Discussiones Mathematicae Graph Theory 42 (2022) 641–660 https://doi.org/10.7151/dmgt.2332

ROMAN {2}-DOMINATION PROBLEM IN GRAPHS¹

Hangdi Chen and Changhong Lu^2

School of Mathematical Sciences East China Normal University Shanghai 200241, P. R. China

e-mail: 471798693@qq.com chlu@math.ecnu.edu.cn

Abstract

For a graph G = (V, E), a Roman {2}-dominating function (R2DF) $f: V \to \{0, 1, 2\}$ has the property that for every vertex $v \in V$ with f(v) = 0, either there exists a neighbor $u \in N(v)$, with f(u) = 2, or at least two neighbors $x, y \in N(v)$ having f(x) = f(y) = 1. The weight of an R2DF f is the sum $f(V) = \sum_{v \in V} f(v)$, and the minimum weight of an R2DF on G is the Roman {2}-domination number $\gamma_{\{R2\}}(G)$. An R2DF is independent if the set of vertices having positive function values is an independent set. The independent Roman $\{2\}$ -domination number $i_{\{R2\}}(G)$ is the minimum weight of an independent Roman $\{2\}$ -dominating function on G. In this paper, we show that the decision problem associated with $\gamma_{\{R2\}}(G)$ is NPcomplete even when restricted to split graphs. We design a linear time algorithm for computing the value of $i_{\{R2\}}(T)$ in any tree T, which answers an open problem raised by Rahmouni and Chellali [Independent Roman {2}domination in graphs, Discrete Appl. Math. 236 (2018) 408–414]. Moreover, we present a linear time algorithm for computing the value of $\gamma_{\{R2\}}(G)$ in any block graph G, which is a generalization of trees.

Keywords: Roman {2}-domination, domination, algorithms.

2010 Mathematics Subject Classification: 05C69.

¹This work was partially supported by National Natural Science Foundation of China (No. 11871222) and Science and Technology Commission of Shanghai Municipality (Nos. 18dz22710 00 and 19JC1420100).

²Corresponding author.

1. INTRODUCTION

Let G = (V, E) be a simple graph. The open neighborhood $N_G(v)$ of a vertex v consists of the vertices adjacent to v and its closed neighborhood is $N_G[v] = N_G(v) \cup \{v\}$. $N_G^2[v] = \{u : d_G(u, v) \leq 2\}$, where $d_G(u, v)$ is the distance between u and v in graph G. For an edge e = uv, it is said that u (respectively, v) is incident to e, denoted by $u \in e$ (respectively, $v \in e$). A Roman dominating function (RDF) on graph G is a function $f : V \to \{0, 1, 2\}$ satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function f is the value $f(V) = \sum_{v \in V} f(v)$. The minimum weight of a Roman dominating function on a graph G is called the Roman domination number $\gamma_R(G)$ of G. Roman domination and its variations have been studied in a number of recent papers (see, for example, [1, 6, 9]).

Chellali, Haynes, Hedetniemi and McRae [4] introduced a variant of Roman dominating functions. For a graph G = (V, E), a Roman {2}-dominating function (R2DF) $f: V \to \{0, 1, 2\}$ has the slightly different property that only for every vertex $v \in V$ with f(v) = 0, $f(N(v)) \ge 2$, that is, either there exists a neighbor $u \in N(v)$, with f(u) = 2, or at least two neighbors $x, y \in N(u)$ have f(x) = f(y) = 1. The weight of a Roman {2}-dominating function is the sum $f(V) = \sum_{v \in V} f(v)$, and the minimum weight of a Roman {2}-dominating function f is the Roman $\{2\}$ -domination number, denoted $\gamma_{\{R2\}}(G)$. Roman $\{2\}$ domination is also called *Italian domination* by some scholars ([8]). Suppose that $f: V \to \{0, 1, 2\}$ is an R2DF on a graph G = (V, E). Let $V_i = \{v: f(v) = i\}$, for $i \in \{0, 1, 2\}$. If $V_1 \cup V_2$ is an independent set, then f is called an *independent* Roman $\{2\}$ -dominating function (IR2DF), which was introduced by Rahmouni and Chellali [11] in a recent paper. The minimum weight of an independent Roman $\{2\}$ -dominating function f is the independent Roman $\{2\}$ -domination number, denoted $i_{\{R2\}}(G)$. The authors in [4, 11] have showed that the associated decision problems for Roman {2}-domination and independent Roman $\{2\}$ -domination are NP-complete for bipartite graphs. The authors in [4] have showed that $\gamma_{\{R2\}}(T)$ can be computed by a linear time algorithm for any tree T. In |11|, the authors raised some interesting open problems, one of which is whether there is a linear time algorithm for computing $i_{\{R2\}}(T)$ for any tree T.

A graph G = (V, E) is a *split graph* if V can be partitioned into C and I, where C is a clique and I is an independent set of G. Split graph is an important subclass of chordal graphs, and it turns out to be very important in the domination theory (see [2, 7]). A maximal connected induced subgraph without a cut-vertex is called a *block* of G. We use K_n to denote the complete graph of order n. A graph G is a *block graph* if every block in G is a complete graph. If every block of G is a K_2 , then G is a tree. Hence, block graphs contain trees as its subclass. There are widely research on variations of domination in block graphs (see, for example, [3, 5, 10, 14]).

In this paper, we first show that the decision problem associated with $\gamma_{\{R2\}}(G)$ is NP-complete for split graphs. Then, we give a linear time algorithm for computing $i_{\{R2\}}(T)$ in any tree T. Moreover, we present a linear time algorithm for computing $\gamma_{\{R2\}}(G)$ in any block graph G.

2. Complexity Result

In this section, we consider the decision problem associated with Roman $\{2\}$ -dominating functions.

ROMAN {2}-DOMINATING FUNCTION (R2D)

INSTANCE: A graph G = (V, E) and a positive integer $k \leq |V|$.

QUESTION: Does G have a Roman $\{2\}$ -dominating function of weight at most k?

A vertex cover of G is a subset $V' \subseteq V$ such that for each edge $uv \in E$, at least one of u and v belongs to V'. Vertex Cover (VC) problem is a well-known NP-complete problem. We show R2D problem is NP-complete by reducing the Vertex Cover (VC) to R2D.

VERTEX COVER (VC)

INSTANCE: A graph G = (V, E) and a positive integer $k \leq |V|$.

QUESTION: Is there a vertex cover of size k or less for G?

Theorem 1. R2D is NP-complete for split graphs.

Proof. R2D is a member of NP, since we can check in polynomial time that a function $f: V \to \{0, 1, 2\}$ has weight at most k and is a Roman $\{2\}$ -dominating function. The proof is given by reducing the VC problem in general graphs to the R2D problem in split graphs.

Let G = (V, E) be a graph with $V = \{v_1, v_2, \dots, v_n\}$ and $E = \{e_1, e_2, \dots, e_m\}$. Let $V^1 = \{v'_1, v'_2, \dots, v'_n\}$. We construct the graph G' = (V', E') with $V' = V^1 \cup V \cup E$, $E' = \{v_i v_j : v_i \neq v_j, v_i \in V, v_j \in V\} \cup \{v_i v'_i : i = 1, \dots, n\} \cup \{ve : v \in e, e \in E\}$.

Notice that G' is a split graph whose vertex set V' is the disjoint union of the clique V and the independent set $V^1 \cup E$. It is clear that G' can be constructed in polynomial time from G.

If G has a vertex cover C of size at most k, let $f: V' \to \{0, 1, 2\}$ be a function

defined as follows.

$$f(v) = \begin{cases} 2, \text{ if } v \in C, \\ 1, \text{ if } v \in V^1 \text{ and let } v' \text{ be a neighbor of } v \text{ such that } v' \in V \setminus C, \\ 0, \text{ otherwise.} \end{cases}$$

It is clear that f is a Roman $\{2\}$ -dominating function of G' with weight at most 2k + (n - k).

On the other hand, suppose that G' has a Roman {2}-dominating function of weight at most 2k + (n - k). Among all such functions, let $g = (V_0, V_1, V_2)$ be one chosen so that:

- (C1) $|V^1 \cap V_2|$ is minimized;
- (C2) subject to condition (C1): $|E \cap V_0|$ is maximized;
- (C3) subject to conditions (C1) and (C2): $|V \cap V_1|$ is minimized;
- (C4) subject to conditions (C1), (C2) and (C3): the weight of g is minimized.

We make the following remarks.

(i) No vertex in V^1 belongs to V_2 . Indeed, suppose to the contrary that $g(v'_i) = 2$ for some *i*. We reassign 0 to v'_i instead of 2 and reassign 2 to v_i . Then it provides an R2DF on G' of weight at most 2k + (n - k) but with less vertices of V^1 assigned 2, contradicting the condition (C1) in the choice of g.

(ii) No vertex in E belongs to V_2 . Indeed, suppose that g(e) = 2 for some $e \in E$ and $v_j, v_k \in e$. By reassigning 0 to e instead of 2 and reassigning 2 to v_j instead of $g(v_j)$, we obtain an R2DF on G' of weight at most 2k + (n - k) but with more vertices of E assigned 0, contradicting the condition (C2) in the choice of g.

