ∈ A3 and (T, f, r) = (T1, f1, r1)◦(T2, f2, r2), then
we have that f1(r1) = f(r) = 0, r1 ∈ C and f2 ∈ R2DF∗(T2). So r2 ∈ B. If f1 ∈
R2DF∗(T1), then we obtain (T1, f1, r1) ∈ A3, implying that (T2, f2, r2) ∈ B1, B2

or B3. Suppose that f1 /∈ R2DF∗(T1). Consider the following cases.

Case 1. f1(N
2
T1
[r1]) = 1. Then we obtain f1 ∈ R2DF∗(T

+1
1 ), implying that

(T1, f1, r1) ∈ A4. Since (T, f, r) ∈ A3, we have f2(NT2
[r2]) ≥ 1. So (T2, f2, r2) ∈

B1 or B2.

Case 2. f1(N
2
T1
[r1]) = 0. So we have f1 ∈ R2DF∗(T

+2
1 ). Then (T1, f1, r1) ∈

A5. Since (T, f, r) ∈ A3, we obtain f2(NT2
[r2]) ≥ 2. Hence, (T2, f2, r2) ∈ B1.

Lemma 14. A4 = (A4 ◦B3) ∪ (A5 ◦B2).

Proof. It is easy to check the following remarks by definitions.

(i) If (T1, f1, r1) ∈ A4 and (T2, f2, r2) ∈ B3, then (T1, f1, r1)◦(T2, f2, r2) ∈ A4.

(ii) If (T1, f1, r1) ∈ A5 and (T2, f2, r2) ∈ B2, then (T1, f1, r1)◦(T2, f2, r2) ∈ A4.

Therefore, (A4 ◦B3) ∪ (A5 ◦B2) ⊆ A4.

On the other hand, we show A4 ⊆ (A4 ◦ B3) ∪ (A5 ◦ B2). Let (T, f, r) ∈ A4

and (T, f, r) = (T1, f1, r1) ◦ (T2, f2, r2). Then we have that f ∈ R2DF∗(T
+1) and

r1 ∈ C, implying that f(N2
T [r1]) = 1. It means that r2 ∈ B. By the definition
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of A4, f2 ∈ R2DF∗(T2). Using the fact that f(N2
T [r1]) = 1, we deduce that

f2(N [r2]) < 2. Consider the following cases.

Case 1. f2(N [r2]) = 1. It is clear that (T2, f2, r2) ∈ B2. Since f1(N
2
T1
[r1]) =

f(N2
T [r1])− f2(N [r2]) = 0, we obtain (T1, f1, r1) ∈ A5.

Case 2. f2(N [r2])=0. Then (T2, f2, r2) ∈ B3. Since f1(N
2
T1
[r1])=f(N2

T [r1])−
f2(N [r2]) = 1, we have (T1, f1, r1) ∈ A4.

Consequently, we deduce that A4 ⊆ (A4 ◦B3) ∪ (A5 ◦B2).

Lemma 15. A5 = A5 ◦B3.

Proof. It is easy to check that (A5 ◦ B3) ⊆ A5 by the definitions. On the
other hand, let (T, f, r) ∈ A5 and (T, f, r) = (T1, f1, r1) ◦ (T2, f2, r2). Then we
obtain f ∈ R2DF∗(T

+2), r1 ∈ C and f1(N
2[r1]) = f(N2[r]) = 0. It implies

that (T1, f1, r1) ∈ A5 and r2 ∈ B. Using the fact that (T, f, r) ∈ A5, we deduce
f2(N [r2]) = 0 and f2 ∈ R2DF∗(T2). Therefore, (T2, f2, r2) ∈ B3. Then we obtain
A5 ⊆ (A5 ◦B3).

Lemma 16. B1 = (B1 ◦ A1) ∪ (B1 ◦ A2) ∪ (B1 ◦ A3) ∪ (B1 ◦ A4) ∪ (B1 ◦ A5) ∪
(B2 ◦A1) ∪ (B2 ◦A2) ∪ (B3 ◦A1) ∪ (B4 ◦A1) ∪ (B4 ◦A2) ∪ (B5 ◦A1) ∪ (B6 ◦A1).

Proof. We make some remarks.

(i) For each 1 ≤ i ≤ 5, if (T1, f1, r1) ∈ B1 and (T2, f2, r2) ∈ Ai, then
(T1, f1, r1) ◦ (T2, f2, r2) ∈ B1. It is easy to check it by the definitions of B1

and Ai.

