# ROMAN \{2\}-DOMINATION PROBLEM IN GRAPHS ${ }^{1}$ 

Hangdi Chen and Changhong Lu ${ }^{2}$<br>School of Mathematical Sciences<br>East China Normal University<br>Shanghai 200241, P. R. China<br>e-mail: 471798693@qq.com<br>chlu@math.ecnu.edu.cn


#### Abstract

For a graph $G=(V, E)$, a Roman $\{2\}$-dominating function (R2DF) $f: V \rightarrow\{0,1,2\}$ has the property that for every vertex $v \in V$ with $f(v)=0$, either there exists a neighbor $u \in N(v)$, with $f(u)=2$, or at least two neighbors $x, y \in N(v)$ having $f(x)=f(y)=1$. The weight of an R2DF $f$ is the sum $f(V)=\sum_{v \in V} f(v)$, and the minimum weight of an R2DF on $G$ is the Roman $\{2\}$-domination number $\gamma_{\{R 2\}}(G)$. An R2DF is independent if the set of vertices having positive function values is an independent set. The independent Roman $\{2\}$-domination number $i_{\{R 2\}}(G)$ is the minimum weight of an independent Roman $\{2\}$-dominating function on $G$. In this paper, we show that the decision problem associated with $\gamma_{\{R 2\}}(G)$ is NPcomplete even when restricted to split graphs. We design a linear time algorithm for computing the value of $i_{\{R 2\}}(T)$ in any tree $T$, which answers an open problem raised by Rahmouni and Chellali [Independent Roman $\{2\}$ domination in graphs, Discrete Appl. Math. 236 (2018) 408-414]. Moreover, we present a linear time algorithm for computing the value of $\gamma_{\{R 2\}}(G)$ in any block graph $G$, which is a generalization of trees.


Keywords: Roman \{2\}-domination, domination, algorithms.
2010 Mathematics Subject Classification: 05C69.

[^0]
## 1. Introduction

Let $G=(V, E)$ be a simple graph. The open neighborhood $N_{G}(v)$ of a vertex $v$ consists of the vertices adjacent to $v$ and its closed neighborhood is $N_{G}[v]=$ $N_{G}(v) \cup\{v\} . N_{G}^{2}[v]=\left\{u: d_{G}(u, v) \leq 2\right\}$, where $d_{G}(u, v)$ is the distance between $u$ and $v$ in graph $G$. For an edge $e=u v$, it is said that $u$ (respectively, $v$ ) is incident to $e$, denoted by $u \in e$ (respectively, $v \in e$ ). A Roman dominating function (RDF) on graph $G$ is a function $f: V \rightarrow\{0,1,2\}$ satisfying the condition that every vertex $u$ for which $f(u)=0$ is adjacent to at least one vertex $v$ for which $f(v)=2$. The weight of a Roman dominating function $f$ is the value $f(V)=\sum_{v \in V} f(v)$. The minimum weight of a Roman dominating function on a graph $G$ is called the Roman domination number $\gamma_{R}(G)$ of $G$. Roman domination and its variations have been studied in a number of recent papers (see, for example, $[1,6,9]$ ).

Chellali, Haynes, Hedetniemi and McRae [4] introduced a variant of Roman dominating functions. For a graph $G=(V, E)$, a Roman $\{2\}$-dominating function (R2DF) $f: V \rightarrow\{0,1,2\}$ has the slightly different property that only for every vertex $v \in V$ with $f(v)=0, f(N(v)) \geq 2$, that is, either there exists a neighbor $u \in N(v)$, with $f(u)=2$, or at least two neighbors $x, y \in N(u)$ have $f(x)=f(y)=1$. The weight of a Roman $\{2\}$-dominating function is the sum $f(V)=\sum_{v \in V} f(v)$, and the minimum weight of a Roman $\{2\}$-dominating function $f$ is the Roman $\{2\}$-domination number, denoted $\gamma_{\{R 2\}}(G)$. Roman $\{2\}$ domination is also called Italian domination by some scholars ([8]). Suppose that $f: V \rightarrow\{0,1,2\}$ is an R2DF on a graph $G=(V, E)$. Let $V_{i}=\{v: f(v)=i\}$, for $i \in\{0,1,2\}$. If $V_{1} \cup V_{2}$ is an independent set, then $f$ is called an independent Roman $\{2\}$-dominating function (IR2DF), which was introduced by Rahmouni and Chellali [11] in a recent paper. The minimum weight of an independent Roman $\{2\}$-dominating function $f$ is the independent Roman $\{2\}$-domination number, denoted $i_{\{R 2\}}(G)$. The authors in $[4,11]$ have showed that the associated decision problems for Roman $\{2\}$-domination and independent Roman $\{2\}$-domination are NP-complete for bipartite graphs. The authors in [4] have showed that $\gamma_{\{R 2\}}(T)$ can be computed by a linear time algorithm for any tree $T$. In [11], the authors raised some interesting open problems, one of which is whether there is a linear time algorithm for computing $i_{\{R 2\}}(T)$ for any tree $T$.

A graph $G=(V, E)$ is a split graph if $V$ can be partitioned into $C$ and $I$, where $C$ is a clique and $I$ is an independent set of $G$. Split graph is an important subclass of chordal graphs, and it turns out to be very important in the domination theory (see $[2,7]$ ). A maximal connected induced subgraph without a cut-vertex is called a block of $G$. We use $K_{n}$ to denote the complete graph of order $n$. A graph $G$ is a block graph if every block in $G$ is a complete graph. If every block of $G$ is a $K_{2}$, then $G$ is a tree. Hence, block graphs contain trees
as its subclass. There are widely research on variations of domination in block graphs (see, for example, $[3,5,10,14]$ ).

In this paper, we first show that the decision problem associated with $\gamma_{\{R 2\}}(G)$ is NP-complete for split graphs. Then, we give a linear time algorithm for computing $i_{\{R 2\}}(T)$ in any tree $T$. Moreover, we present a linear time algorithm for computing $\gamma_{\{R 2\}}(G)$ in any block graph $G$.

## 2. Complexity Result

In this section, we consider the decision problem associated with Roman \{2\}dominating functions.

## ROMAN \{2\}-DOMINATING FUNCTION (R2D)

INSTANCE: A graph $G=(V, E)$ and a positive integer $k \leq|V|$.
QUESTION: Does $G$ have a Roman $\{2\}$-dominating function of weight at most $k$ ?

A vertex cover of $G$ is a subset $V^{\prime} \subseteq V$ such that for each edge $u v \in E$, at least one of $u$ and $v$ belongs to $V^{\prime}$. Vertex Cover (VC) problem is a well-known NP-complete problem. We show R2D problem is NP-complete by reducing the Vertex Cover (VC) to R2D.

VERTEX COVER (VC)
INSTANCE: A graph $G=(V, E)$ and a positive integer $k \leq|V|$.
QUESTION: Is there a vertex cover of size $k$ or less for $G$ ?
Theorem 1. R2D is NP-complete for split graphs.
Proof. R2D is a member of NP, since we can check in polynomial time that a function $f: V \rightarrow\{0,1,2\}$ has weight at most $k$ and is a Roman $\{2\}$-dominating function. The proof is given by reducing the VC problem in general graphs to the R2D problem in split graphs.

Let $G=(V, E)$ be a graph with $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. Let $V^{1}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$. We construct the graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with $V^{\prime}=$ $V^{1} \cup V \cup E, E^{\prime}=\left\{v_{i} v_{j}: v_{i} \neq v_{j}, v_{i} \in V, v_{j} \in V\right\} \cup\left\{v_{i} v_{i}^{\prime}: i=1, \ldots, n\right\} \cup\{v e: v \in$ $e, e \in E\}$.

Notice that $G^{\prime}$ is a split graph whose vertex set $V^{\prime}$ is the disjoint union of the clique $V$ and the independent set $V^{1} \cup E$. It is clear that $G^{\prime}$ can be constructed in polynomial time from $G$.

If $G$ has a vertex cover $C$ of size at most $k$, let $f: V^{\prime} \rightarrow\{0,1,2\}$ be a function
defined as follows.

$$
f(v)=\left\{\begin{array}{l}
2, \text { if } v \in C \\
1, \text { if } v \in V^{1} \text { and let } v^{\prime} \text { be a neighbor of } v \text { such that } v^{\prime} \in V \backslash C \\
0, \text { otherwise }
\end{array}\right.
$$

It is clear that $f$ is a Roman $\{2\}$-dominating function of $G^{\prime}$ with weight at most $2 k+(n-k)$.

On the other hand, suppose that $G^{\prime}$ has a Roman $\{2\}$-dominating function of weight at most $2 k+(n-k)$. Among all such functions, let $g=\left(V_{0}, V_{1}, V_{2}\right)$ be one chosen so that:
(C1) $\left|V^{1} \cap V_{2}\right|$ is minimized;
(C2) subject to condition (C1): $\left|E \cap V_{0}\right|$ is maximized;
(C3) subject to conditions ( C 1 ) and ( C 2$):\left|V \cap V_{1}\right|$ is minimized;
$(\mathrm{C} 4)$ subject to conditions $(\mathrm{C} 1),(\mathrm{C} 2)$ and $(\mathrm{C} 3)$ : the weight of $g$ is minimized.
We make the following remarks.
(i) No vertex in $V^{1}$ belongs to $V_{2}$. Indeed, suppose to the contrary that $g\left(v_{i}^{\prime}\right)=2$ for some $i$. We reassign 0 to $v_{i}^{\prime}$ instead of 2 and reassign 2 to $v_{i}$. Then it provides an R2DF on $G^{\prime}$ of weight at most $2 k+(n-k)$ but with less vertices of $V^{1}$ assigned 2, contradicting the condition (C1) in the choice of $g$.
(ii) No vertex in $E$ belongs to $V_{2}$. Indeed, suppose that $g(e)=2$ for some $e \in E$ and $v_{j}, v_{k} \in e$. By reassigning 0 to $e$ instead of 2 and reassigning 2 to $v_{j}$ instead of $g\left(v_{j}\right)$, we obtain an R2DF on $G^{\prime}$ of weight at most $2 k+(n-k)$ but with more vertices of $E$ assigned 0 , contradicting the condition (C2) in the choice of $g$.
(iii) No vertex in $E$ belongs to $V_{1}$. Suppose that $g(e)=1$ for some $e \in E$ and $v_{j}, v_{k} \in e$. If $g\left(v_{j}^{\prime}\right)=0$, then $g\left(v_{j}\right)=2$ (by the definition of R2DF). By reassigning 0 to $e$ instead of 1 , we obtain an R 2 DF on $G^{\prime}$ of weight at most $2 k+(n-k)$ but with more vertices of $E$ assigned 0 , contradicting the condition (C2) in the choice of $g$. Hence we may assume that $g\left(v_{j}^{\prime}\right)=1$ (by (i)). Clearly we can reassign 2 to $v_{j}$ instead of 0,0 to $v_{j}^{\prime}$ instead of 1 and 0 to $e$ instead of 1. We also obtain a R2DF on $G^{\prime}$ of weight at most $2 k+(n-k)$ but with more vertices of $E$ assigned 0 , contradicting the condition (C2) in the choice of $g$.
(iv) No vertex in $V$ belongs to $V_{1}$. Suppose to the contrary that $g\left(v_{i}\right)=1$ for some $i$, then $g\left(v_{i}^{\prime}\right)=1$ (by (i) and the definition of R 2 DF ). We reassign 0 to $v_{i}^{\prime}$ instead of 1 and 2 to $v_{i}$ instead of 1 . It provides a R2DF on $G^{\prime}$ of weight at most
$2 k+(n-k)$ but with less vertices of $V$ assigned 1 , contradicting the condition (C3) in the choice of $g$.
(v) If a vertex in $V$ is assigned 2 , then its neighbor in $V^{1}$ is assigned 0 by the condition (C4) in the choice of $g$.
(vi) If a vertex in $V$ is assigned 0 , then its neighbor in $V^{1}$ is assigned 1 by the definition of R2DF and (i).