(iii) No vertex in E belongs to V_1 . Suppose that g(e) = 1 for some $e \in E$ and $v_j, v_k \in e$. If $g(v'_j) = 0$, then $g(v_j) = 2$ (by the definition of R2DF). By reassigning 0 to e instead of 1, we obtain an R2DF on G' of weight at most 2k + (n - k) but with more vertices of E assigned 0, contradicting the condition (C2) in the choice of g. Hence we may assume that $g(v'_j) = 1$ (by (i)). Clearly we can reassign 2 to v_j instead of 0, 0 to v'_j instead of 1 and 0 to e instead of 1. We also obtain a R2DF on G' of weight at most 2k + (n - k) but with more vertices of E assigned 0, contradicting the condition (C2) in the choice of g.

(iv) No vertex in V belongs to V_1 . Suppose to the contrary that $g(v_i) = 1$ for some *i*, then $g(v'_i) = 1$ (by (i) and the definition of R2DF). We reassign 0 to v'_i instead of 1 and 2 to v_i instead of 1. It provides a R2DF on G' of weight at most

2k + (n - k) but with less vertices of V assigned 1, contradicting the condition (C3) in the choice of g.

(v) If a vertex in V is assigned 2, then its neighbor in V^1 is assigned 0 by the condition (C4) in the choice of g.

(vi) If a vertex in V is assigned 0, then its neighbor in V^1 is assigned 1 by the definition of R2DF and (i).

Therefore, according to the previous items, we conclude that $V^1 \cap V_2 = \emptyset$, $E \subseteq V_0$, and $V \cap V_1 = \emptyset$. Hence $V_2 \subseteq V$. Let $C = \{v : g(v) = 2\}$. Since each vertex in $E \cup (V \setminus C)$ belongs to V_0 in G', it is clear that C is a vertex cover of G by the definition of R2DF. Then $g(V^1)+g(V)+g(E)=2|C|+(n-|C|) \leq 2k+(n-k)$, implying that $|C| \leq k$. Consequently, C is a vertex cover for G of size at most k.

Since the vertex cover problem is NP-complete, the Roman {2}-domination problem is NP-complete for split graphs.

3. INDEPENDENT ROMAN {2}-DOMINATION IN TREES

In this section, a linear time dynamic programming style algorithm is given to compute the exact value of the independent Roman $\{2\}$ -dominating number in any tree. This algorithm is constructed using the methodology of Wimer [13].

A rooted tree is a pair (T, r) with T is a tree and r is a vertex of T. We call r is the root of tree T. A rooted tree (T, r) is trivial if V(T) = r. Given two rooted trees (T_1, r_1) and (T_2, r_2) with $V(T_1) \cap V(T_2) = \emptyset$, the composition of them is $(T_1, r_1) \circ (T_2, r_2) = (T, r_1)$ with $V(T) = V(T_1) \cup V(T_2)$ and $E(T) = E(T_1) \cup E(T_2) \cup \{r_1r_2\}$. It is clear that any rooted tree can be constructed recursively from trivial rooted trees using the defined composition.

Let $f: V(T) \to \{0, 1, 2\}$ be a function on T. Then f splits two functions f_1 and f_2 according to this decomposition. We express this as follows: (T, f, r) = $(T_1, f_1, r_1) \circ (T_2, f_2, r_2)$, where $r = r_1$, $f_i = f|_{T_i}$ is the function f restricted to the vertices of T_i , i = 1, 2. On the other hand, let $f_i: V(T_i) \to \{0, 1, 2\}$ be a function on T_i (i = 1, 2). We can define the composition as follows: $(T_1, f_1, r_1) \circ$ $(T_2, f_2, r_2) = (T, f, r)$, where $V(T) = V(T_1) \cup V(T_2)$, $E(T) = E(T_1) \cup E(T_2) \cup$ $\{r_1r_2\}, r = r_1$ and $f = f_1 \circ f_2: V(T) \to \{0, 1, 2\}$ with $f(v) = f_i(v)$ if $v \in V(T_i)$, i = 1, 2. Before presenting the algorithm, let us give the following observation.

Observation 2. Let f be an IR2DF of $T = T_1 \circ T_2$ and $f_i = f|_{T_i}$ (i = 1, 2). If $f_i(r_i) \neq 0$, then f_i is an IR2DF of T_i . If $f_i(r_i) = 0$, then f_i restricted to the vertices of $T_i - r_i$ is an IR2DF of $T_i - r_i$.

In order to construct an algorithm for computing the independent Roman $\{2\}$ -domination number, we must characterize the possible tree-subset tuples (T, f, r). For this purpose, we introduce some additional notations as follows:

$$\begin{split} &\operatorname{IR2DF}(T) = \{f \ : \ f \text{ is an IR2DF of } T\}, \\ &\operatorname{IR2DF}_r(T) = \{f \ : \ f \notin \operatorname{IR2DF}(T), \text{ but } f|_{T-r} \text{ is an IR2DF of } T-r\}. \\ &\operatorname{Then we consider the following five classes:} \\ &A = \{(T, f, r) \ : \ f \in \operatorname{IR2DF}(T) \text{ and } f(r) = 2\}, \\ &B = \{(T, f, r) \ : \ f \in \operatorname{IR2DF}(T) \text{ and } f(r) = 1\}, \\ &C = \{(T, f, r) \ : \ f \in \operatorname{IR2DF}(T) \text{ and } f(r) = 0\}, \\ &D = \{(T, f, r) \ : \ f \in \operatorname{IR2DF}_r(T) \text{ and } f(N[r]) = 1\}, \\ &F = \{(T, f, r) \ : \ f \in \operatorname{IR2DF}_r(T) \text{ and } f(N[r]) = 0\}. \end{split}$$

Let $M, N \in \{A, B, C, D, F\}$. If $(T_1, f_1, r_1) \in M$ and $(T_2, f_2, r_2) \in N$, we use $M \circ N$ to denote the set of $(T, f, r) = (T_1, f_1, r_1) \circ (T_2, f_2, r_2)$. Let $(T, r) = (T_1, r_1) \circ (T_2, r_2)$ and $r = r_1$. Suppose that f_1 (respectively, f_2) is a function on T_1 (respectively, T_2). Define f as the function on T with $f|_{T_1} = f_1$ and $f|_{T_2} = f_2$. Next, we provide some lemmas.

Lemma 3. $A = (A \circ C) \cup (A \circ D) \cup (A \circ F).$

Proof. It is clear that the following items are true.

- (i) If $(T_1, f_1, r_1) \in A$ and $(T_2, f_2, r_2) \in C$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in A$.
- (ii) If $(T_1, f_1, r_1) \in A$ and $(T_2, f_2, r_2) \in D$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in A$.

(iii) If $(T_1, f_1, r_1) \in A$ and $(T_2, f_2, r_2) \in F$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in A$. Thus, $(A \circ C) \cup (A \circ D) \cup (A \circ F) \subseteq A$.

Now we prove that $A \subseteq (A \circ C) \cup (A \circ D) \cup (A \circ F)$. Let $(T, f, r) \in A$ and $(T, f, r) = (T_1, f_1, r_1) \circ (T_2, f_2, r_2)$, then $f_1(r_1) = f(r) = 2$. Since $f \in IR2DF(T)$, then $f_1 \in IR2DF(T_1)$. So $(T_1, f_1, r_1) \in A$. From the independence of $V_1 \cup V_2$, we have $f_2(r_2) = f(r_2) = 0$. If $f_2 \in IR2DF(T_2)$, then we obtain $(T_2, f_2, r_2) \in C$. If $f_2 \notin IR2DF(T_2)$, then $(T_2, f_2, r_2) \in D$ or F. Hence, we conclude that $A \subseteq (A \circ C) \cup (A \circ D) \cup (A \circ F)$.

Lemma 4. $B = (B \circ C) \cup (B \circ D).$

Proof. It is easy to check the following items.

(i) If $(T_1, f_1, r_1) \in B$ and $(T_2, f_2, r_2) \in C$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in B$.

(ii) If $(T_1, f_1, r_1) \in B$ and $(T_2, f_2, r_2) \in D$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in B$. So, $(B \circ C) \cup (B \circ D) \subseteq B$.

Next we need to show $B \subseteq (B \circ C) \cup (B \circ D)$. Let $(T, f, r) \in B$ and $(T, f, r) = (T_1, f_1, r_1) \circ (T_2, f_2, r_2)$, then $f_1(r_1) = f(r) = 1$. It is clear that $f_1 \in \operatorname{IR2DF}(T_1)$. So we conclude that $(T_1, f_1, r_1) \in B$. From the definition of IR2DF, we must have $f_2(r_2) = f(r_2) = 0$. If $f_2 \in \operatorname{IR2DF}(T_2)$, then we obtain $(T_2, f_2, r_2) \in C$. If $f_2 \notin \operatorname{IR2DF}(T_2)$, then $f_2(N_{T_2}[r_2]) = 1$ and $f_2|_{T_2-r_2} \in \operatorname{IR2DF}(T_2-r_2)$ using the fact that $(T, f, r) \in B$. Therefore, we have $f_2 \in \operatorname{IR2DF}_{r_2}(T_2)$, implying that $(T_2, f_2, r_2) \in D$. Hence, we deduce that $B \subseteq (B \circ C) \cup (B \circ D)$.

