DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

F. Septyanto

Fendy Septyanto

Faculty of Mathematics and Natural Sciences
Department of Mathematics, Universitas Indonesia
Depok

email: fendy.septyanto41@sci.ui.ac.id

K.A. Sugeng

Kiki Ariyanti Sugeng

Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia

email: kiki@sci.ui.ac.id

Title:

Distance-local rainbow connection number

PDF

Source:

Discussiones Mathematicae Graph Theory 42(4) (2022) 1027-1039

Received: 2019-10-21 , Revised: 2020-04-08 , Accepted: 2020-04-15 , Available online: 2020-05-16 , https://doi.org/10.7151/dmgt.2325

Abstract:

Under an edge coloring (not necessarily proper), a rainbow path is a path whose edge colors are all distinct. The $d$-local rainbow connection number $lrc_d(G)$ (respectively, $d$-local strong rainbow connection number $lsrc_d(G)$) is the smallest number of colors needed to color the edges of $G$ such that any two vertices with distance at most $d$ can be connected by a rainbow path (respectively, rainbow geodesic). This generalizes rainbow connection numbers, which are the special case $d=diam(G)$. We discuss some bounds and exact values. Moreover, we also characterize all triples of positive integers $d,a,b$ such that there is a connected graph $G$ with $lrc_d(G)=a$ and $lsrc_d(G)=b$.

Keywords:

rainbow connection, chromatic number, line graph

References:

  1. R.P. Carpentier, H. Liu, M. Silva and T. Sousa, Rainbow connection for some fa-milies of hypergraphs, Discrete Math. 327 (2014) 40–50.
    https://doi.org/10.1016/j.disc.2014.03.013
  2. G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection number of graphs, Math. Bohem. 133 (2008) 85–98.
  3. G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, The rainbow connectivity of a graph, Networks 54 (2009) 75–81.
    https://doi.org/10.1002/net.20296
  4. G. Chartrand, F. Okamoto and P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (2010) 360–367.
    https://doi.org/10.1002/net.20339
  5. X. Chen and X. Li, A solution to a conjecture on the rainbow connection number, Ars Combin. 104 (2012) 193–196.
  6. P. Dorbec, I. Schiermeyer, E. Sidorowicz and É. Sopena, Rainbow connection in oriented graphs, Discrete Appl. Math. 179 (2014) 69–78.
    https://doi.org/10.1016/j.dam.2014.07.018
  7. A.B. Ericksen, A matter of security, Graduating Engineer and Computer Careers (2007) 24–28.
  8. M. Krivelevich and R. Yuster, The rainbow connection of a graph is $($at most$ )$ reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185–191.
    https://doi.org/10.1002/jgt.20418
  9. X. Li and Y. Sun, Rainbow Connections of Graphs (Springer, Boston, 2012).
    https://doi.org/10.1007/978-1-4614-3119-0
  10. X. Li and Y. Sun, An updated survey of rainbow connections of graphs–-a dynamic survey, Theory Appl. Graphs 0 (2017) Article 3.
    https://doi.org/10.20429/tag.2017.000103
  11. F. Septyanto and K. A. Sugeng, Color code techniques in rainbow connection, Electron. J. Graph Theory Appl. 6 (2018) 347–361.
    https://doi.org//10.5614/ejgta.2018.6.2.14
  12. Y. Sun, On rainbow total-coloring of a graph, Discrete Appl. Math. 194 (2015) 171–177.
    https://doi.org/10.1016/j.dam.2015.05.012

Close