Therefore, according to the previous items, we conclude that $V^{1} \cap V_{2}=\emptyset$, $E \subseteq V_{0}$, and $V \cap V_{1}=\emptyset$. Hence $V_{2} \subseteq V$. Let $C=\{v: g(v)=2\}$. Since each vertex in $E \cup(V \backslash C)$ belongs to $V_{0}$ in $G^{\prime}$, it is clear that $C$ is a vertex cover of $G$ by the definition of R2DF. Then $g\left(V^{1}\right)+g(V)+g(E)=2|C|+(n-|C|) \leq 2 k+(n-k)$, implying that $|C| \leq k$. Consequently, $C$ is a vertex cover for $G$ of size at most $k$.

Since the vertex cover problem is NP-complete, the Roman $\{2\}$-domination problem is NP-complete for split graphs.

## 3. Independent Roman $\{2\}$-Domination in Trees

In this section, a linear time dynamic programming style algorithm is given to compute the exact value of the independent Roman $\{2\}$-dominating number in any tree. This algorithm is constructed using the methodology of Wimer [13].

A rooted tree is a pair $(T, r)$ with $T$ is a tree and $r$ is a vertex of $T$. We call $r$ is the root of tree $T$. A rooted tree $(T, r)$ is trivial if $V(T)=r$. Given two rooted trees $\left(T_{1}, r_{1}\right)$ and $\left(T_{2}, r_{2}\right)$ with $V\left(T_{1}\right) \cap V\left(T_{2}\right)=\emptyset$, the composition of them is $\left(T_{1}, r_{1}\right) \circ\left(T_{2}, r_{2}\right)=\left(T, r_{1}\right)$ with $V(T)=V\left(T_{1}\right) \cup V\left(T_{2}\right)$ and $E(T)=$ $E\left(T_{1}\right) \cup E\left(T_{2}\right) \cup\left\{r_{1} r_{2}\right\}$. It is clear that any rooted tree can be constructed recursively from trivial rooted trees using the defined composition.

Let $f: V(T) \rightarrow\{0,1,2\}$ be a function on $T$. Then $f$ splits two functions $f_{1}$ and $f_{2}$ according to this decomposition. We express this as follows: $(T, f, r)=$ $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$, where $r=r_{1}, f_{i}=\left.f\right|_{T_{i}}$ is the function $f$ restricted to the vertices of $T_{i}, i=1,2$. On the other hand, let $f_{i}: V\left(T_{i}\right) \rightarrow\{0,1,2\}$ be a function on $T_{i}(i=1,2)$. We can define the composition as follows: $\left(T_{1}, f_{1}, r_{1}\right) \circ$ $\left(T_{2}, f_{2}, r_{2}\right)=(T, f, r)$, where $V(T)=V\left(T_{1}\right) \cup V\left(T_{2}\right), E(T)=E\left(T_{1}\right) \cup E\left(T_{2}\right) \cup$ $\left\{r_{1} r_{2}\right\}, r=r_{1}$ and $f=f_{1} \circ f_{2}: V(T) \rightarrow\{0,1,2\}$ with $f(v)=f_{i}(v)$ if $v \in V\left(T_{i}\right)$, $i=1,2$. Before presenting the algorithm, let us give the following observation.

Observation 2. Let $f$ be an IR2DF of $T=T_{1} \circ T_{2}$ and $f_{i}=\left.f\right|_{T_{i}}(i=1,2)$. If $f_{i}\left(r_{i}\right) \neq 0$, then $f_{i}$ is an IR2DF of $T_{i}$. If $f_{i}\left(r_{i}\right)=0$, then $f_{i}$ restricted to the vertices of $T_{i}-r_{i}$ is an IR2DF of $T_{i}-r_{i}$.

In order to construct an algorithm for computing the independent Roman $\{2\}$-domination number, we must characterize the possible tree-subset tuples $(T, f, r)$. For this purpose, we introduce some additional notations as follows:
$\operatorname{IR2DF}(T)=\{f: f$ is an $\operatorname{IR2DF}$ of $T\}$,
$\operatorname{IR2}^{\mathrm{DF}_{r}}(T)=\left\{f: f \notin \operatorname{IR} 2 \mathrm{DF}(T)\right.$, but $\left.f\right|_{T-r}$ is an $\operatorname{IR2DF}$ of $\left.T-r\right\}$.
Then we consider the following five classes:
$A=\{(T, f, r): f \in \operatorname{IR} 2 \operatorname{DF}(T)$ and $f(r)=2\}$,
$B=\{(T, f, r): f \in \operatorname{IR} 2 \operatorname{DF}(T)$ and $f(r)=1\}$,
$C=\{(T, f, r): f \in \operatorname{IR} 2 \operatorname{DF}(T)$ and $f(r)=0\}$,
$D=\left\{(T, f, r): f \in \operatorname{IR2}^{2} \mathrm{DF}_{r}(T)\right.$ and $\left.f(N[r])=1\right\}$,
$F=\left\{(T, f, r): f \in \operatorname{IR2DF}_{r}(T)\right.$ and $\left.f(N[r])=0\right\}$.
Let $M, N \in\{A, B, C, D, F\}$. If $\left(T_{1}, f_{1}, r_{1}\right) \in M$ and $\left(T_{2}, f_{2}, r_{2}\right) \in N$, we use $M \circ N$ to denote the set of $(T, f, r)=\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$. Let $(T, r)=$ $\left(T_{1}, r_{1}\right) \circ\left(T_{2}, r_{2}\right)$ and $r=r_{1}$. Suppose that $f_{1}$ (respectively, $f_{2}$ ) is a function on $T_{1}$ (respectively, $T_{2}$ ). Define $f$ as the function on $T$ with $\left.f\right|_{T_{1}}=f_{1}$ and $\left.f\right|_{T_{2}}=f_{2}$. Next, we provide some lemmas.
Lemma 3. $A=(A \circ C) \cup(A \circ D) \cup(A \circ F)$.
Proof. It is clear that the following items are true.
(i) If $\left(T_{1}, f_{1}, r_{1}\right) \in A$ and $\left(T_{2}, f_{2}, r_{2}\right) \in C$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in A$.
(ii) If $\left(T_{1}, f_{1}, r_{1}\right) \in A$ and $\left(T_{2}, f_{2}, r_{2}\right) \in D$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in A$.
(iii) If $\left(T_{1}, f_{1}, r_{1}\right) \in A$ and $\left(T_{2}, f_{2}, r_{2}\right) \in F$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in A$. Thus, $(A \circ C) \cup(A \circ D) \cup(A \circ F) \subseteq A$.

Now we prove that $A \subseteq(A \circ C) \cup(A \circ D) \cup(A \circ F)$. Let $(T, f, r) \in A$ and $(T, f, r)=\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$, then $f_{1}\left(r_{1}\right)=f(r)=2$. Since $f \in$ $\operatorname{IR} 2 \mathrm{DF}(T)$, then $f_{1} \in \operatorname{IR} 2 \mathrm{DF}\left(T_{1}\right)$. So $\left(T_{1}, f_{1}, r_{1}\right) \in A$. From the independence of $V_{1} \cup V_{2}$, we have $f_{2}\left(r_{2}\right)=f\left(r_{2}\right)=0$. If $f_{2} \in \operatorname{IR} 2 \operatorname{DF}\left(T_{2}\right)$, then we obtain $\left(T_{2}, f_{2}, r_{2}\right) \in C$. If $f_{2} \notin \operatorname{IR2} \operatorname{DF}\left(T_{2}\right)$, then $\left(T_{2}, f_{2}, r_{2}\right) \in D$ or $F$. Hence, we conclude that $A \subseteq(A \circ C) \cup(A \circ D) \cup(A \circ F)$.

Lemma 4. $B=(B \circ C) \cup(B \circ D)$.
Proof. It is easy to check the following items.
(i) If $\left(T_{1}, f_{1}, r_{1}\right) \in B$ and $\left(T_{2}, f_{2}, r_{2}\right) \in C$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in B$.
(ii) If $\left(T_{1}, f_{1}, r_{1}\right) \in B$ and $\left(T_{2}, f_{2}, r_{2}\right) \in D$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in B$. So, $(B \circ C) \cup(B \circ D) \subseteq B$.

Next we need to show $B \subseteq(B \circ C) \cup(B \circ D)$. Let $(T, f, r) \in B$ and $(T, f, r)=$ $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$, then $f_{1}\left(r_{1}\right)=f(r)=1$. It is clear that $f_{1} \in \operatorname{IR} 2 \operatorname{DF}\left(T_{1}\right)$. So we conclude that $\left(T_{1}, f_{1}, r_{1}\right) \in B$. From the definition of IR2DF, we must have $f_{2}\left(r_{2}\right)=f\left(r_{2}\right)=0$. If $f_{2} \in \operatorname{IR} 2 \operatorname{DF}\left(T_{2}\right)$, then we obtain $\left(T_{2}, f_{2}, r_{2}\right) \in C$. If $f_{2} \notin \operatorname{IR} 2 \operatorname{DF}\left(T_{2}\right)$, then $f_{2}\left(N_{T_{2}}\left[r_{2}\right]\right)=1$ and $\left.f_{2}\right|_{T_{2}-r_{2}} \in \operatorname{IR2DF}\left(T_{2}-r_{2}\right)$ using the fact that $(T, f, r) \in B$. Therefore, we have $f_{2} \in \operatorname{IR2} \mathrm{DF}_{r_{2}}\left(T_{2}\right)$, implying that $\left(T_{2}, f_{2}, r_{2}\right) \in D$. Hence, we deduce that $B \subseteq(B \circ C) \cup(B \circ D)$.

Lemma 5. $C=(C \circ A) \cup(C \circ B) \cup(C \circ C) \cup(D \circ A) \cup(D \circ B) \cup(F \circ A)$.
Proof. It is easy to check the following remarks by definitions.
(i) If $\left(T_{1}, f_{1}, r_{1}\right) \in C$ and $\left(T_{2}, f_{2}, r_{2}\right) \in A$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in C$.
(ii) If $\left(T_{1}, f_{1}, r_{1}\right) \in C$ and $\left(T_{2}, f_{2}, r_{2}\right) \in B$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in C$.
(iii) If $\left(T_{1}, f_{1}, r_{1}\right) \in C$ and $\left(T_{2}, f_{2}, r_{2}\right) \in C$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in C$.
(iv) If $\left(T_{1}, f_{1}, r_{1}\right) \in D$ and $\left(T_{2}, f_{2}, r_{2}\right) \in A$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in C$.
(v) If $\left(T_{1}, f_{1}, r_{1}\right) \in D$ and $\left(T_{2}, f_{2}, r_{2}\right) \in B$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in C$.
(vi) If $\left(T_{1}, f_{1}, r_{1}\right) \in F$ and $\left(T_{2}, f_{2}, r_{2}\right) \in A$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in C$. Hence, we deduce that $(C \circ A) \cup(C \circ B) \cup(C \circ C) \cup(D \circ A) \cup(D \circ B) \cup(F \circ A) \subseteq C$.