Lemma 5. $C = (C \circ A) \cup (C \circ B) \cup (C \circ C) \cup (D \circ A) \cup (D \circ B) \cup (F \circ A).$

Proof. It is easy to check the following remarks by definitions.

(i) If $(T_1, f_1, r_1) \in C$ and $(T_2, f_2, r_2) \in A$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in C$. (ii) If $(T_1, f_1, r_1) \in C$ and $(T_2, f_2, r_2) \in B$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in C$. (iii) If $(T_1, f_1, r_1) \in C$ and $(T_2, f_2, r_2) \in C$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in C$. (iv) If $(T_1, f_1, r_1) \in D$ and $(T_2, f_2, r_2) \in A$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in C$.

(v) If $(T_1, f_1, r_1) \in D$ and $(T_2, f_2, r_2) \in B$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in C$.

(v) If $(T_1, f_1, r_1) \in F$ and $(T_2, f_2, r_2) \in A$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in C$.

Hence, we deduce that $(C \circ A) \cup (C \circ B) \cup (C \circ C) \cup (D \circ A) \cup (D \circ B) \cup (F \circ A) \subseteq C$.

Therefore, we need to prove $C \subseteq (C \circ A) \cup (C \circ B) \cup (C \circ C) \cup (D \circ A) \cup (D \circ B) \cup (F \circ A)$. Let $(T, f, r) \in C$ and $(T, f, r) = (T_1, f_1, r_1) \circ (T_2, f_2, r_2)$, then $f \in IR2DF(T)$ and $f_1(r_1) = f(r) = 0$. Consider the following cases.

Case 1. $f(r_2) = 2$. Since $f \in \text{IR2DF}(T)$, $f_2 \in \text{IR2DF}(T_2)$. Hence, $(T_2, f_2, r_2) \in A$. If $f_1 \in \text{IR2DF}(T_1)$, then we obtain that $(T_1, f_1, r_1) \in C$. If $f_1 \notin \text{IR2DF}(T_1)$, we have $(T_1, f_1, r_1) \in D$ or F.

Case 2. $f(r_2) = 1$. Since $f \in \text{IR2DF}(T)$, $f_2 \in \text{IR2DF}(T_2)$. So $(T_2, f_2, r_2) \in B$. If $f_1 \in \text{IR2DF}(T_1)$, then we deduce $(T_1, f_1, r_1) \in C$. If $f_1 \notin \text{IR2DF}(T_1)$, therefore, it implies that $(T_1, f_1, r_1) \in D$.

Case 3. $f(r_2) = 0$. It is clear that f_1 and f_2 are both IR2DF. Then we obtain that $(T_1, f_1, r_1) \in C$ and $(T_2, f_2, r_2) \in C$.

Hence,
$$C \subseteq (C \circ A) \cup (C \circ B) \cup (C \circ C) \cup (D \circ A) \cup (D \circ B) \cup (F \circ A).$$

Lemma 6. $D = (D \circ C) \cup (F \circ B).$

Proof. It is easy to check the following remarks by definitions.

(i) If $(T_1, f_1, r_1) \in D$ and $(T_2, f_2, r_2) \in C$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in D$.

(ii) If $(T_1, f_1, r_1) \in F$ and $(T_2, f_2, r_2) \in B$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in D$. Thus, $(D \circ C) \cup (F \circ B) \subseteq D$.

On the other hand, we show $D \subseteq (D \circ C) \cup (F \circ B)$. Let $(T, f, r) \in D$ and $(T, f, r) = (T_1, f_1, r_1) \circ (T_2, f_2, r_2)$. Then $f_1(r_1) = f(r) = 0$. By the definition of $D, f_2 \in \operatorname{IR2DF}(T_2)$. Using the fact that $f(N_T[r_1]) = 1$, we deduce that $f(r_2) < 2$. Consider the following cases.

Case 1. $f(r_2) = 1$. It is clear that $(T_2, f_2, r_2) \in B$ because f_2 is an IR2DF of T_2 . Since $f_1(N_{T_1}[r_1]) = 0$, we obtain $f_1|_{T_1-r_1} \in \text{IR2DF}(T_1-r_1)$. Hence, we have $f_1 \in \text{IR2DF}_{r_1}(T_1)$, implying that $(T_1, f_1, r_1) \in F$.

Case 2. $f(r_2) = 0$. Then f_2 is an IR2DF of T_2 , implying that $(T_2, f_2, r_2) \in C$. Using the fact that $f(N_T[r_1]) = 1$ and $f(r_2) = 0$, we know $f_1(N_{T_1}[r_1]) = 1$. So $f_1 \in \text{IR2DF}_{r_1}(T_1)$. It implies that $(T_1, f_1, r_1) \in D$.

H. CHEN AND C. LU

Lemma 7. $F = F \circ C$.

Proof. If $(T_1, f_1, r_1) \in F$ and $(T_2, f_2, r_2) \in C$, then it is clear that $(T, f, r) \in F$. Hence, $(F \circ C) \subseteq F$.

On the other hand, let $(T, f, r) \in F$ and $(T, f, r) = (T_1, f_1, r_1) \circ (T_2, f_2, r_2)$. Then $f_1(r_1) = f(r) = 0$. By the definition of F, we deduce that $f(r_2) = 0$. Using the fact that $(T, f, r) \in F$, we have that $f_2 \in \text{IR2DF}(T_2)$. So $(T_2, f_2, r_2) \in C$. Notice that $(T, f, r) \in F$, we have $f_1(N_{T_1}[r_1]) = 0$, implying that $(T_1, f_1, r_1) \notin D$. We can easily check that $f_1 \in \text{IR2DF}_{r_1}(T_1)$. Hence, we have $(T_1, f_1, r_1) \in F$, implying that $F \subseteq (F \circ C)$.

Let T = (V, E) be a tree with n vertices. It is well known that the vertices of T have an ordering v_1, v_2, \ldots, v_n such that for each $1 \le i \le n-1$, v_i is adjacent to exactly one vertex v_j with j > i (see [12]). The ordering is called a *tree ordering* where the only neighbor v_j with j > i is called the *father* of v_i and v_i is a *child* of v_j . For each $1 \le i \le n-1$, the father of v_i is denoted by $F(v_i) = v_j$.

For each vertex v_i $(1 \le i \le n)$, define a vector l[i, 1..5]. Let T_{v_i} be a tree such that v_i is the root of T_{v_i} . For each rooted tree (T_{v_i}, v_i) , let $f_{v_i} : V(T_{v_i}) \to \{0, 1, 2\}$ be a function on T_{v_i} and define $w(f_{v_i}) = f_{v_i}(V(T_{v_i}))$. In this case, for a tree, the only basis graph is a single vertex. Then, the vector l[i, 1..5] is initialized by $[\min_{(T_{v_i}, f_{v_i}, v_i) \in A} w(f_{v_i}), \min_{(T_{v_i}, f_{v_i}, v_i) \in B} w(f_{v_i}), \min_{(T_{v_i}, f_{v_i}, v_i) \in C} w(f_{v_i}), \min_{(T_{v_i}, f_{v_i}, v_i) \in F} w(f_{v_i})].$

It means $l[i, 1..5] = [2, 1, \infty, \infty, 0]$, where ∞' means undefined. Now, we are ready to present the algorithm.

Algorithm 1: INDEPENDENT-ROMAN {2}-DOM-IN-TREE

Input: A tree T = (V, E) with a tree ordering v_1, v_2, \cdots, v_n . **Output:** The independent Roman $\{2\}$ -domination number $i_{\{R2\}}(T)$. 1 if $T = K_1$ then **2** | return $i_{\{R2\}}(T) = 1;$ 3 for i := 1 to n do initialize l[i, 1..5] to $[2, 1, \infty, \infty, 0]$; **5** for j := 1 to n - 1 do $v_k = F(v_i);$ 6 $l[k,1] = \min\{l[k,1] + l[j,3], l[k,1] + l[j,4], l[k,1] + l[j,5]\};$ 7 $l[k,2] = \min\{l[k,2] + l[j,3], l[k,2] + l[j,4]\};$ 8 $l[k,3] = \min\{l[k,3] + l[j,1], l[k,3] + l[j,2], l[k,3] + l[j,3], l[k,4] + l[j,1], l[k,3] + l[j,3], l[k,4] + l[j,4], l[k,4], l[k,4], l[k,4], l[k,4], l[k,4], l[k,4], l[k,4], l[k,4$ 9 $l[k, 4] + l[j, 2], l[k, 5] + l[j, 1]\};$ 10 $l[k,4] = \min\{l[k,4] + l[j,3], l[k,5] + l[j,2]\};$ 11 $l[k,5] = \min\{l[k,5] + l[j,3]\};\$ 1213 return $i_{\{R2\}}(T) = \min\{l[n, 1], l[n, 2], l[n, 3]\};$

From the above argument, we can obtain the following theorem.

Theorem 8. Algorithm INDEPENDENT-ROMAN $\{2\}$ -DOM-IN-TREE can output the independent Roman $\{2\}$ -domination number of any tree T = (V, E) in linear time O(n), where n = |V|.

