
Discussiones Mathematicae
Graph Theory 42 (2022) 1027–1039
https://doi.org/10.7151/dmgt.2325

DISTANCE-LOCAL RAINBOW CONNECTION NUMBER

Fendy Septyanto and Kiki A. Sugeng

Faculty of Mathematics and Natural Sciences
Department of Mathematics, Universitas Indonesia

Depok 16424, Indonesia

e-mail: fendy.septyanto41@sci.ui.ac.id
kiki@sci.ui.ac.id

Abstract

Under an edge coloring (not necessarily proper), a rainbow path is a path
whose edge colors are all distinct. The d-local rainbow connection number
lrcd(G) (respectively, d-local strong rainbow connection number lsrcd(G))
is the smallest number of colors needed to color the edges of G such that
any two vertices with distance at most d can be connected by a rainbow
path (respectively, rainbow geodesic). This generalizes rainbow connection
numbers, which are the special case d = diam(G). We discuss some bounds
and exact values. Moreover, we also characterize all triples of positive in-
tegers d, a, b such that there is a connected graph G with lrcd(G) = a and
lsrcd(G) = b.
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1. Introduction

In 2008, Chartrand et al. introduced rainbow connection numbers [2]. We recall
the basic definitions. We call any map c : E(G) → {1, . . . , k} an edge coloring.
This map is not necessarily proper so that adjacent edges may have the same
color. A rainbow path is a path whose edge colors are all distinct. A rainbow
coloring is an edge coloring such that any two vertices can be connected by a
rainbow path. A strong rainbow coloring is an edge coloring such that any two
vertices can be connected by a rainbow geodesic. These colorings always exist.
In fact, an all-distinct coloring (i.e., an edge coloring where all edges receive
distinct colors) is a (strong) rainbow coloring, since under such a coloring every
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path becomes a rainbow path. We can often be more efficient. The rainbow
connection number rc(G) is the smallest number of colors in a rainbow coloring
of G. The strong rainbow connection number src(G) is the smallest number of
colors in a strong rainbow coloring of G. The reader is referred to the book [9]
and the dynamic survey [10] for a comprehensive overview of these topics.

A rainbow connection can be applied to the secure transfer of classified in-
formation (cf. [7]). In a network of government agencies, they wish to have a
procedure that allows the sharing of information between appropriate parties but
secure enough against intruders. They may assign some number of passwords or
firewalls between agencies such that there is always a secure information transfer
paths between any two agencies, possibly through intermediaries, and no pass-
words in that path are repeated. Then it is natural to ask the minimum number
of passwords or firewalls needed.

There are several generalizations of rainbow connection. For instance, rain-
bow k-connectivity [3], k-rainbow index [4], the vertex version [8], total version
[12], directed version [6], and rainbow connection for hypergraphs [1].

We propose yet another generalization, to “localize” some properties of the
rainbow connection. In a rainbow coloring, every pair of vertices is connected by
a rainbow path. Now, we consider only those pairs with distance up to d, a given
positive integer. We define a d-local rainbow coloring as an edge coloring such
that any two vertices with distance at most d can be connected by a rainbow
path, and we define d-local rainbow connection number lrcd(G) as the smallest
number of colors in such a coloring. Similarly, we define d-local strong rainbow
coloring and d-local strong rainbow connection number lsrcd(G) by replacing
the word “path” with “geodesic”. Referring to the secure transfer of important
information, we need not have different passwords for every pair of agencies, but
it may be enough to have different passwords for distance d. The problem then
can be represented by d-local rainbow coloring.

In the next sections, we discuss some bounds and exact values. We also
discuss the equality cases of these bounds. Finally, we consider the problem
of realizing positive integers d, a, b as lrcd(G) = a and lsrcd(G) = b for some
connected graph G.