Therefore, we need to prove $C \subseteq(C \circ A) \cup(C \circ B) \cup(C \circ C) \cup(D \circ A) \cup(D \circ$ $B) \cup(F \circ A)$. Let $(T, f, r) \in C$ and $(T, f, r)=\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$, then $f \in$ $\operatorname{IR} 2 \mathrm{DF}(T)$ and $f_{1}\left(r_{1}\right)=f(r)=0$. Consider the following cases.

Case 1. $f\left(r_{2}\right)=2$. Since $f \in \operatorname{IR} 2 \operatorname{DF}(T), f_{2} \in \operatorname{IR} 2 \mathrm{DF}\left(T_{2}\right)$. Hence, $\left(T_{2}, f_{2}, r_{2}\right) \in$ A. If $f_{1} \in \operatorname{IR} 2 \operatorname{DF}\left(T_{1}\right)$, then we obtain that $\left(T_{1}, f_{1}, r_{1}\right) \in C$. If $f_{1} \notin \operatorname{IR} 2 \operatorname{DF}\left(T_{1}\right)$, we have $\left(T_{1}, f_{1}, r_{1}\right) \in D$ or $F$.

Case 2. $f\left(r_{2}\right)=1$. Since $f \in \operatorname{IR2DF}(T), f_{2} \in \operatorname{IR2DF}\left(T_{2}\right)$. So $\left(T_{2}, f_{2}, r_{2}\right) \in B$. If $f_{1} \in \operatorname{IR} 2 \operatorname{DF}\left(T_{1}\right)$, then we deduce $\left(T_{1}, f_{1}, r_{1}\right) \in C$. If $f_{1} \notin \operatorname{IR} 2 \operatorname{DF}\left(T_{1}\right)$, therefore, it implies that $\left(T_{1}, f_{1}, r_{1}\right) \in D$.

Case 3. $f\left(r_{2}\right)=0$. It is clear that $f_{1}$ and $f_{2}$ are both IR2DF. Then we obtain that $\left(T_{1}, f_{1}, r_{1}\right) \in C$ and $\left(T_{2}, f_{2}, r_{2}\right) \in C$.

Hence, $C \subseteq(C \circ A) \cup(C \circ B) \cup(C \circ C) \cup(D \circ A) \cup(D \circ B) \cup(F \circ A)$.
Lemma 6. $D=(D \circ C) \cup(F \circ B)$.
Proof. It is easy to check the following remarks by definitions.
(i) If $\left(T_{1}, f_{1}, r_{1}\right) \in D$ and $\left(T_{2}, f_{2}, r_{2}\right) \in C$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in D$.
(ii) If $\left(T_{1}, f_{1}, r_{1}\right) \in F$ and $\left(T_{2}, f_{2}, r_{2}\right) \in B$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in D$. Thus, $(D \circ C) \cup(F \circ B) \subseteq D$.

On the other hand, we show $D \subseteq(D \circ C) \cup(F \circ B)$. Let $(T, f, r) \in D$ and $(T, f, r)=\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$. Then $f_{1}\left(r_{1}\right)=f(r)=0$. By the definition of $D, f_{2} \in \operatorname{IR} 2 \operatorname{DF}\left(T_{2}\right)$. Using the fact that $f\left(N_{T}\left[r_{1}\right]\right)=1$, we deduce that $f\left(r_{2}\right)<2$. Consider the following cases.

Case 1. $f\left(r_{2}\right)=1$. It is clear that $\left(T_{2}, f_{2}, r_{2}\right) \in B$ because $f_{2}$ is an IR2DF of $T_{2}$. Since $f_{1}\left(N_{T_{1}}\left[r_{1}\right]\right)=0$, we obtain $\left.f_{1}\right|_{T_{1}-r_{1}} \in \operatorname{IR2DF}\left(T_{1}-r_{1}\right)$. Hence, we have $f_{1} \in \operatorname{IR}_{2} \mathrm{DF}_{r_{1}}\left(T_{1}\right)$, implying that $\left(T_{1}, f_{1}, r_{1}\right) \in F$.

Case 2. $f\left(r_{2}\right)=0$. Then $f_{2}$ is an IR2DF of $T_{2}$, implying that $\left(T_{2}, f_{2}, r_{2}\right) \in C$. Using the fact that $f\left(N_{T}\left[r_{1}\right]\right)=1$ and $f\left(r_{2}\right)=0$, we know $f_{1}\left(N_{T_{1}}\left[r_{1}\right]\right)=1$. So


Lemma 7. $F=F \circ C$.
Proof. If $\left(T_{1}, f_{1}, r_{1}\right) \in F$ and $\left(T_{2}, f_{2}, r_{2}\right) \in C$, then it is clear that $(T, f, r) \in F$. Hence, $(F \circ C) \subseteq F$.

On the other hand, let $(T, f, r) \in F$ and $(T, f, r)=\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$. Then $f_{1}\left(r_{1}\right)=f(r)=0$. By the definition of $F$, we deduce that $f\left(r_{2}\right)=0$. Using the fact that $(T, f, r) \in F$, we have that $f_{2} \in \operatorname{IR} 2 \operatorname{DF}\left(T_{2}\right)$. So $\left(T_{2}, f_{2}, r_{2}\right) \in C$. Notice that $(T, f, r) \in F$, we have $f_{1}\left(N_{T_{1}}\left[r_{1}\right]\right)=0$, implying that $\left(T_{1}, f_{1}, r_{1}\right) \notin D$. We can easily check that $f_{1} \in \operatorname{IR} 2 \mathrm{DF}_{r_{1}}\left(T_{1}\right)$. Hence, we have $\left(T_{1}, f_{1}, r_{1}\right) \in F$, implying that $F \subseteq(F \circ C)$.

Let $T=(V, E)$ be a tree with $n$ vertices. It is well known that the vertices of $T$ have an ordering $v_{1}, v_{2}, \ldots, v_{n}$ such that for each $1 \leq i \leq n-1, v_{i}$ is adjacent to exactly one vertex $v_{j}$ with $j>i$ (see [12]). The ordering is called a tree ordering where the only neighbor $v_{j}$ with $j>i$ is called the father of $v_{i}$ and $v_{i}$ is a child of $v_{j}$. For each $1 \leq i \leq n-1$, the father of $v_{i}$ is denoted by $F\left(v_{i}\right)=v_{j}$.

For each vertex $v_{i}(1 \leq i \leq n)$, define a vector $l[i, 1 . .5]$. Let $T_{v_{i}}$ be a tree such that $v_{i}$ is the root of $T_{v_{i}}$. For each rooted tree $\left(T_{v_{i}}, v_{i}\right)$, let $f_{v_{i}}: V\left(T_{v_{i}}\right) \rightarrow\{0,1,2\}$ be a function on $T_{v_{i}}$ and define $w\left(f_{v_{i}}\right)=f_{v_{i}}\left(V\left(T_{v_{i}}\right)\right)$. In this case, for a tree, the only basis graph is a single vertex. Then, the vector $l[i, 1 . .5]$ is initialized by
 $\left.\min _{\left(T_{v_{i}}, f_{v_{i}}, v_{i}\right) \in F} w\left(f_{v_{i}}\right)\right]$.

It means $l[i, 1 . .5]=[2,1, \infty, \infty, 0]$, where ' $\infty$ ' means undefined. Now, we are ready to present the algorithm.

```
Algorithm 1: INDEPENDENT-ROMAN \{2\}-DOM-IN-TREE
    Input: A tree \(T=(V, E)\) with a tree ordering \(v_{1}, v_{2}, \cdots, v_{n}\).
    Output: The independent Roman \(\{2\}\)-domination number \(i_{\{R 2\}}(T)\).
    if \(T=K_{1}\) then
        return \(i_{\{R 2\}}(T)=1\);
    for \(i:=1\) to \(n\) do
        initialize \(l[i, 1 . .5]\) to \([2,1, \infty, \infty, 0]\);
    for \(j:=1\) to \(n-1\) do
        \(v_{k}=F\left(v_{j}\right)\);
        \(l[k, 1]=\min \{l[k, 1]+l[j, 3], l[k, 1]+l[j, 4], l[k, 1]+l[j, 5]\} ;\)
        \(l[k, 2]=\min \{l[k, 2]+l[j, 3], l[k, 2]+l[j, 4]\} ;\)
        \(l[k, 3]=\min \{l[k, 3]+l[j, 1], l[k, 3]+l[j, 2], l[k, 3]+l[j, 3], l[k, 4]+l[j, 1]\),
                \(l[k, 4]+l[j, 2], l[k, 5]+l[j, 1]\} ;\)
        \(l[k, 4]=\min \{l[k, 4]+l[j, 3], l[k, 5]+l[j, 2]\} ;\)
        \(l[k, 5]=\min \{l[k, 5]+l[j, 3]\} ;\)
    return \(i_{\{R 2\}}(T)=\min \{l[n, 1], l[n, 2], l[n, 3]\} ;\)
```

From the above argument, we can obtain the following theorem.
Theorem 8. Algorithm INDEPENDENT-ROMAN \{2\}-DOM-IN-TREE can output the independent Roman $\{2\}$-domination number of any tree $T=(V, E)$ in linear time $O(n)$, where $n=|V|$.

Proof. It is clear that the running time of Algorithm 1 is linear. We only need to show $i_{\{R 2\}}(T)=\min \{l[n, 1], l[n, 2], l[n, 3]\}$. Suppose that $f \in \operatorname{IR} 2 \operatorname{DF}(T)$. Then, $(T, f, r) \in A \cup B \cup C$. By the Algorithm 1 and Lemmas 3-7, we have $l[n, 1]=\min _{(T, f, r) \in A} f(V), l[n, 2]=\min _{(T, f, r) \in B} f(V)$, and $l[n, 3]=\min _{(T, f, r) \in C} f(V)$. By the definition of $i_{\{R 2\}}(T)$, we deduce that

$$
i_{\{R 2\}}(T)=\min _{(T, f, r) \in A \cup B \cup C} f(V)=\min \{l[n, 1], l[n, 2], l[n, 3]\} .
$$

## 4. Roman $\{2\}$-Domination in Block Graph

Let $G\left(\not \not K_{n}\right)$ be a connected block graph. The block-cutpoint graph of $G$ is a bipartite graph $T_{G}=(C \cup B, E)$ in which one partite set $C$ consists of the cutvertices of $G$, and the other $B$ has a vertex $h$ for each block $H$ of $G$. Let $v \in C$ and $h \in B$. We include $v h$ as an edge of $T_{G}$ if and only if $v$ is in $H$, where $H$ is the block of $G$ represented by $h$. Obviously, $T_{G}$ is a tree and can be constructed from $G$ in linear time (see $[12]$ ). In this section, we call each vertex in $C$ a $C$-vertex and each vertex in $B$ a $B$-vertex.