Proof. It is clear that the running time of Algorithm 1 is linear. We only need to show $i_{\{R2\}}(T) = \min\{l[n,1], l[n,2], l[n,3]\}$. Suppose that $f \in \operatorname{IR2DF}(T)$. Then, $(T, f, r) \in A \cup B \cup C$. By the Algorithm 1 and Lemmas 3–7, we have $l[n,1] = \min_{(T,f,r)\in A} f(V), \ l[n,2] = \min_{(T,f,r)\in B} f(V), \ and \ l[n,3] = \min_{(T,f,r)\in C} f(V)$. By the definition of $i_{\{R2\}}(T)$, we deduce that

$$i_{\{R2\}}(T) = \min_{(T,f,r)\in A\cup B\cup C} f(V) = \min\{l[n,1], l[n,2], l[n,3]\}.$$

4. Roman $\{2\}$ -Domination in Block Graph

Let $G(\not\cong K_n)$ be a connected block graph. The *block-cutpoint graph* of G is a bipartite graph $T_G = (C \cup B, E)$ in which one partite set C consists of the cutvertices of G, and the other B has a vertex h for each block H of G. Let $v \in C$ and $h \in B$. We include vh as an edge of T_G if and only if v is in H, where H is the block of G represented by h. Obviously, T_G is a tree and can be constructed from G in linear time (see [12]). In this section, we call each vertex in C a C-vertex and each vertex in B a B-vertex.

Let H be a block of G. Suppose that $S = \{v : v \in H \text{ and } v \text{ is a cut$ $vertex of } G\}$. We say H is a block of type 0 if |H| = |S| and H is a block of type 1 if |H| = |S| + 1. If $|H| \ge |S| + 2$, we say H is a block of type 2. Let $f : V(G) \to \{0, 1, 2\}$ be a function of a block graph $G(\not\cong K_n)$. $f_* : V(T_G) \to \mathbb{Z}$ is defined as follows:

$$f_*(v) = \begin{cases} f(v), \text{ if } v \text{ is a } C\text{-vertex}, \\ f(H) - f(S), \text{ if } v \text{ is a } B\text{-vertex } representing the block } H. \end{cases}$$

We say that f_* is the function induced by f. Now we present a key result on the relationship between f and f_* .

Theorem 9. Let $f : V(G) \to \{0, 1, 2\}$ be a function of a connected block graph G $(G \not\cong K_n)$ and f_* be the function induced by f. Then, f satisfies the following properties:

(1) f(v) = 0 or 1 if $v \in H$ is not a cut-vertex of G, where H is a block of type 1 of G.

- (2) f(v) = 0 if $v \in H$ is not a cut-vertex of G, where H is a block of type 2 of G.
- (3) f is an R2DF of G.

if and only if f_* satisfies the following properties:

- (a) $f_*(v) = 0$ or 1 if v is a B-vertex and the block H represented by v is type 1.
- (b) $f_*(v) = 0$ if v is a B-vertex and the block H represented by v is not type 1.
- (c) If v is a C-vertex with $f_*(v) = 0$, then there exists either $u \in N^2_{T_G}(v)$ with $f_*(u) = 2$ or $u_1, u_2 \in N^2_{T_G}(v)$ with $f_*(u_1) = f_*(u_2) = 1$.
- (d) If v is a B-vertex with $f_*(v) = 0$ and the block H represented by v is not type 0, then there exists either $u \in N_{T_G}(v)$ with $f_*(u) = 2$ or $u_1, u_2 \in N_{T_G}(v)$ with $f_*(u_1) = f_*(u_2) = 1$.

Proof. If f satisfies the above properties, it is clear that f_* satisfies the above items (a), (b). Suppose that v is a C-vertex with $f_*(v) = 0$. By the definition of f_* , f(v) = 0. If there exists a vertex $u \in N_G(v)$ with f(u) = 2, then u is a cut-vertex of G, and hence $u \in N_{T_G}^2[v]$ with $f_*(u) = 2$. Otherwise, there exists at least two vertices $x, y \in N_G(v)$ having f(x) = f(y) = 1. If x and y are both cut-vertices of G, then we obtain $x, y \in N_{T_G}^2[v]$ having $f_*(x) = f_*(y) = 1$. If x is not a cut-vertex of G and H is the block containing x, we deduce that H is type 1 by the second property of f. It implies that $f_*(h) = 1$ and $vh \in E(T_G)$, where h is the B-vertex representing the block H. In this case, f_* also satisfies item (c). Suppose that v is a B-vertex with $f_*(v) = 0$ and the block H represented by v is not type 0. Let $S = \{u : u \in H \text{ and } u \text{ is a cut-vertex of } G\}$. By the definition of f_* , we know that f(x) = 0 for each $x \in H \setminus S$. Since f is an R2DF of G, then there exists either $u \in N_G(v)$ with f(u) = 2 or $u_1, u_2 \in N_G(v)$ such that $f_*(u) = 2$ and $f_*(u_1) = f_*(u_2) = 1$. So f_* satisfies item (d).

On the other hand, if f_* satisfies the above properties, by the definition of f_* , it is easy to know that f satisfies items (1) and (2).

We now need to show that f is an R2DF of G. Suppose that v is a cut-vertex with f(v) = 0. Hence, $f_*(v) = f(v) = 0$. If there exists $u \in N_{T_G}^2[v]$ such that $f_*(u) = 2$, we deduce that u is a cut-vertex of G, f(u) = 2 and $u \in N_G(v)$. Otherwise, there exists $h_1, h_2 \in N_{T_G}^2[v]$ such that $f_*(h_1) = f_*(h_2) = 1$. If h_1 and h_2 are both C-vertex, then we have $h_1, h_2 \in N_G(v)$ and $f(h_1) = f(h_2) = 1$. If h_1 is a B-vertex and h_1 represent block H_1 in T_G . We deduce that H_1 is a block of type 1. Hence, there exists $v_1 \in H_1$ and v_1 is not a cut-vertex of G such that $f(v_1) = f_*(h_1) = 1$. Therefore, we obtain $f(N(v)) \ge 2$. Suppose that His a block containing v and v is not a cut-vertex with f(v) = 0. Then $f_*(h) =$ f(v) = 0, where h is the B-vertex representing the block H. As H is not type 0, there either exists $u \in N_{T_G}(h)$ such that $f_*(u) = 2$ or exists $u_1, u_2 \in N_{T_G}(h)$ such that $f_*(u_1) = f_*(u_2) = 1$. It is clear that u, u_1, u_2 are cut-vertices and $u, u_1, u_2 \in N_G(v)$. We also obtain $f(u) = f_*(u) = 2$ and $f(u_1) = f(u_2) = 1$. Therefore, we deduce $f(N(v)) \ge 2$.

Lemma 10. There exists an R2DF f of G with weight $\gamma_{\{R2\}}(G)$, which satisfies the following properties:

- (1) f(v) = 0 or 1 if $v \in H$ is not a cut-vertex of G, where H is a block of type 1 of G.
- (2) f(v) = 0 if $v \in H$ is not a cut-vertex of G, where H is a block of type 2 of G.

Proof. Let f be an R2DF of weight $\gamma_{\{R2\}}(G)$ and $u \in H$ be a cut-vertex of G, where H is not a block of type 0, $S = \{v : v \in H \text{ and } v \text{ is a cut-vertex of } G\}$ and $f(u) = \max_{v_0 \in S} f(v_0)$. Suppose $v \in H$ is not a cut-vertex of G. If f(v) = 2, we can reassign 0 to v and 2 to u. Hence, f(v) = 0 or 1. Furthermore, if H is a block of type 2, we suppose that there exists a vertex $v \in H$ such that f(v) = 1. If $f(u) \ge 1$, then we can reassign 2 to u and 0 to v, a contradiction. Suppose that f(u) = 0, then there exists a vertex $w \in H$, such that w is not a cut-vertex and $f(w) \ge 1$. We reassign 2 to u and 0 to v, w, a contradiction.

Let f be an R2DF of block graph $G(\not\cong K_n)$ and f_* be the function induced by f. We say f_* is an *induced Roman* $\{2\}$ -domination function (R2DF_*) of T_G if it satisfies the four properties in Theorem 9. By Theorem 9 and Lemma 10, we can transform the Roman $\{2\}$ -domination problem on block graph G into the induced Roman $\{2\}$ -domination problem on tree T_G . Then, we can also use the method of tree composition and decomposition in Section 3. For convenience, $T_G = (C \cup B, E)$ is denoted by T and $v \in C$ (respectively, $v \in B$) is used to represent that v is a C-vertex (respectively, B-vertex) of T_G if there is no ambiguity.

Suppose that T is a tree rooted at r and $f: V(T) \to \{0, 1, 2\}$ is a function on T. T' is defined as a new tree rooted at r' and $f': V(T') \to \{0, 1, 2\}$ is a function on T', where $V(T') = V(T) \cup \{r'\}$ and $E(T') = E(T) \cup \{rr'\}, f':_{T} = f$.