(ii) For each 2 ≤ i ≤ 6, if (T1, f1, r1) ∈ Bi and (T2, f2, r2) ∈ A1, then
(T1, f1, r1) ◦ (T2, f2, r2) ∈ B1. We can easily check it by definitions too.

(iii) For each i ∈ {2, 4}, if (T1, f1, r1) ∈ Bi and (T2, f2, r2) ∈ A2, then
(T1, f1, r1) ◦ (T2, f2, r2) ∈ B1. Indeed, it is clear that f ∈ R2DF∗(T ), r ∈ B
and f(N [r]) = f1(N [r1]) + f2(r2) = 2. Hence, (T1, f1, r1) ◦ (T2, f2, r2) ∈ B1.

Therefore, we need to prove B1 ⊆ (B1◦A1)∪(B1◦A2)∪(B1◦A3)∪(B1◦A4)∪
(B1◦A5)∪(B2◦A1)∪(B2◦A2)∪(B3◦A1)∪(B4◦A1)∪(B4◦A2)∪(B5◦A1)∪(B6◦A1).
Let (T, f, r) ∈ B1 and (T, f, r) = (T1, f1, r1) ◦ (T2, f2, r2), then we have f ∈
R2DF∗(T ), r1 ∈ B and f(N [r]) ≥ 2. It means that r2 ∈ C. Consider the
following cases.

Case 1. f(r2) = 2. Then we have f2 ∈ R2DF∗(T2), impling that (T2, f2, r2) ∈
A1. If f1 ∈ R2DF∗(T1), we obtain (T1, f1, r1) ∈ B1, B2 or B3. Suppose that f1 /∈
R2DF∗(T1), then f1 ∈ R2DF∗(T

+1
1 ) or f1 ∈ R2DF∗(T

+2
1 ). Hence, (T1, f1, r1) ∈

B4, B5 or B6.

Case 2. f(r2) = 1. It is clear that (T2, f2, r2) ∈ A2. We also have f1(N [r1]) =
f(N [r])−f2(r2) ≥ 2−1 ≥ 1. If f1 ∈ R2DF∗(T1), we obtain (T1, f1, r1) ∈ B1 or B2.
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Suppose that f1 /∈ R2DF∗(T1), then f1 ∈ R2DF∗(T
+1
1 ). Therefore, (T1, f1, r1) ∈

B4.

Case 3. f(r2) = 0. Then we obtain f1(N [r1]) = f(N [r]) − f2(r2) ≥ 2 and
f1 ∈ R2DF∗(T1), implying that (T1, f1, r1) ∈ B1. If f2 ∈ R2DF∗(T2), we deduce
(T1, f1, r1) ∈ A3. Suppose that f2 /∈ R2DF∗(T2), then f2 ∈ R2DF∗(T

+1
2 ) or f2 ∈

R2DF∗(T
+2
2 ). Therefore, (T2, f2, r2) ∈ A4 or A5.

Hence, B1 ⊆ (B1 ◦A1)∪ (B1 ◦A2)∪ (B1 ◦A3)∪ (B1 ◦A4)∪ (B1 ◦A5)∪ (B2 ◦
A1) ∪ (B2 ◦A2) ∪ (B3 ◦A1) ∪ (B4 ◦A1) ∪ (B4 ◦A2) ∪ (B5 ◦A1) ∪ (B6 ◦A1).

Lemma 17. B2 = (B2 ◦A3) ∪ (B2 ◦A4) ∪ (B3 ◦A2) ∪ (B5 ◦A2).

Proof. We make some remarks.

(i) For each 3 ≤ i ≤ 4, if (T1, f1, r1) ∈ B2 and (T2, f2, r2) ∈ Ai, then
(T1, f1, r1) ◦ (T2, f2, r2) ∈ B2. It is easy to check it by the definitions.

(ii) For each i ∈ {3, 5}, if (T1, f1, r1) ∈ Bi and (T2, f2, r2) ∈ A2, then
(T1, f1, r1) ◦ (T2, f2, r2) ∈ B2. Indeed, if (T1, f1, r1) ∈ Bi and (T2, f2, r2) ∈ A2, we
obtain that f ∈ R2DF∗(T ), r ∈ B and f(N [r]) = f1(N [r1]) + f2(r2) = 1. Hence,
we deduce (T1, f1, r1) ◦ (T2, f2, r2) ∈ B2. Thus, (B2 ◦A3)∪ (B2 ◦A4)∪ (B3 ◦A2)∪
(B5 ◦A2) ⊆ B2.