Let $H$ be a block of $G$. Suppose that $S=\{v: v \in H$ and $v$ is a cutvertex of $G\}$. We say $H$ is a block of type 0 if $|H|=|S|$ and $H$ is a block of type 1 if $|H|=|S|+1$. If $|H| \geq|S|+2$, we say $H$ is a block of type 2. Let $f: V(G) \rightarrow\{0,1,2\}$ be a function of a block graph $G\left(\neq K_{n}\right) . f_{*}: V\left(T_{G}\right) \rightarrow \mathbb{Z}$ is defined as follows:

$$
f_{*}(v)=\left\{\begin{array}{l}
f(v), \text { if } v \text { is a } C \text {-vertex, } \\
f(H)-f(S), \text { if } v \text { is a } B \text {-vertex representing the block } H .
\end{array}\right.
$$

We say that $f_{*}$ is the function induced by $f$. Now we present a key result on the relationship between $f$ and $f_{*}$.

Theorem 9. Let $f: V(G) \rightarrow\{0,1,2\}$ be a function of a connected block graph $G$ ( $G \neq K_{n}$ ) and $f_{*}$ be the function induced by $f$. Then, $f$ satisfies the following properties:
(1) $f(v)=0$ or 1 if $v \in H$ is not a cut-vertex of $G$, where $H$ is a block of type 1 of $G$.
(2) $f(v)=0$ if $v \in H$ is not a cut-vertex of $G$, where $H$ is a block of type 2 of $G$.
(3) $f$ is an R2DF of $G$.
if and only if $f_{*}$ satisfies the following properties:
(a) $f_{*}(v)=0$ or 1 if $v$ is a B-vertex and the block $H$ represented by $v$ is type 1.
(b) $f_{*}(v)=0$ if $v$ is a $B$-vertex and the block $H$ represented by $v$ is not type 1 .
(c) If $v$ is a C-vertex with $f_{*}(v)=0$, then there exists either $u \in N_{T_{G}}^{2}(v)$ with $f_{*}(u)=2$ or $u_{1}, u_{2} \in N_{T_{G}}^{2}(v)$ with $f_{*}\left(u_{1}\right)=f_{*}\left(u_{2}\right)=1$.
(d) If $v$ is a $B$-vertex with $f_{*}(v)=0$ and the block $H$ represented by $v$ is not type 0 , then there exists either $u \in N_{T_{G}}(v)$ with $f_{*}(u)=2$ or $u_{1}, u_{2} \in N_{T_{G}}(v)$ with $f_{*}\left(u_{1}\right)=f_{*}\left(u_{2}\right)=1$.

Proof. If $f$ satisfies the above properties, it is clear that $f_{*}$ satisfies the above items (a), (b). Suppose that $v$ is a $C$-vertex with $f_{*}(v)=0$. By the definition of $f_{*}, f(v)=0$. If there exists a vertex $u \in N_{G}(v)$ with $f(u)=2$, then $u$ is a cut-vertex of $G$, and hence $u \in N_{T_{G}}^{2}[v]$ with $f_{*}(u)=2$. Otherwise, there exists at least two vertices $x, y \in N_{G}(v)$ having $f(x)=f(y)=1$. If $x$ and $y$ are both cut-vertices of $G$, then we obtain $x, y \in N_{T_{G}}^{2}[v]$ having $f_{*}(x)=f_{*}(y)=1$. If $x$ is not a cut-vertex of $G$ and $H$ is the block containing $x$, we deduce that $H$ is type 1 by the second property of $f$. It implies that $f_{*}(h)=1$ and $v h \in E\left(T_{G}\right)$, where $h$ is the $B$-vertex representing the block $H$. In this case, $f_{*}$ also satisfies item (c). Suppose that $v$ is a $B$-vertex with $f_{*}(v)=0$ and the block $H$ represented by $v$ is not type 0 . Let $S=\{u: u \in H$ and $u$ is a cut-vertex of $G\}$. By the definition of $f_{*}$, we know that $f(x)=0$ for each $x \in H \backslash S$. Since $f$ is an R2DF of $G$, then there exists either $u \in N_{G}(v)$ with $f(u)=2$ or $u_{1}, u_{2} \in N_{G}(v)$ such that $f\left(u_{1}\right)=f\left(u_{2}\right)=1$. It is clear that $u, u_{1}, u_{2}$ are cut-vertices. It means that $f_{*}(u)=2$ and $f_{*}\left(u_{1}\right)=f_{*}\left(u_{2}\right)=1$. So $f_{*}$ satisfies item (d).

On the other hand, if $f_{*}$ satisfies the above properties, by the definition of $f_{*}$, it is easy to know that $f$ satisfies items (1) and (2).

We now need to show that $f$ is an R 2 DF of $G$. Suppose that $v$ is a cut-vertex with $f(v)=0$. Hence, $f_{*}(v)=f(v)=0$. If there exists $u \in N_{T_{G}}^{2}[v]$ such that $f_{*}(u)=2$, we deduce that $u$ is a cut-vertex of $G, f(u)=2$ and $u \in N_{G}(v)$. Otherwise, there exists $h_{1}, h_{2} \in N_{T_{G}}^{2}[v]$ such that $f_{*}\left(h_{1}\right)=f_{*}\left(h_{2}\right)=1$. If $h_{1}$ and $h_{2}$ are both $C$-vertex, then we have $h_{1}, h_{2} \in N_{G}(v)$ and $f\left(h_{1}\right)=f\left(h_{2}\right)=1$. If $h_{1}$ is a $B$-vertex and $h_{1}$ represent block $H_{1}$ in $T_{G}$. We deduce that $H_{1}$ is a block of type 1 . Hence, there exists $v_{1} \in H_{1}$ and $v_{1}$ is not a cut-vertex of $G$ such that $f\left(v_{1}\right)=f_{*}\left(h_{1}\right)=1$. Therefore, we obtain $f(N(v)) \geq 2$. Suppose that $H$ is a block containing $v$ and $v$ is not a cut-vertex with $f(v)=0$. Then $f_{*}(h)=$ $f(v)=0$, where $h$ is the $B$-vertex representing the block $H$. As $H$ is not type 0 , there either exists $u \in N_{T_{G}}(h)$ such that $f_{*}(u)=2$ or exists $u_{1}, u_{2} \in N_{T_{G}}(h)$
such that $f_{*}\left(u_{1}\right)=f_{*}\left(u_{2}\right)=1$. It is clear that $u, u_{1}, u_{2}$ are cut-vertices and $u, u_{1}, u_{2} \in N_{G}(v)$. We also obtain $f(u)=f_{*}(u)=2$ and $f\left(u_{1}\right)=f\left(u_{2}\right)=1$. Therefore, we deduce $f(N(v)) \geq 2$.

Lemma 10. There exists an R2DF $f$ of $G$ with weight $\gamma_{\{R 2\}}(G)$, which satisfies the following properties:
(1) $f(v)=0$ or 1 if $v \in H$ is not a cut-vertex of $G$, where $H$ is a block of type 1 of $G$.
(2) $f(v)=0$ if $v \in H$ is not a cut-vertex of $G$, where $H$ is a block of type 2 of $G$.

Proof. Let $f$ be an R2DF of weight $\gamma_{\{R 2\}}(G)$ and $u \in H$ be a cut-vertex of $G$, where $H$ is not a block of type $0, S=\{v: v \in H$ and $v$ is a cut-vertex of $G\}$ and $f(u)=\max _{v_{0} \in S} f\left(v_{0}\right)$. Suppose $v \in H$ is not a cut-vertex of $G$. If $f(v)=2$, we can reassign 0 to $v$ and 2 to $u$. Hence, $f(v)=0$ or 1 . Furthermore, if $H$ is a block of type 2 , we suppose that there exists a vertex $v \in H$ such that $f(v)=1$. If $f(u) \geq 1$, then we can reassign 2 to $u$ and 0 to $v$, a contradiction. Suppose that $f(u)=0$, then there exists a vertex $w \in H$, such that $w$ is not a cut-vertex and $f(w) \geq 1$. We reassign 2 to $u$ and 0 to $v, w$, a contradiction.

Let $f$ be an R2DF of block graph $G\left(\not \not K_{n}\right)$ and $f_{*}$ be the function induced by $f$. We say $f_{*}$ is an induced Roman $\{2\}$-domination function ( $\mathrm{R} 2 \mathrm{DF}_{*}$ ) of $T_{G}$ if it satisfies the four properties in Theorem 9. By Theorem 9 and Lemma 10, we can transform the Roman $\{2\}$-domination problem on block graph $G$ into the induced Roman $\{2\}$-domination problem on tree $T_{G}$. Then, we can also use the method of tree composition and decomposition in Section 3. For convenience, $T_{G}=(C \cup B, E)$ is denoted by $T$ and $v \in C$ (respectively, $v \in B$ ) is used to represent that $v$ is a $C$-vertex (respectively, $B$-vertex) of $T_{G}$ if there is no ambiguity.

Suppose that $T$ is a tree rooted at $r$ and $f: V(T) \rightarrow\{0,1,2\}$ is a function on $T$. $T^{\prime}$ is defined as a new tree rooted at $r^{\prime}$ and $f^{\prime}: V\left(T^{\prime}\right) \rightarrow\{0,1,2\}$ is a function on $T^{\prime}$, where $V\left(T^{\prime}\right)=V(T) \cup\left\{r^{\prime}\right\}$ and $E\left(T^{\prime}\right)=E(T) \cup\left\{r r^{\prime}\right\}, f^{\prime}:_{T}=f$.

In order to construct an algorithm for computing the Roman $\{2\}$-domination number, we must characterize the possible tree-subset tuples $(T, f, r)$. For this purpose, we introduce some additional notations as follows:
$\mathrm{R}^{2} \mathrm{DF}_{*}(T)=\left\{f: f\right.$ is an $\mathrm{R}^{2} \mathrm{DF}_{*}$ of $\left.T\right\}$,
$F_{1}(T)=\left\{f: f \in \operatorname{R2DF}_{*}(T)\right.$ with $\left.f(r)=1\right\}$,
$F_{2}(T)=\left\{f: f \in \mathrm{R}^{2} \mathrm{DF}_{*}(T)\right.$ with $\left.f(r)=2\right\}$,
$\operatorname{R2DF}_{*}\left(T^{+1}\right)=\left\{f: f \notin \operatorname{R2DF}_{*}(T), f^{\prime} \in F_{1}\left(T^{\prime}\right)\right.$ and $\left.\left.f^{\prime}\right|_{T}=f\right\}$,
$\operatorname{R2DF}_{*}\left(T^{+2}\right)=\left\{f: f \notin \operatorname{R2DF}_{*}(T), f^{\prime} \in F_{2}\left(T^{\prime}\right)\right.$ and $\left.\left.f^{\prime}\right|_{T}=f\right\}-\operatorname{R2DF}_{*}\left(T^{+1}\right)$.