In order to construct an algorithm for computing the Roman $\{2\}$ -domination number, we must characterize the possible tree-subset tuples (T, f, r). For this purpose, we introduce some additional notations as follows:

 $\begin{aligned} &\text{R2DF}_*(T) = \{f : f \text{ is an } \text{R2DF}_* \text{ of } T\}, \\ &F_1(T) = \{f : f \in \text{R2DF}_*(T) \text{ with } f(r) = 1\}, \\ &F_2(T) = \{f : f \in \text{R2DF}_*(T) \text{ with } f(r) = 2\}, \\ &\text{R2DF}_*(T^{+1}) = \{f : f \notin \text{R2DF}_*(T), \ f' \in F_1(T') \text{ and } f'|_T = f\}, \\ &\text{R2DF}_*(T^{+2}) = \{f : f \notin \text{R2DF}_*(T), \ f' \in F_2(T') \text{ and } f'|_T = f\} - \text{R2DF}_*(T^{+1}). \end{aligned}$

Then we consider the following eleven classes:

$$\begin{split} A_1 &= \{(T, f, r) : f \in \mathrm{R2DF}_*(T), r \in C \text{ and } f(r) = 2\}, \\ A_2 &= \{(T, f, r) : f \in \mathrm{R2DF}_*(T), r \in C \text{ and } f(r) = 1\}, \\ A_3 &= \{(T, f, r) : f \in \mathrm{R2DF}_*(T), r \in C \text{ and } f(r) = 0\}, \\ A_4 &= \{(T, f, r) : f \in \mathrm{R2DF}_*(T^{+1}), r \in C\}, \\ A_5 &= \{(T, f, r) : f \in \mathrm{R2DF}_*(T^{+2}), r \in C\}, \\ B_1 &= \{(T, f, r) : f \in \mathrm{R2DF}_*(T), r \in B \text{ and } f(N[r]) \ge 2\}, \\ B_2 &= \{(T, f, r) : f \in \mathrm{R2DF}_*(T), r \in B \text{ and } f(N[r]) = 1\}, \\ B_3 &= \{(T, f, r) : f \in \mathrm{R2DF}_*(T), r \in B \text{ and } f(N[r]) = 0\}, \\ B_4 &= \{(T, f, r) : f \in \mathrm{R2DF}_*(T^{+1}), r \in B \text{ and } f(N[r]) = 1\}, \\ B_5 &= \{(T, f, r) : f \in \mathrm{R2DF}_*(T^{+1}), r \in B \text{ and } f(N[r]) = 0\}, \\ B_6 &= \{(T, f, r) : f \in \mathrm{R2DF}_*(T^{+2}), r \in B\}. \end{split}$$

Let $(T, r) = (T_1, r_1) \circ (T_2, r_2)$ and $r = r_1$. Suppose that f_1 (respectively, f_2) is a function on T_1 (respectively, T_2). Define f as the function on T with $f|_{T_1} = f_1$ and $f|_{T_2} = f_2$. In order to give the algorithm, we present the following lemmas.

Lemma 11. $A_1 = (A_1 \circ B_1) \cup (A_1 \circ B_2) \cup (A_1 \circ B_3) \cup (A_1 \circ B_4) \cup (A_1 \circ B_5) \cup (A_1 \circ B_6).$

Proof. For each $1 \leq i \leq 6$, if $(T_1, f_1, r_1) \in A_1$ and $(T_2, f_2, r_2) \in B_i$, it is clear that f is an R2DF_{*} of T, $r \in C$ and $f(r) = f(r_1) = 2$. We deduce that $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in A_1$. So $(A_1 \circ B_1) \cup (A_1 \circ B_2) \cup (A_1 \circ B_3) \cup (A_1 \circ B_4) \cup (A_1 \circ B_5) \cup (A_1 \circ B_6) \subseteq A_1$.

Now we prove that $A_1 \subseteq (A_1 \circ B_1) \cup (A_1 \circ B_2) \cup (A_1 \circ B_3) \cup (A_1 \circ B_4) \cup (A_1 \circ B_5) \cup (A_1 \circ B_6)$. Let $(T, f, r) \in A_1$ and $(T, f, r) = (T_1, f_1, r_1) \circ (T_2, f_2, r_2)$, then $f_1(r_1) = f(r) = 2$. Since $f \in \text{R2DF}_*(T)$, $f_1 \in \text{R2DF}_*(T_1)$ and $r_1 \in C$. So $(T_1, f_1, r_1) \in A_1$ and $r_2 \in B$. If $f_2 \in \text{R2DF}_*(T_2)$, then we obtain $(T_2, f_2, r_2) \in B_1$, B_2 or B_3 . If $f_2 \notin \text{R2DF}_*(T_2)$, then $(T_2, f_2, r_2) \in B_4$, B_5 or B_6 . Hence, we conclude that $A_1 \subseteq (A_1 \circ B_1) \cup (A_1 \circ B_2) \cup (A_1 \circ B_3) \cup (A_1 \circ B_4) \cup (A_1 \circ B_5) \cup (A_1 \circ B_6)$.

Lemma 12. $A_2 = (A_2 \circ B_1) \cup (A_2 \circ B_2) \cup (A_2 \circ B_3) \cup (A_2 \circ B_4) \cup (A_2 \circ B_5).$

Proof. For each $1 \leq i \leq 5$, if $(T_1, f_1, r_1) \in A_2$ and $(T_2, f_2, r_2) \in B_i$, it is clear that f is an R2DF_{*} of T, $r \in C$ and $f(r) = f(r_1) = 1$. We conclude that $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in A_2$, implying that $(A_2 \circ B_1) \cup (A_2 \circ B_2) \cup (A_2 \circ B_3) \cup (A_2 \circ B_4) \cup (A_2 \circ B_5) \subseteq A_2$.

Then we need to show $A_2 \subseteq (A_2 \circ B_1) \cup (A_2 \circ B_2) \cup (A_2 \circ B_3) \cup (A_2 \circ B_4) \cup (A_2 \circ B_5)$. Let $(T, f, r) \in A_2$ and $(T, f, r) = (T_1, f_1, r_1) \circ (T_2, f_2, r_2)$, then $f_1(r_1) = f(r) = 1$. It is clear that $(T_1, f_1, r_1) \in A_2$ and $r_2 \in B$. If f_2 is an R2DF_{*} of T_2 , then we obtain $(T_2, f_2, r_2) \in B_1, B_2$ or B_3 . If f_2 is not an R2DF_{*} of T_2 , then $f_2(N_{T_2}[r_2]) \leq 1$ and $f_2 \in \text{R2DF}_*(T_2^{+1})$ by using the fact

that $(T, f, r) \in A_2$. Therefore, we have $(T_2, f_2, r_2) \in B_4$ or B_5 . Hence, $A_2 \subseteq (A_2 \circ B_1) \cup (A_2 \circ B_2) \cup (A_2 \circ B_3) \cup (A_2 \circ B_4) \cup (A_2 \circ B_5)$.

Lemma 13. $A_3 = (A_3 \circ B_1) \cup (A_3 \circ B_2) \cup (A_3 \circ B_3) \cup (A_4 \circ B_1) \cup (A_4 \circ B_2) \cup (A_5 \circ B_1).$

Proof. We make some remarks.

(i) For each $1 \leq i \leq 3$, if $(T_1, f_1, r_1) \in A_3$ and $(T_2, f_2, r_2) \in B_i$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in A_3$. Indeed, if $(T_1, f_1, r_1) \in A_3$ and $(T_2, f_2, r_2) \in B_i$, then f_1 is an R2DF_{*} of T_1 and f_2 is an R2DF_{*} of T_2 . Hence, f is an R2DF_{*} of $T, r \in C$ and f(r) = 0. So $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in A_3$.

(ii) For each $1 \leq i \leq 2$, if $(T_1, f_1, r_1) \in A_4$ and $(T_2, f_2, r_2) \in B_i$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in A_3$. Indeed, if $(T_1, f_1, r_1) \in A_4$, then we have that $f_1 \in \text{R2DF}_*(T_1^{+1}), r \in C, f(r) = 0$ and $f(N_{T_1}^2[r]) = 1$. By the definition of B_i , we obtain $f(N_T^2[r]) \geq 2$ and $f \in \text{R2DF}_*(T)$. Hence, $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in A_3$.

(iii) If $(T_1, f_1, r_1) \in A_5$ and $(T_2, f_2, r_2) \in B_1$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in A_3$. Indeed, if $(T_1, f_1, r_1) \in A_5$, then we have that $f_1 \in \text{R2DF}_*(T_1^{+2}), r \in C$, f(r) = 0 and $f(N_{T_1}^2[r]) = 0$. By the definition of B_1 , we obtain $f(N_T^2[r]) \ge 2$ and $f \in \text{R2DF}_*(T)$. It means that $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in A_3$. Hence, $(A_3 \circ B_1) \cup (A_3 \circ B_2) \cup (A_3 \circ B_3) \cup (A_4 \circ B_1) \cup (A_4 \circ B_2) \cup (A_5 \circ B_1) \subseteq A_3$.