Now we need to prove B2 ⊆ (B2 ◦ A3) ∪ (B2 ◦ A4) ∪ (B3 ◦ A2) ∪ (B5 ◦ A2).
Let (T, f, r) ∈ B2 and (T, f, r) = (T1, f1, r1) ◦ (T2, f2, r2), then we have that f ∈
R2DF∗(T ), r1 ∈ B and f(N [r]) = 1. It implies r2 ∈ C. Consider the following
cases.

Case 1. f(r2) = 1. Then we have f1(N [r1]) = f(N [r]) − f(r2) = 0 and
f2(r2) = 1, implying that f2 ∈ R2DF∗(T2). So (T2, f2, r2) ∈ A2. If f1 ∈
R2DF∗(T1), we obtain (T1, f1, r1) ∈ B3. Suppose that f1 /∈ R2DF∗(T1), then
f1(r1) = 0 because f ∈ R2DF∗(T ). Since f1(N [r1]) = 0, we have that (T1, f1, r1) ∈
B5.

Case 2. f(r2) = 0. It is clear that f1(N [r1]) = f(N [r])−f(r2) = 1. Since f1 =
f |T1

and f ∈ R2DF∗(T ), we have f1 ∈ R2DF∗(T1). Hence, (T1, f1, r1) ∈ B2. If
f2 ∈ R2DF∗(T2), we deduce that (T2, f2, r2) ∈ A3. Suppose that f2 /∈ R2DF∗(T2),
then f2(N

2[r2]) = 1. It implies f2 ∈ R2DF∗(T
+1
2 ). Therefore, (T2, f2, r2) ∈ A4.

Hence, B2 ⊆ (B2 ◦A3) ∪ (B2 ◦A4) ∪ (B3 ◦A2) ∪ (B5 ◦A2).

Lemma 18. B3 = B3 ◦A3.

Proof. It is easy to check that (B3 ◦ A3) ⊆ B3 by the definitions. On the other
hand, let (T, f, r) ∈ B3 and (T, f, r) = (T1, f1, r1) ◦ (T2, f2, r2). Then we obtain
f1(N [r1]) = f(N [r]) = 0, r1 ∈ B and f(r2) = 0. It means that r2 ∈ C. Since
f ∈ R2DF∗(T ) and f(r2) = 0, we obtain that f1 ∈ R2DF∗(T1), implying that
(T1, f1, r1) ∈ B3. Using the fact that f1(N [r1]) = 0 and f(r2) = 0, we deduce
that f2 ∈ R2DF∗(T2). Therefore, (T2, f2, r2) ∈ A3. Then B3 ⊆ (B3 ◦A3).
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Lemma 19. B4 = (B2 ◦A5) ∪ (B4 ◦A3) ∪ (B4 ◦A4) ∪ (B4 ◦A5) ∪ (B6 ◦A2).

Proof. It is easy to check the following remarks by definitions.

(i) If (T1, f1, r1) ∈ B2 and (T2, f2, r2) ∈ A5, then (T1, f1, r1)◦(T2, f2, r2) ∈ B4.

(ii) For each 3 ≤ i ≤ 5, if (T1, f1, r1) ∈ B4 and (T2, f2, r2) ∈ Ai, then
(T1, f1, r1) ◦ (T2, f2, r2) ∈ B4.

(iii) If (T1, f1, r1) ∈ B6 and (T2, f2, r2) ∈ A2, then (T1, f1, r1) ◦ (T2, f2, r2) ∈
B4.

Therefore, we need to prove B4 ⊆ (B2 ◦ A5) ∪ (B4 ◦ A3) ∪ (B4 ◦ A4) ∪ (B4 ◦
A5) ∪ (B6 ◦ A2). Let (T, f, r) ∈ B4 and (T, f, r) = (T1, f1, r1) ◦ (T2, f2, r2), then
we have f ∈ R2DF∗(T

+1), r1 ∈ B and f(N [r]) = 1. It implies r2 ∈ C. Consider
the following cases.

Case 1. f(r2) = 1. Then we have f1(N [r1]) = f(N [r]) − f(r2) = 0 and
f2(r2) = 1, implying that f2 ∈ R2DF∗(T2). So (T2, f2, r2) ∈ A2 and f1 /∈
R2DF∗(T1). Since f1(N [r1]) = 0 and (T, f, r) ∈ B4, we obtain (T1, f1, r1) ∈ B6.