Then we consider the following eleven classes:
$A_{1}=\left\{(T, f, r): f \in \mathrm{R}_{2} \mathrm{DF}_{*}(T), r \in C\right.$ and $\left.f(r)=2\right\}$,
$A_{2}=\left\{(T, f, r): f \in \operatorname{R2DF}_{*}(T), r \in C\right.$ and $\left.f(r)=1\right\}$,
$A_{3}=\left\{(T, f, r): f \in \mathrm{R}_{2} \mathrm{DF}_{*}(T), r \in C\right.$ and $\left.f(r)=0\right\}$,
$A_{4}=\left\{(T, f, r): f \in \operatorname{R2DF}_{*}\left(T^{+1}\right), r \in C\right\}$,
$A_{5}=\left\{(T, f, r): f \in \operatorname{R2DF}_{*}\left(T^{+2}\right), r \in C\right\}$,
$B_{1}=\left\{(T, f, r): f \in \mathrm{R}_{2} \mathrm{DF}_{*}(T), r \in B\right.$ and $\left.f(N[r]) \geq 2\right\}$,
$B_{2}=\left\{(T, f, r): f \in \operatorname{R2DF}_{*}(T), r \in B\right.$ and $\left.f(N[r])=1\right\}$,
$B_{3}=\left\{(T, f, r): f \in \mathrm{R}_{2} \mathrm{DF}_{*}(T), r \in B\right.$ and $\left.f(N[r])=0\right\}$,
$B_{4}=\left\{(T, f, r): f \in \mathrm{R}_{2} \mathrm{DF}_{*}\left(T^{+1}\right), r \in B\right.$ and $\left.f(N[r])=1\right\}$,
$B_{5}=\left\{(T, f, r): f \in \mathrm{R}_{2} \mathrm{DF}_{*}\left(T^{+1}\right), r \in B\right.$ and $\left.f(N[r])=0\right\}$,
$B_{6}=\left\{(T, f, r): f \in \mathrm{R}_{2} \mathrm{DF}_{*}\left(T^{+2}\right), r \in B\right\}$.
Let $(T, r)=\left(T_{1}, r_{1}\right) \circ\left(T_{2}, r_{2}\right)$ and $r=r_{1}$. Suppose that $f_{1}$ (respectively, $\left.f_{2}\right)$ is a function on $T_{1}$ (respectively, $T_{2}$ ). Define $f$ as the function on $T$ with $\left.f\right|_{T_{1}}=f_{1}$ and $\left.f\right|_{T_{2}}=f_{2}$. In order to give the algorithm, we present the following lemmas.

Lemma 11. $A_{1}=\left(A_{1} \circ B_{1}\right) \cup\left(A_{1} \circ B_{2}\right) \cup\left(A_{1} \circ B_{3}\right) \cup\left(A_{1} \circ B_{4}\right) \cup\left(A_{1} \circ B_{5}\right) \cup\left(A_{1} \circ B_{6}\right)$.
Proof. For each $1 \leq i \leq 6$, if $\left(T_{1}, f_{1}, r_{1}\right) \in A_{1}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in B_{i}$, it is clear that $f$ is an $\mathrm{R} 2 \mathrm{DF}_{*}$ of $T, r \in C$ and $f(r)=f\left(r_{1}\right)=2$. We deduce that $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in A_{1}$. So $\left(A_{1} \circ B_{1}\right) \cup\left(A_{1} \circ B_{2}\right) \cup\left(A_{1} \circ B_{3}\right) \cup\left(A_{1} \circ B_{4}\right) \cup$ $\left(A_{1} \circ B_{5}\right) \cup\left(A_{1} \circ B_{6}\right) \subseteq A_{1}$.

Now we prove that $A_{1} \subseteq\left(A_{1} \circ B_{1}\right) \cup\left(A_{1} \circ B_{2}\right) \cup\left(A_{1} \circ B_{3}\right) \cup\left(A_{1} \circ B_{4}\right) \cup$ $\left(A_{1} \circ B_{5}\right) \cup\left(A_{1} \circ B_{6}\right)$. Let $(T, f, r) \in A_{1}$ and $(T, f, r)=\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$, then $f_{1}\left(r_{1}\right)=f(r)=2$. Since $f \in \operatorname{R2DF}_{*}(T), f_{1} \in \operatorname{R2DF}_{*}\left(T_{1}\right)$ and $r_{1} \in C$. So $\left(T_{1}, f_{1}, r_{1}\right) \in A_{1}$ and $r_{2} \in B$. If $f_{2} \in \operatorname{R2DF}_{*}\left(T_{2}\right)$, then we obtain $\left(T_{2}, f_{2}, r_{2}\right) \in B_{1}$, $B_{2}$ or $B_{3}$. If $f_{2} \notin \operatorname{R2} \mathrm{DF}_{*}\left(T_{2}\right)$, then $\left(T_{2}, f_{2}, r_{2}\right) \in B_{4}, B_{5}$ or $B_{6}$. Hence, we conclude that $A_{1} \subseteq\left(A_{1} \circ B_{1}\right) \cup\left(A_{1} \circ B_{2}\right) \cup\left(A_{1} \circ B_{3}\right) \cup\left(A_{1} \circ B_{4}\right) \cup\left(A_{1} \circ B_{5}\right) \cup\left(A_{1} \circ B_{6}\right)$.

Lemma 12. $A_{2}=\left(A_{2} \circ B_{1}\right) \cup\left(A_{2} \circ B_{2}\right) \cup\left(A_{2} \circ B_{3}\right) \cup\left(A_{2} \circ B_{4}\right) \cup\left(A_{2} \circ B_{5}\right)$.
Proof. For each $1 \leq i \leq 5$, if $\left(T_{1}, f_{1}, r_{1}\right) \in A_{2}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in B_{i}$, it is clear that $f$ is an $\mathrm{R}_{2} \mathrm{DF}_{*}$ of $T, r \in C$ and $f(r)=f\left(r_{1}\right)=1$. We conclude that $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in A_{2}$, implying that $\left(A_{2} \circ B_{1}\right) \cup\left(A_{2} \circ B_{2}\right) \cup\left(A_{2} \circ B_{3}\right) \cup$ $\left(A_{2} \circ B_{4}\right) \cup\left(A_{2} \circ B_{5}\right) \subseteq A_{2}$.

Then we need to show $A_{2} \subseteq\left(A_{2} \circ B_{1}\right) \cup\left(A_{2} \circ B_{2}\right) \cup\left(A_{2} \circ B_{3}\right) \cup\left(A_{2} \circ\right.$ $\left.B_{4}\right) \cup\left(A_{2} \circ B_{5}\right)$. Let $(T, f, r) \in A_{2}$ and $(T, f, r)=\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$, then $f_{1}\left(r_{1}\right)=f(r)=1$. It is clear that $\left(T_{1}, f_{1}, r_{1}\right) \in A_{2}$ and $r_{2} \in B$. If $f_{2}$ is an $\mathrm{R}_{2} \mathrm{DF}_{*}$ of $T_{2}$, then we obtain $\left(T_{2}, f_{2}, r_{2}\right) \in B_{1}, B_{2}$ or $B_{3}$. If $f_{2}$ is not an $\mathrm{R} 2 \mathrm{DF}_{*}$ of $T_{2}$, then $f_{2}\left(N_{T_{2}}\left[r_{2}\right]\right) \leq 1$ and $f_{2} \in \operatorname{R} 2 \mathrm{DF}_{*}\left(T_{2}^{+1}\right)$ by using the fact
that $(T, f, r) \in A_{2}$. Therefore, we have $\left(T_{2}, f_{2}, r_{2}\right) \in B_{4}$ or $B_{5}$. Hence, $A_{2} \subseteq$ $\left(A_{2} \circ B_{1}\right) \cup\left(A_{2} \circ B_{2}\right) \cup\left(A_{2} \circ B_{3}\right) \cup\left(A_{2} \circ B_{4}\right) \cup\left(A_{2} \circ B_{5}\right)$.

Lemma 13. $A_{3}=\left(A_{3} \circ B_{1}\right) \cup\left(A_{3} \circ B_{2}\right) \cup\left(A_{3} \circ B_{3}\right) \cup\left(A_{4} \circ B_{1}\right) \cup\left(A_{4} \circ B_{2}\right) \cup\left(A_{5} \circ B_{1}\right)$.
Proof. We make some remarks.
(i) For each $1 \leq i \leq 3$, if $\left(T_{1}, f_{1}, r_{1}\right) \in A_{3}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in B_{i}$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in A_{3}$. Indeed, if $\left(T_{1}, f_{1}, r_{1}\right) \in A_{3}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in B_{i}$, then $f_{1}$ is an $\mathrm{R}_{2} \mathrm{DF}_{*}$ of $T_{1}$ and $f_{2}$ is an $\mathrm{R}_{2} \mathrm{DF}_{*}$ of $T_{2}$. Hence, $f$ is an R2DF $*$ of $T, r \in C$ and $f(r)=0$. So $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in A_{3}$.
(ii) For each $1 \leq i \leq 2$, if $\left(T_{1}, f_{1}, r_{1}\right) \in A_{4}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in B_{i}$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in A_{3}$. Indeed, if $\left(T_{1}, f_{1}, r_{1}\right) \in A_{4}$, then we have that $f_{1} \in$ $\operatorname{R2DF}_{*}\left(T_{1}^{+1}\right), r \in C, f(r)=0$ and $f\left(N_{T_{1}}^{2}[r]\right)=1$. By the definition of $B_{i}$, we obtain $f\left(N_{T}^{2}[r]\right) \geq 2$ and $f \in \operatorname{R2DF}_{*}(T)$. Hence, $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in A_{3}$.
(iii) If $\left(T_{1}, f_{1}, r_{1}\right) \in A_{5}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in B_{1}$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in$ $A_{3}$. Indeed, if $\left(T_{1}, f_{1}, r_{1}\right) \in A_{5}$, then we have that $f_{1} \in \mathrm{R}_{2} \mathrm{DF}_{*}\left(T_{1}^{+2}\right), r \in C$, $f(r)=0$ and $f\left(N_{T_{1}}^{2}[r]\right)=0$. By the definition of $B_{1}$, we obtain $f\left(N_{T}^{2}[r]\right) \geq$ 2 and $f \in \mathrm{R} 2 \mathrm{DF}_{*}(T)$. It means that $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in A_{3}$. Hence, $\left(A_{3} \circ B_{1}\right) \cup\left(A_{3} \circ B_{2}\right) \cup\left(A_{3} \circ B_{3}\right) \cup\left(A_{4} \circ B_{1}\right) \cup\left(A_{4} \circ B_{2}\right) \cup\left(A_{5} \circ B_{1}\right) \subseteq A_{3}$.

Therefore, we need to prove $A_{3} \subseteq\left(A_{3} \circ B_{1}\right) \cup\left(A_{3} \circ B_{2}\right) \cup\left(A_{3} \circ B_{3}\right) \cup\left(A_{4} \circ B_{1}\right) \cup$ $\left(A_{4} \circ B_{2}\right) \cup\left(A_{5} \circ B_{1}\right)$. Let $(T, f, r) \in A_{3}$ and $(T, f, r)=\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$, then we have that $f_{1}\left(r_{1}\right)=f(r)=0, r_{1} \in C$ and $f_{2} \in \operatorname{R2DF}{ }_{*}\left(T_{2}\right)$. So $r_{2} \in B$. If $f_{1} \in$ $\operatorname{R} 2 \mathrm{DF}_{*}\left(T_{1}\right)$, then we obtain $\left(T_{1}, f_{1}, r_{1}\right) \in A_{3}$, implying that $\left(T_{2}, f_{2}, r_{2}\right) \in B_{1}, B_{2}$ or $B_{3}$. Suppose that $f_{1} \notin \operatorname{R2} \mathrm{DF}_{*}\left(T_{1}\right)$. Consider the following cases.