Therefore, we need to prove $A_3 \subseteq (A_3 \circ B_1) \cup (A_3 \circ B_2) \cup (A_3 \circ B_3) \cup (A_4 \circ B_1) \cup (A_4 \circ B_2) \cup (A_5 \circ B_1)$. Let $(T, f, r) \in A_3$ and $(T, f, r) = (T_1, f_1, r_1) \circ (T_2, f_2, r_2)$, then we have that $f_1(r_1) = f(r) = 0$, $r_1 \in C$ and $f_2 \in \text{R2DF}_*(T_2)$. So $r_2 \in B$. If $f_1 \in \text{R2DF}_*(T_1)$, then we obtain $(T_1, f_1, r_1) \in A_3$, implying that $(T_2, f_2, r_2) \in B_1, B_2$ or B_3 . Suppose that $f_1 \notin \text{R2DF}_*(T_1)$. Consider the following cases.

Case 1. $f_1(N_{T_1}^2[r_1]) = 1$. Then we obtain $f_1 \in \text{R2DF}_*(T_1^{+1})$, implying that $(T_1, f_1, r_1) \in A_4$. Since $(T, f, r) \in A_3$, we have $f_2(N_{T_2}[r_2]) \ge 1$. So $(T_2, f_2, r_2) \in B_1$ or B_2 .

Case 2. $f_1(N_{T_1}^2[r_1]) = 0$. So we have $f_1 \in \text{R2DF}_*(T_1^{+2})$. Then $(T_1, f_1, r_1) \in A_5$. Since $(T, f, r) \in A_3$, we obtain $f_2(N_{T_2}[r_2]) \ge 2$. Hence, $(T_2, f_2, r_2) \in B_1$.

Lemma 14. $A_4 = (A_4 \circ B_3) \cup (A_5 \circ B_2).$

Proof. It is easy to check the following remarks by definitions.

(i) If $(T_1, f_1, r_1) \in A_4$ and $(T_2, f_2, r_2) \in B_3$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in A_4$.

(ii) If $(T_1, f_1, r_1) \in A_5$ and $(T_2, f_2, r_2) \in B_2$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in A_4$. Therefore, $(A_4 \circ B_3) \cup (A_5 \circ B_2) \subseteq A_4$.

On the other hand, we show $A_4 \subseteq (A_4 \circ B_3) \cup (A_5 \circ B_2)$. Let $(T, f, r) \in A_4$ and $(T, f, r) = (T_1, f_1, r_1) \circ (T_2, f_2, r_2)$. Then we have that $f \in \text{R2DF}_*(T^{+1})$ and $r_1 \in C$, implying that $f(N_T^2[r_1]) = 1$. It means that $r_2 \in B$. By the definition of A_4 , $f_2 \in \text{R2DF}_*(T_2)$. Using the fact that $f(N_T^2[r_1]) = 1$, we deduce that $f_2(N[r_2]) < 2$. Consider the following cases.

Case 1. $f_2(N[r_2]) = 1$. It is clear that $(T_2, f_2, r_2) \in B_2$. Since $f_1(N_{T_1}^2[r_1]) = f(N_T^2[r_1]) - f_2(N[r_2]) = 0$, we obtain $(T_1, f_1, r_1) \in A_5$.

Case 2. $f_2(N[r_2]) = 0$. Then $(T_2, f_2, r_2) \in B_3$. Since $f_1(N_{T_1}^2[r_1]) = f(N_T^2[r_1]) - f_2(N[r_2]) = 1$, we have $(T_1, f_1, r_1) \in A_4$.

Consequently, we deduce that $A_4 \subseteq (A_4 \circ B_3) \cup (A_5 \circ B_2)$.

Lemma 15. $A_5 = A_5 \circ B_3$.

Proof. It is easy to check that $(A_5 \circ B_3) \subseteq A_5$ by the definitions. On the other hand, let $(T, f, r) \in A_5$ and $(T, f, r) = (T_1, f_1, r_1) \circ (T_2, f_2, r_2)$. Then we obtain $f \in \text{R2DF}_*(T^{+2})$, $r_1 \in C$ and $f_1(N^2[r_1]) = f(N^2[r]) = 0$. It implies that $(T_1, f_1, r_1) \in A_5$ and $r_2 \in B$. Using the fact that $(T, f, r) \in A_5$, we deduce $f_2(N[r_2]) = 0$ and $f_2 \in \text{R2DF}_*(T_2)$. Therefore, $(T_2, f_2, r_2) \in B_3$. Then we obtain $A_5 \subseteq (A_5 \circ B_3)$.

Lemma 16. $B_1 = (B_1 \circ A_1) \cup (B_1 \circ A_2) \cup (B_1 \circ A_3) \cup (B_1 \circ A_4) \cup (B_1 \circ A_5) \cup (B_2 \circ A_1) \cup (B_2 \circ A_2) \cup (B_3 \circ A_1) \cup (B_4 \circ A_1) \cup (B_4 \circ A_2) \cup (B_5 \circ A_1) \cup (B_6 \circ A_1).$

Proof. We make some remarks.

(i) For each $1 \leq i \leq 5$, if $(T_1, f_1, r_1) \in B_1$ and $(T_2, f_2, r_2) \in A_i$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in B_1$. It is easy to check it by the definitions of B_1 and A_i .

(ii) For each $2 \le i \le 6$, if $(T_1, f_1, r_1) \in B_i$ and $(T_2, f_2, r_2) \in A_1$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in B_1$. We can easily check it by definitions too.

(iii) For each $i \in \{2,4\}$, if $(T_1, f_1, r_1) \in B_i$ and $(T_2, f_2, r_2) \in A_2$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in B_1$. Indeed, it is clear that $f \in \text{R2DF}_*(T), r \in B$ and $f(N[r]) = f_1(N[r_1]) + f_2(r_2) = 2$. Hence, $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in B_1$.

Therefore, we need to prove $B_1 \subseteq (B_1 \circ A_1) \cup (B_1 \circ A_2) \cup (B_1 \circ A_3) \cup (B_1 \circ A_4) \cup (B_1 \circ A_5) \cup (B_2 \circ A_1) \cup (B_2 \circ A_2) \cup (B_3 \circ A_1) \cup (B_4 \circ A_1) \cup (B_4 \circ A_2) \cup (B_5 \circ A_1) \cup (B_6 \circ A_1).$ Let $(T, f, r) \in B_1$ and $(T, f, r) = (T_1, f_1, r_1) \circ (T_2, f_2, r_2)$, then we have $f \in R2DF_*(T), r_1 \in B$ and $f(N[r]) \geq 2$. It means that $r_2 \in C$. Consider the following cases.

Case 1. $f(r_2) = 2$. Then we have $f_2 \in \text{R2DF}_*(T_2)$, impling that $(T_2, f_2, r_2) \in A_1$. If $f_1 \in \text{R2DF}_*(T_1)$, we obtain $(T_1, f_1, r_1) \in B_1$, B_2 or B_3 . Suppose that $f_1 \notin \text{R2DF}_*(T_1)$, then $f_1 \in \text{R2DF}_*(T_1^{+1})$ or $f_1 \in \text{R2DF}_*(T_1^{+2})$. Hence, $(T_1, f_1, r_1) \in B_4$, B_5 or B_6 .

Case 2. $f(r_2) = 1$. It is clear that $(T_2, f_2, r_2) \in A_2$. We also have $f_1(N[r_1]) = f(N[r]) - f_2(r_2) \ge 2 - 1 \ge 1$. If $f_1 \in \text{R2DF}_*(T_1)$, we obtain $(T_1, f_1, r_1) \in B_1$ or B_2 .

Suppose that $f_1 \notin \text{R2DF}_*(T_1)$, then $f_1 \in \text{R2DF}_*(T_1^{+1})$. Therefore, $(T_1, f_1, r_1) \in B_4$.

Case 3. $f(r_2) = 0$. Then we obtain $f_1(N[r_1]) = f(N[r]) - f_2(r_2) \ge 2$ and $f_1 \in \text{R2DF}_*(T_1)$, implying that $(T_1, f_1, r_1) \in B_1$. If $f_2 \in \text{R2DF}_*(T_2)$, we deduce $(T_1, f_1, r_1) \in A_3$. Suppose that $f_2 \notin \text{R2DF}_*(T_2)$, then $f_2 \in \text{R2DF}_*(T_2^{+1})$ or $f_2 \in \text{R2DF}_*(T_2^{+2})$. Therefore, $(T_2, f_2, r_2) \in A_4$ or A_5 .

Hence, $B_1 \subseteq (B_1 \circ A_1) \cup (B_1 \circ A_2) \cup (B_1 \circ A_3) \cup (B_1 \circ A_4) \cup (B_1 \circ A_5) \cup (B_2 \circ A_1) \cup (B_2 \circ A_2) \cup (B_3 \circ A_1) \cup (B_4 \circ A_1) \cup (B_4 \circ A_2) \cup (B_5 \circ A_1) \cup (B_6 \circ A_1).$

Lemma 17. $B_2 = (B_2 \circ A_3) \cup (B_2 \circ A_4) \cup (B_3 \circ A_2) \cup (B_5 \circ A_2).$

Proof. We make some remarks.

(i) For each $3 \leq i \leq 4$, if $(T_1, f_1, r_1) \in B_2$ and $(T_2, f_2, r_2) \in A_i$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in B_2$. It is easy to check it by the definitions.