Case 2. f(r2) = 0. It is clear that f1(N [r1]) = f(N [r]) − f(r2) = 1. If f2 ∈
R2DF∗(T2), we deduce that (T2, f2, r2) ∈ A3, implying (T1, f1, r1) ∈ B4. Suppose
that f2 /∈ R2DF∗(T2), then f2(N

2[r2]) = 0 or 1. If f2(N
2[r2]) = 0, we obtain

(T2, f2, r2) ∈ A5. Then, we have (T1, f1, r1) ∈ B2 or B4. If f2(N
2[r2]) = 1, we

obtain (T2, f2, r2) ∈ A4. Then, we have (T1, f1, r1) ∈ B4.
Hence, B4 ⊆ (B2 ◦A5) ∪ (B4 ◦A3) ∪ (B4 ◦A4) ∪ (B4 ◦A5) ∪ (B6 ◦A2).

Lemma 20. B5 = (B3 ◦A4) ∪ (B5 ◦A3) ∪ (B5 ◦A4).

Proof. It is easy to check the following remarks by definitions.

(i) If (T1, f1, r1) ∈ B3 and (T2, f2, r2) ∈ A4, then (T1, f1, r1)◦(T2, f2, r2) ∈ B5.

(ii) For each 3 ≤ i ≤ 4, if (T1, f1, r1) ∈ B5 and (T2, f2, r2) ∈ Ai, then
(T1, f1, r1) ◦ (T2, f2, r2) ∈ B5. Thus, (B3 ◦A4) ∪ (B5 ◦A3) ∪ (B5 ◦A4) ⊆ B5.

Therefore, we need to prove B5 ⊆ (B3 ◦ A4) ∪ (B5 ◦ A3) ∪ (B5 ◦ A4). Let
(T, f, r)∈B5 and (T, f, r)=(T1, f1, r1)◦(T2, f2, r2), then we have f ∈ R2DF∗(T

+1),
r1 ∈ B and f(N [r]) = 0. It implies r2 ∈ C and f2(r2) = f(r2) = 0. Consider the
following cases.

Case 1. If f2 ∈ R2DF∗(T2), then we have (T2, f2, r2) ∈ A3 and f1 /∈
R2DF∗(T1). Since f1(N [r1]) = 0 and (T, f, r) ∈ B5, we obtain (T1, f1, r1) ∈ B5.

Case 2. If f2 /∈ R2DF∗(T2), we deduce that (T2, f2, r2) ∈ A4. It is clear that
(T1, f1, r1) ∈ B3 or B5.

Hence, B5 ⊆ (B3 ◦A4) ∪ (B5 ◦A3) ∪ (B5 ◦A4).

Lemma 21. B6 = (B3 ◦A5) ∪ (B5 ◦A5) ∪ (B6 ◦A3) ∪ (B6 ◦A4) ∪ (B6 ◦A5).
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Proof. It is easy to check the following remarks by definitions.

(i) For each i ∈ {3, 5}, if (T1, f1, r1) ∈ Bi and (T2, f2, r2) ∈ A5, then
(T1, f1, r1) ◦ (T2, f2, r2) ∈ B6.

(ii) For each 3 ≤ i ≤ 5, if (T1, f1, r1) ∈ B6 and (T2, f2, r2) ∈ Ai, then
(T1, f1, r1) ◦ (T2, f2, r2) ∈ B6.

Therefore, we need to prove B6 ⊆ (B3 ◦ A5) ∪ (B5 ◦ A5) ∪ (B6 ◦ A3) ∪ (B6 ◦
A4) ∪ (B6 ◦ A5). Let (T, f, r) ∈ B6 and (T, f, r) = (T1, f1, r1) ◦ (T2, f2, r2), then
we have f ∈ R2DF∗(T

+2), r1 ∈ B and f(N [r]) = 0. It implies r2 ∈ C. Consider
the following cases.

Case 1. f1 ∈ R2DF∗(T1). Since f1(N [r1]) = f(N [r]) = 0, we have (T1, f1, r1) ∈
B3. It implies (T2, f2, r2) ∈ A5.

Case 2. f1 /∈ R2DF∗(T1). Since f1(N [r1]) = f(N [r]) = 0, then we obtain
(T1, f1, r1) ∈ B5 or B6. If (T1, f1, r1) ∈ B5, we have f1 ∈ R2DF∗(T

+1
1 ). Since f ∈

R2DF∗(T
+2), it means that f2 ∈ R2DF∗(T

+2
2 ). Then we deduce (T2, f2, r2) ∈ A5.

If (T1, f1, r1) ∈ B6, we have f1 ∈ R2DF∗(T
+2
1 ). Since (T, f, r) ∈ B6, we deduce

that f2(r2) = 0. So we obtain (T2, f2, r2) ∈ A3, A4 or A5.
Hence, B6 ⊆ (B3 ◦A5) ∪ (B5 ◦A5) ∪ (B6 ◦A3) ∪ (B6 ◦A4) ∪ (B6 ◦A5).