Case 1. $f_{1}\left(N_{T_{1}}^{2}\left[r_{1}\right]\right)=1$. Then we obtain $f_{1} \in \operatorname{R2DF}_{*}\left(T_{1}^{+1}\right)$, implying that $\left(T_{1}, f_{1}, r_{1}\right) \in A_{4}$. Since $(T, f, r) \in A_{3}$, we have $f_{2}\left(N_{T_{2}}\left[r_{2}\right]\right) \geq 1$. So $\left(T_{2}, f_{2}, r_{2}\right) \in$ $B_{1}$ or $B_{2}$.

Case 2. $f_{1}\left(N_{T_{1}}^{2}\left[r_{1}\right]\right)=0$. So we have $f_{1} \in \operatorname{R2DF} F_{*}\left(T_{1}^{+2}\right)$. Then $\left(T_{1}, f_{1}, r_{1}\right) \in$ $A_{5}$. Since $(T, f, r) \in A_{3}$, we obtain $f_{2}\left(N_{T_{2}}\left[r_{2}\right]\right) \geq 2$. Hence, $\left(T_{2}, f_{2}, r_{2}\right) \in B_{1}$.

Lemma 14. $A_{4}=\left(A_{4} \circ B_{3}\right) \cup\left(A_{5} \circ B_{2}\right)$.
Proof. It is easy to check the following remarks by definitions.
(i) If $\left(T_{1}, f_{1}, r_{1}\right) \in A_{4}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in B_{3}$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in A_{4}$.
(ii) If $\left(T_{1}, f_{1}, r_{1}\right) \in A_{5}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in B_{2}$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in A_{4}$. Therefore, $\left(A_{4} \circ B_{3}\right) \cup\left(A_{5} \circ B_{2}\right) \subseteq A_{4}$.

On the other hand, we show $A_{4} \subseteq\left(A_{4} \circ B_{3}\right) \cup\left(A_{5} \circ B_{2}\right)$. Let $(T, f, r) \in A_{4}$ and $(T, f, r)=\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$. Then we have that $f \in \operatorname{R2DF}_{*}\left(T^{+1}\right)$ and $r_{1} \in C$, implying that $f\left(N_{T}^{2}\left[r_{1}\right]\right)=1$. It means that $r_{2} \in B$. By the definition
of $A_{4}, f_{2} \in \operatorname{R2DF} *\left(T_{2}\right)$. Using the fact that $f\left(N_{T}^{2}\left[r_{1}\right]\right)=1$, we deduce that $f_{2}\left(N\left[r_{2}\right]\right)<2$. Consider the following cases.

Case 1. $f_{2}\left(N\left[r_{2}\right]\right)=1$. It is clear that $\left(T_{2}, f_{2}, r_{2}\right) \in B_{2}$. Since $f_{1}\left(N_{T_{1}}^{2}\left[r_{1}\right]\right)=$ $f\left(N_{T}^{2}\left[r_{1}\right]\right)-f_{2}\left(N\left[r_{2}\right]\right)=0$, we obtain $\left(T_{1}, f_{1}, r_{1}\right) \in A_{5}$.

Case 2. $f_{2}\left(N\left[r_{2}\right]\right)=0$. Then $\left(T_{2}, f_{2}, r_{2}\right) \in B_{3}$. Since $f_{1}\left(N_{T_{1}}^{2}\left[r_{1}\right]\right)=f\left(N_{T}^{2}\left[r_{1}\right]\right)-$ $f_{2}\left(N\left[r_{2}\right]\right)=1$, we have $\left(T_{1}, f_{1}, r_{1}\right) \in A_{4}$.

Consequently, we deduce that $A_{4} \subseteq\left(A_{4} \circ B_{3}\right) \cup\left(A_{5} \circ B_{2}\right)$.
Lemma 15. $A_{5}=A_{5} \circ B_{3}$.
Proof. It is easy to check that $\left(A_{5} \circ B_{3}\right) \subseteq A_{5}$ by the definitions. On the other hand, let $(T, f, r) \in A_{5}$ and $(T, f, r)=\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$. Then we obtain $f \in \operatorname{R2DF}_{*}\left(T^{+2}\right), r_{1} \in C$ and $f_{1}\left(N^{2}\left[r_{1}\right]\right)=f\left(N^{2}[r]\right)=0$. It implies that $\left(T_{1}, f_{1}, r_{1}\right) \in A_{5}$ and $r_{2} \in B$. Using the fact that $(T, f, r) \in A_{5}$, we deduce $f_{2}\left(N\left[r_{2}\right]\right)=0$ and $f_{2} \in \mathrm{R}_{2} \mathrm{DF}_{*}\left(T_{2}\right)$. Therefore, $\left(T_{2}, f_{2}, r_{2}\right) \in B_{3}$. Then we obtain $A_{5} \subseteq\left(A_{5} \circ B_{3}\right)$.

Lemma 16. $B_{1}=\left(B_{1} \circ A_{1}\right) \cup\left(B_{1} \circ A_{2}\right) \cup\left(B_{1} \circ A_{3}\right) \cup\left(B_{1} \circ A_{4}\right) \cup\left(B_{1} \circ A_{5}\right) \cup$ $\left(B_{2} \circ A_{1}\right) \cup\left(B_{2} \circ A_{2}\right) \cup\left(B_{3} \circ A_{1}\right) \cup\left(B_{4} \circ A_{1}\right) \cup\left(B_{4} \circ A_{2}\right) \cup\left(B_{5} \circ A_{1}\right) \cup\left(B_{6} \circ A_{1}\right)$.

Proof. We make some remarks.
(i) For each $1 \leq i \leq 5$, if $\left(T_{1}, f_{1}, r_{1}\right) \in B_{1}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in A_{i}$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in B_{1}$. It is easy to check it by the definitions of $B_{1}$ and $A_{i}$.
(ii) For each $2 \leq i \leq 6$, if $\left(T_{1}, f_{1}, r_{1}\right) \in B_{i}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in A_{1}$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in B_{1}$. We can easily check it by definitions too.
(iii) For each $i \in\{2,4\}$, if $\left(T_{1}, f_{1}, r_{1}\right) \in B_{i}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in A_{2}$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in B_{1}$. Indeed, it is clear that $f \in \operatorname{R2DF}_{*}(T), r \in B$ and $f(N[r])=f_{1}\left(N\left[r_{1}\right]\right)+f_{2}\left(r_{2}\right)=2$. Hence, $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in B_{1}$.

Therefore, we need to prove $B_{1} \subseteq\left(B_{1} \circ A_{1}\right) \cup\left(B_{1} \circ A_{2}\right) \cup\left(B_{1} \circ A_{3}\right) \cup\left(B_{1} \circ A_{4}\right) \cup$ $\left(B_{1} \circ A_{5}\right) \cup\left(B_{2} \circ A_{1}\right) \cup\left(B_{2} \circ A_{2}\right) \cup\left(B_{3} \circ A_{1}\right) \cup\left(B_{4} \circ A_{1}\right) \cup\left(B_{4} \circ A_{2}\right) \cup\left(B_{5} \circ A_{1}\right) \cup\left(B_{6} \circ A_{1}\right)$. Let $(T, f, r) \in B_{1}$ and $(T, f, r)=\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$, then we have $f \in$ $\operatorname{R2DF}_{*}(T), r_{1} \in B$ and $f(N[r]) \geq 2$. It means that $r_{2} \in C$. Consider the following cases.

Case 1. $f\left(r_{2}\right)=2$. Then we have $f_{2} \in \operatorname{R2} \mathrm{DF}_{*}\left(T_{2}\right)$, impling that $\left(T_{2}, f_{2}, r_{2}\right) \in$ $A_{1}$. If $f_{1} \in \mathrm{R}_{2} \mathrm{DF}_{*}\left(T_{1}\right)$, we obtain $\left(T_{1}, f_{1}, r_{1}\right) \in B_{1}, B_{2}$ or $B_{3}$. Suppose that $f_{1} \notin$ $\operatorname{R2DF}_{*}\left(T_{1}\right)$, then $f_{1} \in \operatorname{R2DF}{ }_{*}\left(T_{1}^{+1}\right)$ or $f_{1} \in \operatorname{R2DF}_{*}\left(T_{1}^{+2}\right)$. Hence, $\left(T_{1}, f_{1}, r_{1}\right) \in$ $B_{4}, B_{5}$ or $B_{6}$.

Case 2. $f\left(r_{2}\right)=1$. It is clear that $\left(T_{2}, f_{2}, r_{2}\right) \in A_{2}$. We also have $f_{1}\left(N\left[r_{1}\right]\right)=$ $f(N[r])-f_{2}\left(r_{2}\right) \geq 2-1 \geq 1$. If $f_{1} \in \operatorname{R2DF}_{*}\left(T_{1}\right)$, we obtain $\left(T_{1}, f_{1}, r_{1}\right) \in B_{1}$ or $B_{2}$.

Suppose that $f_{1} \notin \operatorname{R2DF} F_{*}\left(T_{1}\right)$, then $f_{1} \in \operatorname{R2DF}{ }_{*}\left(T_{1}^{+1}\right)$. Therefore, $\left(T_{1}, f_{1}, r_{1}\right) \in$ $B_{4}$.

Case 3. $f\left(r_{2}\right)=0$. Then we obtain $f_{1}\left(N\left[r_{1}\right]\right)=f(N[r])-f_{2}\left(r_{2}\right) \geq 2$ and $f_{1} \in \operatorname{R2DF}_{*}\left(T_{1}\right)$, implying that $\left(T_{1}, f_{1}, r_{1}\right) \in B_{1}$. If $f_{2} \in \operatorname{R2DF}_{*}\left(T_{2}\right)$, we deduce $\left(T_{1}, f_{1}, r_{1}\right) \in A_{3}$. Suppose that $f_{2} \notin \operatorname{R2DF}_{*}\left(T_{2}\right)$, then $f_{2} \in \operatorname{R2DF}_{*}\left(T_{2}^{+1}\right)$ or $f_{2} \in$ $\mathrm{R} 2 \mathrm{DF}_{*}\left(T_{2}^{+2}\right)$. Therefore, $\left(T_{2}, f_{2}, r_{2}\right) \in A_{4}$ or $A_{5}$.

Hence, $B_{1} \subseteq\left(B_{1} \circ A_{1}\right) \cup\left(B_{1} \circ A_{2}\right) \cup\left(B_{1} \circ A_{3}\right) \cup\left(B_{1} \circ A_{4}\right) \cup\left(B_{1} \circ A_{5}\right) \cup\left(B_{2} \circ\right.$ $\left.A_{1}\right) \cup\left(B_{2} \circ A_{2}\right) \cup\left(B_{3} \circ A_{1}\right) \cup\left(B_{4} \circ A_{1}\right) \cup\left(B_{4} \circ A_{2}\right) \cup\left(B_{5} \circ A_{1}\right) \cup\left(B_{6} \circ A_{1}\right)$.