(ii) For each $i \in \{3,5\}$, if $(T_1, f_1, r_1) \in B_i$ and $(T_2, f_2, r_2) \in A_2$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in B_2$. Indeed, if $(T_1, f_1, r_1) \in B_i$ and $(T_2, f_2, r_2) \in A_2$, we obtain that $f \in \text{R2DF}_*(T)$, $r \in B$ and $f(N[r]) = f_1(N[r_1]) + f_2(r_2) = 1$. Hence, we deduce $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in B_2$. Thus, $(B_2 \circ A_3) \cup (B_2 \circ A_4) \cup (B_3 \circ A_2) \cup (B_5 \circ A_2) \subseteq B_2$.

Now we need to prove $B_2 \subseteq (B_2 \circ A_3) \cup (B_2 \circ A_4) \cup (B_3 \circ A_2) \cup (B_5 \circ A_2)$. Let $(T, f, r) \in B_2$ and $(T, f, r) = (T_1, f_1, r_1) \circ (T_2, f_2, r_2)$, then we have that $f \in \text{R2DF}_*(T), r_1 \in B$ and f(N[r]) = 1. It implies $r_2 \in C$. Consider the following cases.

Case 1. $f(r_2) = 1$. Then we have $f_1(N[r_1]) = f(N[r]) - f(r_2) = 0$ and $f_2(r_2) = 1$, implying that $f_2 \in \text{R2DF}_*(T_2)$. So $(T_2, f_2, r_2) \in A_2$. If $f_1 \in \text{R2DF}_*(T_1)$, we obtain $(T_1, f_1, r_1) \in B_3$. Suppose that $f_1 \notin \text{R2DF}_*(T_1)$, then $f_1(r_1) = 0$ because $f \in \text{R2DF}_*(T)$. Since $f_1(N[r_1]) = 0$, we have that $(T_1, f_1, r_1) \in B_5$.

Case 2. $f(r_2) = 0$. It is clear that $f_1(N[r_1]) = f(N[r]) - f(r_2) = 1$. Since $f_1 = f|_{T_1}$ and $f \in \text{R2DF}_*(T)$, we have $f_1 \in \text{R2DF}_*(T_1)$. Hence, $(T_1, f_1, r_1) \in B_2$. If $f_2 \in \text{R2DF}_*(T_2)$, we deduce that $(T_2, f_2, r_2) \in A_3$. Suppose that $f_2 \notin \text{R2DF}_*(T_2)$, then $f_2(N^2[r_2]) = 1$. It implies $f_2 \in \text{R2DF}_*(T_2^{+1})$. Therefore, $(T_2, f_2, r_2) \in A_4$. Hence, $B_2 \subseteq (B_2 \circ A_3) \cup (B_2 \circ A_4) \cup (B_3 \circ A_2) \cup (B_5 \circ A_2)$.

Lemma 18. $B_3 = B_3 \circ A_3$.

Proof. It is easy to check that $(B_3 \circ A_3) \subseteq B_3$ by the definitions. On the other hand, let $(T, f, r) \in B_3$ and $(T, f, r) = (T_1, f_1, r_1) \circ (T_2, f_2, r_2)$. Then we obtain $f_1(N[r_1]) = f(N[r]) = 0$, $r_1 \in B$ and $f(r_2) = 0$. It means that $r_2 \in C$. Since $f \in \text{R2DF}_*(T)$ and $f(r_2) = 0$, we obtain that $f_1 \in \text{R2DF}_*(T_1)$, implying that $(T_1, f_1, r_1) \in B_3$. Using the fact that $f_1(N[r_1]) = 0$ and $f(r_2) = 0$, we deduce that $f_2 \in \text{R2DF}_*(T_2)$. Therefore, $(T_2, f_2, r_2) \in A_3$. Then $B_3 \subseteq (B_3 \circ A_3)$. **Lemma 19.** $B_4 = (B_2 \circ A_5) \cup (B_4 \circ A_3) \cup (B_4 \circ A_4) \cup (B_4 \circ A_5) \cup (B_6 \circ A_2).$

Proof. It is easy to check the following remarks by definitions.

(i) If $(T_1, f_1, r_1) \in B_2$ and $(T_2, f_2, r_2) \in A_5$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in B_4$.

(ii) For each $3 \leq i \leq 5$, if $(T_1, f_1, r_1) \in B_4$ and $(T_2, f_2, r_2) \in A_i$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in B_4$.

(iii) If $(T_1, f_1, r_1) \in B_6$ and $(T_2, f_2, r_2) \in A_2$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in B_4$.

Therefore, we need to prove $B_4 \subseteq (B_2 \circ A_5) \cup (B_4 \circ A_3) \cup (B_4 \circ A_4) \cup (B_4 \circ A_5) \cup (B_6 \circ A_2)$. Let $(T, f, r) \in B_4$ and $(T, f, r) = (T_1, f_1, r_1) \circ (T_2, f_2, r_2)$, then we have $f \in \text{R2DF}_*(T^{+1}), r_1 \in B$ and f(N[r]) = 1. It implies $r_2 \in C$. Consider the following cases.

Case 1. $f(r_2) = 1$. Then we have $f_1(N[r_1]) = f(N[r]) - f(r_2) = 0$ and $f_2(r_2) = 1$, implying that $f_2 \in \text{R2DF}_*(T_2)$. So $(T_2, f_2, r_2) \in A_2$ and $f_1 \notin \text{R2DF}_*(T_1)$. Since $f_1(N[r_1]) = 0$ and $(T, f, r) \in B_4$, we obtain $(T_1, f_1, r_1) \in B_6$.

Case 2. $f(r_2) = 0$. It is clear that $f_1(N[r_1]) = f(N[r]) - f(r_2) = 1$. If $f_2 \in R2DF_*(T_2)$, we deduce that $(T_2, f_2, r_2) \in A_3$, implying $(T_1, f_1, r_1) \in B_4$. Suppose that $f_2 \notin R2DF_*(T_2)$, then $f_2(N^2[r_2]) = 0$ or 1. If $f_2(N^2[r_2]) = 0$, we obtain $(T_2, f_2, r_2) \in A_5$. Then, we have $(T_1, f_1, r_1) \in B_2$ or B_4 . If $f_2(N^2[r_2]) = 1$, we obtain $(T_2, f_2, r_2) \in A_4$. Then, we have $(T_1, f_1, r_1) \in B_4$.

Hence, $B_4 \subseteq (B_2 \circ A_5) \cup (B_4 \circ A_3) \cup (B_4 \circ A_4) \cup (B_4 \circ A_5) \cup (B_6 \circ A_2)$.

Lemma 20. $B_5 = (B_3 \circ A_4) \cup (B_5 \circ A_3) \cup (B_5 \circ A_4).$

Proof. It is easy to check the following remarks by definitions.

(i) If $(T_1, f_1, r_1) \in B_3$ and $(T_2, f_2, r_2) \in A_4$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in B_5$.

(ii) For each $3 \leq i \leq 4$, if $(T_1, f_1, r_1) \in B_5$ and $(T_2, f_2, r_2) \in A_i$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in B_5$. Thus, $(B_3 \circ A_4) \cup (B_5 \circ A_3) \cup (B_5 \circ A_4) \subseteq B_5$.

Therefore, we need to prove $B_5 \subseteq (B_3 \circ A_4) \cup (B_5 \circ A_3) \cup (B_5 \circ A_4)$. Let $(T, f, r) \in B_5$ and $(T, f, r) = (T_1, f_1, r_1) \circ (T_2, f_2, r_2)$, then we have $f \in \text{R2DF}_*(T^{+1})$, $r_1 \in B$ and f(N[r]) = 0. It implies $r_2 \in C$ and $f_2(r_2) = f(r_2) = 0$. Consider the following cases.

Case 1. If $f_2 \in \text{R2DF}_*(T_2)$, then we have $(T_2, f_2, r_2) \in A_3$ and $f_1 \notin \text{R2DF}_*(T_1)$. Since $f_1(N[r_1]) = 0$ and $(T, f, r) \in B_5$, we obtain $(T_1, f_1, r_1) \in B_5$.

Case 2. If $f_2 \notin \text{R2DF}_*(T_2)$, we deduce that $(T_2, f_2, r_2) \in A_4$. It is clear that $(T_1, f_1, r_1) \in B_3$ or B_5 .

Hence, $B_5 \subseteq (B_3 \circ A_4) \cup (B_5 \circ A_3) \cup (B_5 \circ A_4).$

Lemma 21. $B_6 = (B_3 \circ A_5) \cup (B_5 \circ A_5) \cup (B_6 \circ A_3) \cup (B_6 \circ A_4) \cup (B_6 \circ A_5).$

Proof. It is easy to check the following remarks by definitions.

(i) For each $i \in \{3,5\}$, if $(T_1, f_1, r_1) \in B_i$ and $(T_2, f_2, r_2) \in A_5$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in B_6$.

(ii) For each $3 \leq i \leq 5$, if $(T_1, f_1, r_1) \in B_6$ and $(T_2, f_2, r_2) \in A_i$, then $(T_1, f_1, r_1) \circ (T_2, f_2, r_2) \in B_6$.