The final step is to define the initial vector. In this case, for block-cutpoint
graphs, the only basis graph is a single vertex. We can use the similar method in
Section 3 to initialize the vector. It is clear that if v is a C-vertex, then the initial
vector is [2, 1,∞,∞, 0,∞]; if v is a B-vertex and v represents a block of type 0,
then the initial vector is [∞,∞, 0,∞,∞,∞]; if v is a B-vertex and v represents
a block of type 1, then the initial vector is [∞, 1,∞,∞,∞, 0]; if v is a B-vertex
and v represents a block of type 2, then the initial vector is [∞,∞,∞,∞,∞, 0].
Among them, ′∞′ means undefined. From the above argument, we can obtain
the following theorem.

Theorem 22. Algorithm ROMAN {2}-DOM-IN-BLOCK can output the Roman

{2}-domination number of any block graphs G = (V,E) in linear time O(n),
where n = |V |.

Proof. One can prove Theorem 22 by the similar argument as in the proof of
Theorem 8.

Now, we are ready to present the algorithm.
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Algorithm 2: ROMAN {2}-DOM-IN-BLOCK

Input: A connected block graph G (G 6∼= Kn) and its corresponding
block-cutpoint graph T = (V,E) with a tree ordering
v1, v2, . . . , vn.

Output: The Roman {2}-domination number γ{R2}(G).
1 for i := 1 to n do
2 if vi is a C-vertex then
3 initialize h[i, 1..6] to [2, 1,∞,∞, 0,∞] ;
4 else if vi is a B-vertex representing a block of type 0 then
5 initialize h[i, 1..6] to [∞,∞, 0,∞,∞,∞] ;
6 else if vi is a B-vertex representing a block of type 1 then
7 initialize h[i, 1..6] to [∞, 1,∞,∞,∞, 0] ;
8 else
9 initialize h[i, 1..6] to [∞,∞,∞,∞,∞, 0];

10 for j := 1 to n− 1 do
11 vk = F (vj);
12 if vk is a C-vertex then
13 h[k, 1] = min{h[k, 1]+h[j, 1], h[k, 1]+h[j, 2], h[k, 1]+h[j, 3], h[k, 1]+
14 h[j, 4], h[k, 1] + h[j, 5], h[k, 1] + h[j, 6]};
15 h[k, 2] = min{h[k, 2]+h[j, 1], h[k, 2]+h[j, 2], h[k, 2]+h[j, 3], h[k, 2]+
16 h[j, 4], h[k, 2] + h[j, 5]};
17 h[k, 3] = min{h[k, 3]+h[j, 1], h[k, 3]+h[j, 2], h[k, 3]+h[j, 3], h[k, 4]+
18 h[j, 1], h[k, 4] + h[j, 2], h[k, 5] + h[j, 1]};
19 h[k, 4] = min{h[k, 4] + h[j, 3], h[k, 5] + h[j, 2]};
20 h[k, 5] = min{h[k, 5] + h[j, 3]};
21 else
22 S1 = h[k, 2];
23 S2 = h[k, 3];
24 S3 = h[k, 5];
25 h[k, 1] = min{h[k, 1]+h[j, 1], h[k, 1]+h[j, 2], h[k, 1]+h[j, 3], h[k, 1]+
26 h[j, 4], h[k, 1]+h[j, 5], h[k, 2]+h[j, 1], h[k, 2]+h[j, 2], h[k, 3]
27 + h[j, 1], h[k, 4] + h[j, 1], h[k, 4] + h[j, 2], h[k, 5] + h[j, 1],
28 h[k, 6] + h[j, 1]};
29 h[k, 2] = min{h[k, 2] + h[j, 3], h[k, 2] + h[j, 4], h[k, 3] + h[j, 2], h[k, 5]
30 + h[j, 2]};
31 h[k, 3] = min{h[k, 3] + h[j, 3]};
32 h[k, 4] = min{S1 + h[j, 5], h[k, 4] + h[j, 3], h[k, 4] + h[j, 4], h[k, 4]+
33 h[j, 5], h[k, 6] + h[j, 2]};
34 h[k, 5] = min{S2 + h[j, 4], h[k, 5] + h[j, 3], h[k, 5] + h[j, 4]};
35 h[k, 6] = min{S2+h[j, 5], S3+h[j, 5], h[k, 6]+h[j, 3], h[k, 6]+h[j, 4],
36 h[k, 6] + h[j, 5]};

37 return γ{R2}(G) = min{h[n, 1], h[n, 2], h[n, 3]};
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