Lemma 17. $B_{2}=\left(B_{2} \circ A_{3}\right) \cup\left(B_{2} \circ A_{4}\right) \cup\left(B_{3} \circ A_{2}\right) \cup\left(B_{5} \circ A_{2}\right)$.
Proof. We make some remarks.
(i) For each $3 \leq i \leq 4$, if $\left(T_{1}, f_{1}, r_{1}\right) \in B_{2}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in A_{i}$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in B_{2}$. It is easy to check it by the definitions.
(ii) For each $i \in\{3,5\}$, if $\left(T_{1}, f_{1}, r_{1}\right) \in B_{i}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in A_{2}$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in B_{2}$. Indeed, if $\left(T_{1}, f_{1}, r_{1}\right) \in B_{i}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in A_{2}$, we obtain that $f \in \mathrm{R}_{2} \mathrm{DF}_{*}(T), r \in B$ and $f(N[r])=f_{1}\left(N\left[r_{1}\right]\right)+f_{2}\left(r_{2}\right)=1$. Hence, we deduce $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in B_{2}$. Thus, $\left(B_{2} \circ A_{3}\right) \cup\left(B_{2} \circ A_{4}\right) \cup\left(B_{3} \circ A_{2}\right) \cup$ $\left(B_{5} \circ A_{2}\right) \subseteq B_{2}$.

Now we need to prove $B_{2} \subseteq\left(B_{2} \circ A_{3}\right) \cup\left(B_{2} \circ A_{4}\right) \cup\left(B_{3} \circ A_{2}\right) \cup\left(B_{5} \circ A_{2}\right)$. Let $(T, f, r) \in B_{2}$ and $(T, f, r)=\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$, then we have that $f \in$ $\mathrm{R}_{2} \mathrm{DF}_{*}(T), r_{1} \in B$ and $f(N[r])=1$. It implies $r_{2} \in C$. Consider the following cases.

Case 1. $f\left(r_{2}\right)=1$. Then we have $f_{1}\left(N\left[r_{1}\right]\right)=f(N[r])-f\left(r_{2}\right)=0$ and $f_{2}\left(r_{2}\right)=1$, implying that $f_{2} \in \operatorname{R2DF}_{*}\left(T_{2}\right)$. So $\left(T_{2}, f_{2}, r_{2}\right) \in A_{2}$. If $f_{1} \in$ $\operatorname{R2DF} *\left(T_{1}\right)$, we obtain $\left(T_{1}, f_{1}, r_{1}\right) \in B_{3}$. Suppose that $f_{1} \notin \operatorname{R2DF}_{*}\left(T_{1}\right)$, then $f_{1}\left(r_{1}\right)=0$ because $f \in \operatorname{R2DF}_{*}(T)$. Since $f_{1}\left(N\left[r_{1}\right]\right)=0$, we have that $\left(T_{1}, f_{1}, r_{1}\right) \in$ $B_{5}$.

Case 2. $f\left(r_{2}\right)=0$. It is clear that $f_{1}\left(N\left[r_{1}\right]\right)=f(N[r])-f\left(r_{2}\right)=1$. Since $f_{1}=$ $\left.f\right|_{T_{1}}$ and $f \in \mathrm{R}_{2} \mathrm{DF}_{*}(T)$, we have $f_{1} \in \mathrm{R}_{2} \mathrm{DF}_{*}\left(T_{1}\right)$. Hence, $\left(T_{1}, f_{1}, r_{1}\right) \in B_{2}$. If $f_{2} \in \operatorname{R2DF}_{*}\left(T_{2}\right)$, we deduce that $\left(T_{2}, f_{2}, r_{2}\right) \in A_{3}$. Suppose that $f_{2} \notin \operatorname{R2DF}_{*}\left(T_{2}\right)$, then $f_{2}\left(N^{2}\left[r_{2}\right]\right)=1$. It implies $f_{2} \in \operatorname{R2DF}_{*}\left(T_{2}^{+1}\right)$. Therefore, $\left(T_{2}, f_{2}, r_{2}\right) \in A_{4}$.

Hence, $B_{2} \subseteq\left(B_{2} \circ A_{3}\right) \cup\left(B_{2} \circ A_{4}\right) \cup\left(B_{3} \circ A_{2}\right) \cup\left(B_{5} \circ A_{2}\right)$.
Lemma 18. $B_{3}=B_{3} \circ A_{3}$.
Proof. It is easy to check that $\left(B_{3} \circ A_{3}\right) \subseteq B_{3}$ by the definitions. On the other hand, let $(T, f, r) \in B_{3}$ and $(T, f, r)=\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$. Then we obtain $f_{1}\left(N\left[r_{1}\right]\right)=f(N[r])=0, r_{1} \in B$ and $f\left(r_{2}\right)=0$. It means that $r_{2} \in C$. Since $f \in \operatorname{R2DF}_{*}(T)$ and $f\left(r_{2}\right)=0$, we obtain that $f_{1} \in \operatorname{R2DF}{ }_{*}\left(T_{1}\right)$, implying that $\left(T_{1}, f_{1}, r_{1}\right) \in B_{3}$. Using the fact that $f_{1}\left(N\left[r_{1}\right]\right)=0$ and $f\left(r_{2}\right)=0$, we deduce that $f_{2} \in \operatorname{R2DF}_{*}\left(T_{2}\right)$. Therefore, $\left(T_{2}, f_{2}, r_{2}\right) \in A_{3}$. Then $B_{3} \subseteq\left(B_{3} \circ A_{3}\right)$.

Lemma 19. $B_{4}=\left(B_{2} \circ A_{5}\right) \cup\left(B_{4} \circ A_{3}\right) \cup\left(B_{4} \circ A_{4}\right) \cup\left(B_{4} \circ A_{5}\right) \cup\left(B_{6} \circ A_{2}\right)$.
Proof. It is easy to check the following remarks by definitions.
(i) If $\left(T_{1}, f_{1}, r_{1}\right) \in B_{2}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in A_{5}$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in B_{4}$.
(ii) For each $3 \leq i \leq 5$, if $\left(T_{1}, f_{1}, r_{1}\right) \in B_{4}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in A_{i}$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in B_{4}$.
(iii) If $\left(T_{1}, f_{1}, r_{1}\right) \in B_{6}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in A_{2}$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in$ $B_{4}$.

Therefore, we need to prove $B_{4} \subseteq\left(B_{2} \circ A_{5}\right) \cup\left(B_{4} \circ A_{3}\right) \cup\left(B_{4} \circ A_{4}\right) \cup\left(B_{4} \circ\right.$ $\left.A_{5}\right) \cup\left(B_{6} \circ A_{2}\right)$. Let $(T, f, r) \in B_{4}$ and $(T, f, r)=\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$, then we have $f \in \operatorname{R2DF}_{*}\left(T^{+1}\right), r_{1} \in B$ and $f(N[r])=1$. It implies $r_{2} \in C$. Consider the following cases.

Case 1. $f\left(r_{2}\right)=1$. Then we have $f_{1}\left(N\left[r_{1}\right]\right)=f(N[r])-f\left(r_{2}\right)=0$ and $f_{2}\left(r_{2}\right)=1$, implying that $f_{2} \in \operatorname{R2DF}_{*}\left(T_{2}\right)$. So $\left(T_{2}, f_{2}, r_{2}\right) \in A_{2}$ and $f_{1} \notin$ $\mathrm{R} 2 \mathrm{DF}_{*}\left(T_{1}\right)$. Since $f_{1}\left(N\left[r_{1}\right]\right)=0$ and $(T, f, r) \in B_{4}$, we obtain $\left(T_{1}, f_{1}, r_{1}\right) \in B_{6}$.

Case 2. $f\left(r_{2}\right)=0$. It is clear that $f_{1}\left(N\left[r_{1}\right]\right)=f(N[r])-f\left(r_{2}\right)=1$. If $f_{2} \in$ $\operatorname{R2DF}_{*}\left(T_{2}\right)$, we deduce that $\left(T_{2}, f_{2}, r_{2}\right) \in A_{3}$, implying $\left(T_{1}, f_{1}, r_{1}\right) \in B_{4}$. Suppose that $f_{2} \notin \operatorname{R2DF}_{*}\left(T_{2}\right)$, then $f_{2}\left(N^{2}\left[r_{2}\right]\right)=0$ or 1. If $f_{2}\left(N^{2}\left[r_{2}\right]\right)=0$, we obtain $\left(T_{2}, f_{2}, r_{2}\right) \in A_{5}$. Then, we have $\left(T_{1}, f_{1}, r_{1}\right) \in B_{2}$ or $B_{4}$. If $f_{2}\left(N^{2}\left[r_{2}\right]\right)=1$, we obtain $\left(T_{2}, f_{2}, r_{2}\right) \in A_{4}$. Then, we have $\left(T_{1}, f_{1}, r_{1}\right) \in B_{4}$.

Hence, $B_{4} \subseteq\left(B_{2} \circ A_{5}\right) \cup\left(B_{4} \circ A_{3}\right) \cup\left(B_{4} \circ A_{4}\right) \cup\left(B_{4} \circ A_{5}\right) \cup\left(B_{6} \circ A_{2}\right)$.
Lemma 20. $B_{5}=\left(B_{3} \circ A_{4}\right) \cup\left(B_{5} \circ A_{3}\right) \cup\left(B_{5} \circ A_{4}\right)$.
Proof. It is easy to check the following remarks by definitions.
(i) If $\left(T_{1}, f_{1}, r_{1}\right) \in B_{3}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in A_{4}$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in B_{5}$.
(ii) For each $3 \leq i \leq 4$, if $\left(T_{1}, f_{1}, r_{1}\right) \in B_{5}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in A_{i}$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in B_{5}$. Thus, $\left(B_{3} \circ A_{4}\right) \cup\left(B_{5} \circ A_{3}\right) \cup\left(B_{5} \circ A_{4}\right) \subseteq B_{5}$.

Therefore, we need to prove $B_{5} \subseteq\left(B_{3} \circ A_{4}\right) \cup\left(B_{5} \circ A_{3}\right) \cup\left(B_{5} \circ A_{4}\right)$. Let $(T, f, r) \in B_{5}$ and $(T, f, r)=\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$, then we have $f \in \mathrm{R}_{2} \mathrm{DF}_{*}\left(T^{+1}\right)$, $r_{1} \in B$ and $f(N[r])=0$. It implies $r_{2} \in C$ and $f_{2}\left(r_{2}\right)=f\left(r_{2}\right)=0$. Consider the following cases.

Case 1. If $f_{2} \in \operatorname{R2DF}{ }_{*}\left(T_{2}\right)$, then we have $\left(T_{2}, f_{2}, r_{2}\right) \in A_{3}$ and $f_{1} \notin$ $\operatorname{R2DF}{ }_{*}\left(T_{1}\right)$. Since $f_{1}\left(N\left[r_{1}\right]\right)=0$ and $(T, f, r) \in B_{5}$, we obtain $\left(T_{1}, f_{1}, r_{1}\right) \in B_{5}$.

Case 2. If $f_{2} \notin \operatorname{R2DF}{ }_{*}\left(T_{2}\right)$, we deduce that $\left(T_{2}, f_{2}, r_{2}\right) \in A_{4}$. It is clear that $\left(T_{1}, f_{1}, r_{1}\right) \in B_{3}$ or $B_{5}$.

Hence, $B_{5} \subseteq\left(B_{3} \circ A_{4}\right) \cup\left(B_{5} \circ A_{3}\right) \cup\left(B_{5} \circ A_{4}\right)$.
Lemma 21. $B_{6}=\left(B_{3} \circ A_{5}\right) \cup\left(B_{5} \circ A_{5}\right) \cup\left(B_{6} \circ A_{3}\right) \cup\left(B_{6} \circ A_{4}\right) \cup\left(B_{6} \circ A_{5}\right)$.