Therefore, we need to prove $B_6 \subseteq (B_3 \circ A_5) \cup (B_5 \circ A_5) \cup (B_6 \circ A_3) \cup (B_6 \circ A_4) \cup (B_6 \circ A_5)$. Let $(T, f, r) \in B_6$ and $(T, f, r) = (T_1, f_1, r_1) \circ (T_2, f_2, r_2)$, then we have $f \in \text{R2DF}_*(T^{+2}), r_1 \in B$ and f(N[r]) = 0. It implies $r_2 \in C$. Consider the following cases.

Case 1. $f_1 \in \text{R2DF}_*(T_1)$. Since $f_1(N[r_1]) = f(N[r]) = 0$, we have $(T_1, f_1, r_1) \in B_3$. It implies $(T_2, f_2, r_2) \in A_5$.

Case 2. $f_1 \notin \text{R2DF}_*(T_1)$. Since $f_1(N[r_1]) = f(N[r]) = 0$, then we obtain $(T_1, f_1, r_1) \in B_5$ or B_6 . If $(T_1, f_1, r_1) \in B_5$, we have $f_1 \in \text{R2DF}_*(T_1^{+1})$. Since $f \in \text{R2DF}_*(T^{+2})$, it means that $f_2 \in \text{R2DF}_*(T_2^{+2})$. Then we deduce $(T_2, f_2, r_2) \in A_5$. If $(T_1, f_1, r_1) \in B_6$, we have $f_1 \in \text{R2DF}_*(T_1^{+2})$. Since $(T, f, r) \in B_6$, we deduce that $f_2(r_2) = 0$. So we obtain $(T_2, f_2, r_2) \in A_3$, A_4 or A_5 .

Hence, $B_6 \subseteq (B_3 \circ A_5) \cup (B_5 \circ A_5) \cup (B_6 \circ A_3) \cup (B_6 \circ A_4) \cup (B_6 \circ A_5).$

The final step is to define the initial vector. In this case, for block-cutpoint graphs, the only basis graph is a single vertex. We can use the similar method in Section 3 to initialize the vector. It is clear that if v is a *C*-vertex, then the initial vector is $[2, 1, \infty, \infty, 0, \infty]$; if v is a *B*-vertex and v represents a block of type 0, then the initial vector is $[\infty, \infty, 0, \infty, \infty, \infty, \infty]$; if v is a *B*-vertex and v represents a block of type 1, then the initial vector is $[\infty, 1, \infty, \infty, \infty, \infty, 0]$; if v is a *B*-vertex and v represents a block of type 2, then the initial vector is $[\infty, \infty, \infty, \infty, \infty, \infty, 0]$. Among them, $'\infty'$ means undefined. From the above argument, we can obtain the following theorem.

Theorem 22. Algorithm ROMAN $\{2\}$ -DOM-IN-BLOCK can output the Roman $\{2\}$ -domination number of any block graphs G = (V, E) in linear time O(n), where n = |V|.

Proof. One can prove Theorem 22 by the similar argument as in the proof of Theorem 8. ■

Now, we are ready to present the algorithm.

Algorithm 2: ROMAN {2}-DOM-IN-BLOCK

Input: A connected block graph G ($G \not\cong K_n$) and its corresponding block-cutpoint graph T = (V, E) with a tree ordering v_1, v_2, \ldots, v_n . **Output:** The Roman $\{2\}$ -domination number $\gamma_{\{R2\}}(G)$. 1 for i := 1 to n do if v_i is a C-vertex then 2 initialize h[i, 1..6] to $[2, 1, \infty, \infty, 0, \infty]$; 3 else if v_i is a B-vertex representing a block of type 0 then $\mathbf{4}$ initialize h[i, 1..6] to $[\infty, \infty, 0, \infty, \infty, \infty]$; else if v_i is a *B*-vertex representing a block of type 1 then $\mathbf{5}$ 6 initialize h[i, 1..6] to $[\infty, 1, \infty, \infty, \infty, 0]$; 7 else 8 initialize h[i, 1..6] to $[\infty, \infty, \infty, \infty, \infty, \infty, 0]$; 9 10 for j := 1 to n - 1 do $v_k = F(v_i);$ 11 if v_k is a *C*-vertex then 12 $h[k,1] = \min\{h[k,1] + h[j,1], h[k,1] + h[j,2], h[k,1] + h[j,3], h[k,1] + h$ 13 h[j,4], h[k,1] + h[j,5], h[k,1] + h[j,6]; 14 $h[k,2] = \min\{h[k,2] + h[j,1], h[k,2] + h[j,2], h[k,2] + h[j,3], h[k,3] + h$ 15 h[j,4],h[k,2]+h[j,5]; 16 $h[k,3] = \min\{h[k,3] + h[j,1], h[k,3] + h[j,2], h[k,3] + h[j,3], h[k,4] + h[j,4], h[k,4], h[k,4], h[k,4], h[k,4], h[k,4], h[k,4], h[k,4], h[k,4$ 17 $h[j,1], h[k,4] + h[j,2], h[k,5] + h[j,1] \};$ $h[k,4] = \min\{h[k,4] + h[j,3], h[k,5] + h[j,2] \};$ $\mathbf{18}$ 19 $h[k,5] = \min\{h[k,5] + h[j,3]\};\$ $\mathbf{20}$ $\mathbf{21}$ else $S_1 = h[k, 2];$ 22 $S_2 = h[k, 3];$ 23 $S_3 = h[k, 5];$ 24 $h[k,1] = \min\{h[k,1] + h[j,1], h[k,1] + h[j,2], h[k,1] + h[j,3], h[k,1] + h$ $\mathbf{25}$ h[j, 4], h[k, 1] + h[j, 5], h[k, 2] + h[j, 1], h[k, 2] + h[j, 2], h[k, 3]26 +h[j,1],h[k,4]+h[j,1],h[k,4]+h[j,2],h[k,5]+h[j,1],27 h[k, 6] + h[j, 1]; $\mathbf{28}$ $h[k, 2] = \min\{h[k, 2] + h[j, 3], h[k, 2] + h[j, 4], h[k, 3] + h[j, 2], h[k, 5]\}$ 29 +h[j,2]; $\mathbf{30}$ $h[k,3] = \min\{h[k,3] + h[j,3]\};$ $\mathbf{31}$ $h[k,4] = \min\{S_1 + h[j,5], h[k,4] + h[j,3], h[k,4] + h[j,4], h[k,4] + h[j,$ 32 $h[j,5], h[k,6] + h[j,2]\};$ 33 $h[k,5] = \min\{S_2 + h[j,4], h[k,5] + h[j,3], h[k,5] + h[j,4]\};\$ 34 $h[k, 6] = \min\{S_2 + h[j, 5], S_3 + h[j, 5], h[k, 6] + h[j, 3], h[k, 6] + h[j, 4], k \in [j, 4]\}$ 35 h[k, 6] + h[j, 5]; 36 **37 return** $\gamma_{\{R2\}}(G) = \min\{h[n,1], h[n,2], h[n,3]\};$

Acknowledgements

We are grateful to the referees whose suggestions are all valuable and very helpful for improving our paper.

References

- E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, *Extremal problems for Roman domination*, SIAM J. Discrete Math. 23 (2009) 1575–1586. https://doi.org/10.1137/070699688
- [2] G.J. Chang, Algorithmic Aspects of Domination in Graphs (Handbook of Combinatorial Optimization, Kluwer Academic Pub., 1998).
- [3] G.J. Chang, Total domination in block graphs, Oper. Res. Lett. 8 (1989) 53–57. https://doi.org/10.1016/0167-6377(89)90034-5
- [4] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A.A. McRae, Roman {2}domination, Discrete Appl. Math. 204 (2016) 22–28. https://doi.org/10.1016/j.dam.2015.11.013
- [5] L. Chen, C. Lu and Z. Zeng, Labelling algorithms for paired-domination problems in block and interval graphs, J. Comb. Optim. 19 (2010) 457–470. https://doi.org/10.1007/s10878-008-9177-6
- [6] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22. https://doi.org/10.1016/j.disc.2003.06.004
- [7] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Acad. Press, New York, 1980).
- [8] M.A. Henning and W.F. Klostermeyer, Italian domination in trees, Discrete Appl. Math. 217 (2017) 557–564. https://doi.org/10.1016/j.dam.2016.09.035
- C.H. Liu and G.J. Chang, Upper bounds on Roman domination numbers of graphs, Discrete Math. **312** (2012) 1386–1391. https://doi.org/10.1016/j.disc.2011.12.021
- D. Pradhan and A. Jha, On computing a minimum secure dominating set in block graphs, J. Comb. Optim. 35 (2018) 613-631. https://doi.org/10.1007/s10878-017-0197-y
- [11] A. Rahmouni and M. Chellali, Independent Roman {2}-domination in graphs, Discrete Appl. Math. 236 (2018) 408-414. https://doi.org/10.1016/j.dam.2017.10.028
- [12] D.B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, 2001).
- [13] T.V. Wimer, Linear Algorithms on k-Terminal Graphs, PhD Thesis (Clemson University, 1987).

 [14] G. Xu, L. Kang, E. Shan and M. Zhao, *Power domination in block graphs*, Theoret. Comput. Sci. **359** (2006) 299–305. https://doi.org/10.1016/j.tcs.2006.04.011

> Received 13 December 2019 Revised 18 May 2020 Accepted 20 May 2020