Proof. It is easy to check the following remarks by definitions.
(i) For each $i \in\{3,5\}$, if $\left(T_{1}, f_{1}, r_{1}\right) \in B_{i}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in A_{5}$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in B_{6}$.
(ii) For each $3 \leq i \leq 5$, if $\left(T_{1}, f_{1}, r_{1}\right) \in B_{6}$ and $\left(T_{2}, f_{2}, r_{2}\right) \in A_{i}$, then $\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right) \in B_{6}$.

Therefore, we need to prove $B_{6} \subseteq\left(B_{3} \circ A_{5}\right) \cup\left(B_{5} \circ A_{5}\right) \cup\left(B_{6} \circ A_{3}\right) \cup\left(B_{6} \circ\right.$ $\left.A_{4}\right) \cup\left(B_{6} \circ A_{5}\right)$. Let $(T, f, r) \in B_{6}$ and $(T, f, r)=\left(T_{1}, f_{1}, r_{1}\right) \circ\left(T_{2}, f_{2}, r_{2}\right)$, then we have $f \in \operatorname{R2DF}_{*}\left(T^{+2}\right), r_{1} \in B$ and $f(N[r])=0$. It implies $r_{2} \in C$. Consider the following cases.

Case 1. $f_{1} \in \operatorname{R2DF}_{*}\left(T_{1}\right)$. Since $f_{1}\left(N\left[r_{1}\right]\right)=f(N[r])=0$, we have $\left(T_{1}, f_{1}, r_{1}\right) \in$ $B_{3}$. It implies $\left(T_{2}, f_{2}, r_{2}\right) \in A_{5}$.

Case 2. $f_{1} \notin \operatorname{R2DF}_{*}\left(T_{1}\right)$. Since $f_{1}\left(N\left[r_{1}\right]\right)=f(N[r])=0$, then we obtain $\left(T_{1}, f_{1}, r_{1}\right) \in B_{5}$ or $B_{6}$. If $\left(T_{1}, f_{1}, r_{1}\right) \in B_{5}$, we have $f_{1} \in \operatorname{R2DF}_{*}\left(T_{1}^{+1}\right)$. Since $f \in$ $\operatorname{R2} \mathrm{DF}_{*}\left(T^{+2}\right)$, it means that $f_{2} \in \mathrm{R}^{2} \mathrm{DF}_{*}\left(T_{2}^{+2}\right)$. Then we deduce $\left(T_{2}, f_{2}, r_{2}\right) \in A_{5}$. If $\left(T_{1}, f_{1}, r_{1}\right) \in B_{6}$, we have $f_{1} \in \mathrm{R}_{2} \mathrm{DF}_{*}\left(T_{1}^{+2}\right)$. Since $(T, f, r) \in B_{6}$, we deduce that $f_{2}\left(r_{2}\right)=0$. So we obtain $\left(T_{2}, f_{2}, r_{2}\right) \in A_{3}, A_{4}$ or $A_{5}$.

Hence, $B_{6} \subseteq\left(B_{3} \circ A_{5}\right) \cup\left(B_{5} \circ A_{5}\right) \cup\left(B_{6} \circ A_{3}\right) \cup\left(B_{6} \circ A_{4}\right) \cup\left(B_{6} \circ A_{5}\right)$.
The final step is to define the initial vector. In this case, for block-cutpoint graphs, the only basis graph is a single vertex. We can use the similar method in Section 3 to initialize the vector. It is clear that if $v$ is a $C$-vertex, then the initial vector is $[2,1, \infty, \infty, 0, \infty]$; if $v$ is a $B$-vertex and $v$ represents a block of type 0 , then the initial vector is $[\infty, \infty, 0, \infty, \infty, \infty]$; if $v$ is a $B$-vertex and $v$ represents a block of type 1 , then the initial vector is $[\infty, 1, \infty, \infty, \infty, 0]$; if $v$ is a $B$-vertex and $v$ represents a block of type 2 , then the initial vector is $[\infty, \infty, \infty, \infty, \infty, 0]$. Among them, ' $\infty$ ' means undefined. From the above argument, we can obtain the following theorem.

Theorem 22. Algorithm ROMAN $\{2\}-D O M-I N-B L O C K$ can output the Roman $\{2\}$-domination number of any block graphs $G=(V, E)$ in linear time $O(n)$, where $n=|V|$.

Proof. One can prove Theorem 22 by the similar argument as in the proof of Theorem 8.

Now, we are ready to present the algorithm.

```
Algorithm 2: ROMAN \{2\}-DOM-IN-BLOCK
    Input: A connected block graph \(G\left(G \neq K_{n}\right)\) and its corresponding
                block-cutpoint graph \(T=(V, E)\) with a tree ordering
                \(v_{1}, v_{2}, \ldots, v_{n}\).
    Output: The Roman \(\{2\}\)-domination number \(\gamma_{\{R 2\}}(G)\).
    for \(i:=1\) to \(n\) do
        if \(v_{i}\) is a C-vertex then
            initialize \(h[i, 1 . .6]\) to \([2,1, \infty, \infty, 0, \infty]\);
        else if \(v_{i}\) is a \(B\)-vertex representing a block of type 0 then
            initialize \(h[i, 1 . .6]\) to \([\infty, \infty, 0, \infty, \infty, \infty]\);
        else if \(v_{i}\) is a \(B\)-vertex representing a block of type 1 then
            initialize \(h[i, 1 . .6]\) to \([\infty, 1, \infty, \infty, \infty, 0]\);
        else
            initialize \(h[i, 1 . .6]\) to \([\infty, \infty, \infty, \infty, \infty, 0]\);
    for \(j:=1\) to \(n-1\) do
        \(v_{k}=F\left(v_{j}\right)\);
        if \(v_{k}\) is a C-vertex then
            \(h[k, 1]=\min \{h[k, 1]+h[j, 1], h[k, 1]+h[j, 2], h[k, 1]+h[j, 3], h[k, 1]+\)
                        \(h[j, 4], h[k, 1]+h[j, 5], h[k, 1]+h[j, 6]\} ;\)
            \(h[k, 2]=\min \{h[k, 2]+h[j, 1], h[k, 2]+h[j, 2], h[k, 2]+h[j, 3], h[k, 2]+\)
                \(h[j, 4], h[k, 2]+h[j, 5]\} ;\)
            \(h[k, 3]=\min \{h[k, 3]+h[j, 1], h[k, 3]+h[j, 2], h[k, 3]+h[j, 3], h[k, 4]+\)
                        \(h[j, 1], h[k, 4]+h[j, 2], h[k, 5]+h[j, 1]\} ;\)
            \(h[k, 4]=\min \{h[k, 4]+h[j, 3], h[k, 5]+h[j, 2]\} ;\)
            \(h[k, 5]=\min \{h[k, 5]+h[j, 3]\} ;\)
        else
            \(S_{1}=h[k, 2] ;\)
            \(S_{2}=h[k, 3] ;\)
            \(S_{3}=h[k, 5]\);
            \(h[k, 1]=\min \{h[k, 1]+h[j, 1], h[k, 1]+h[j, 2], h[k, 1]+h[j, 3], h[k, 1]+\)
                    \(h[j, 4], h[k, 1]+h[j, 5], h[k, 2]+h[j, 1], h[k, 2]+h[j, 2], h[k, 3]\)
                    \(+h[j, 1], h[k, 4]+h[j, 1], h[k, 4]+h[j, 2], h[k, 5]+h[j, 1]\),
                    \(h[k, 6]+h[j, 1]\} ;\)
            \(h[k, 2]=\min \{h[k, 2]+h[j, 3], h[k, 2]+h[j, 4], h[k, 3]+h[j, 2], h[k, 5]\)
                        \(+h[j, 2]\} ;\)
            \(h[k, 3]=\min \{h[k, 3]+h[j, 3]\} ;\)
            \(h[k, 4]=\min \left\{S_{1}+h[j, 5], h[k, 4]+h[j, 3], h[k, 4]+h[j, 4], h[k, 4]+\right.\)
                \(h[j, 5], h[k, 6]+h[j, 2]\} ;\)
            \(h[k, 5]=\min \left\{S_{2}+h[j, 4], h[k, 5]+h[j, 3], h[k, 5]+h[j, 4]\right\} ;\)
            \(h[k, 6]=\min \left\{S_{2}+h[j, 5], S_{3}+h[j, 5], h[k, 6]+h[j, 3], h[k, 6]+h[j, 4]\right.\),
                \(h[k, 6]+h[j, 5]\} ;\)
    return \(\gamma_{\{R 2\}}(G)=\min \{h[n, 1], h[n, 2], h[n, 3]\} ;\)
```


## Acknowledgements

We are grateful to the referees whose suggestions are all valuable and very helpful for improving our paper.

## References

[1] E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, Extremal problems for Roman domination, SIAM J. Discrete Math. 23 (2009) 1575-1586. https://doi.org/10.1137/070699688
[2] G.J. Chang, Algorithmic Aspects of Domination in Graphs (Handbook of Combinatorial Optimization, Kluwer Academic Pub., 1998).
[3] G.J. Chang, Total domination in block graphs, Oper. Res. Lett. 8 (1989) 53-57. https://doi.org/10.1016/0167-6377(89)90034-5
[4] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A.A. McRae, Roman \{2\}domination, Discrete Appl. Math. 204 (2016) 22-28. https://doi.org/10.1016/j.dam.2015.11.013
[5] L. Chen, C. Lu and Z. Zeng, Labelling algorithms for paired-domination problems in block and interval graphs, J. Comb. Optim. 19 (2010) 457-470. https://doi.org/10.1007/s10878-008-9177-6
[6] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11-22. https://doi.org/10.1016/j.disc.2003.06.004
[7] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Acad. Press, New York, 1980).
[8] M.A. Henning and W.F. Klostermeyer, Italian domination in trees, Discrete Appl. Math. 217 (2017) 557-564.
https://doi.org/10.1016/j.dam.2016.09.035
[9] C.H. Liu and G.J. Chang, Upper bounds on Roman domination numbers of graphs, Discrete Math. 312 (2012) 1386-1391. https://doi.org/10.1016/j.disc.2011.12.021
[10] D. Pradhan and A. Jha, On computing a minimum secure dominating set in block graphs, J. Comb. Optim. 35 (2018) 613-631.
https://doi.org/10.1007/s10878-017-0197-y
[11] A. Rahmouni and M. Chellali, Independent Roman $\{2\}$-domination in graphs, Discrete Appl. Math. 236 (2018) 408-414. https://doi.org/10.1016/j.dam.2017.10.028
[12] D.B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, 2001).
[13] T.V. Wimer, Linear Algorithms on $k$-Terminal Graphs, PhD Thesis (Clemson University, 1987).
[14] G. Xu, L. Kang, E. Shan and M. Zhao, Power domination in block graphs, Theoret. Comput. Sci. 359 (2006) 299-305.
https://doi.org/10.1016/j.tcs.2006.04.011
Received 13 December 2019
Revised 18 May 2020
Accepted 20 May 2020


[^0]:    ${ }^{1}$ This work was partially supported by National Natural Science Foundation of China (No. 11871222) and Science and Technology Commission of Shanghai Municipality (Nos. 18 dz 22710 00 and 19JC1420100).
    ${ }^{2}$ Corresponding author.