2. Some Bounds and Exact Values

In [2], it was observed that

diam(G) ≤ rc(G) ≤ src(G) ≤ |E(G)|.(1)

This elementary but very useful fact can be generalized. We recall that χ(G)
denotes the vertex chromatic number of a graph G, the smallest number of colors
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needed to color the vertices of G such that adjacent vertices receive distinct
colors. The line graph L(G) is a graph with vertex set V (L(G)) = E(G) such
that e1, e2 ∈ E(G) are adjacent in L(G) if and only if they share a common
endpoint. For a positive integer k, the k’th power Gk is a graph with vertex set
V (Gk) = V (G) and edge set E(Gk) = {xy : 1 ≤ dG(x, y) ≤ k}.

Lemma 1. If G is any graph and d does not exceed the maximum diameter of a
connected component of G, then

d ≤ lrcd(G) ≤ lsrcd(G) ≤ χ(L(G)d−1) ≤ |E(G)|.(2)

Proof. For the leftmost bound, take any x, y ∈ V (G) with distance d. Any
rainbow path between them must use at least d colors, so lrcd(G) ≥ d.

Now let c be a proper vertex coloring on L(G)d−1. Any two vertices with
distance at most d− 1 in L(G) have distinct colors, so any path in G of length at
most d is rainbow and c is a d-local strong rainbow coloring on G. This proves
lsrcd(G) ≤ χ(L(G)d−1). For the rightmost bound, it is clear that χ(L(G)d−1) ≤
|V (L(G))| = |E(G)|.

There is a simple case where the χ(L(G)d−1) bound is exact. Recall that the
girth g(G) is the smallest size of a cycle in G, or g(G) =∞ if G has no cycle.

Lemma 2. If d < g(G)/2, then lsrcd(G) = χ(L(G)d−1).

Proof. Let c be a d-local strong rainbow coloring on G. Since g(G) > 2d, any
x, y ∈ V (G) with distance d are connected by a unique geodesic. Therefore, every
path in G of length at most d is rainbow. So any two edges of G with distance at
most d− 1 have distinct colors, and c is a proper vertex coloring on L(G)d−1.

Corollary 3. If g(G) ≥ 5, then lsrc2(G) = χ(L(G)) = χ′(G), where χ′(G) is the
edge chromatic number of G.

For the Petersen graph P (with diameter 2) it is known that rc(P ) = 3 and
src(P ) = 4 (see [2]). We reprove this, and more generally we compute the 2-local
rc and src of generalized Petersen graph P (n, k). We recall that P (n, k) denotes
a graph with 2n vertices u0, u1, . . . , un−1, v0, v1, . . . , vn−1 whose edges are uiui+1,
uivi, and vivi+k for each i ∈ {0, 1, . . . , n − 1}, the indices considered modulo n.
The usual Petersen graph is P = P (5, 2). Note that P (n, k) ∼= P (n, n − k). We
assume k is chosen such that there is no l < k with P (n, k) ∼= P (n, l). First, an
observation.

Lemma 4. For any graph G, lrc2(G) = 2 if and only if lsrc2(G) = 2.

Proof. Any path of length two between non-adjacent vertices is a geodesic, so
any 2-local rainbow coloring with two colors is also a 2-local strong rainbow.
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Theorem 5. Let G = P (n, k) be a generalized Petersen graph, with n ≥ 3 and
k ≥ 1 such that there is no l < k with P (n, l) ∼= G.

1. If (n, k) = (5, 2), then lrc2(G) = 3 and lsrc2(G) = 4.

2. If (n, k) 6= (5, 2), then

lrc2(G) = lsrc2(G) =

{
2, if n = 3, or n ≥ 4 is even and k = 1,

3, otherwise.
(3)

Proof. We will need the edge chromatic number, which is well-known,

χ′(P (n, k)) =

{
4, if (n, k) = (5, 2),

3, otherwise.
(4)

First, assume (n, k) = (5, 2). Then g(G) = 5, so lsrc2(G) = χ′(G) = 4.
The following figure shows a 2-local rainbow coloring on G, so lrc2(G) ≤ 3. If
lrc2(G) = 2, we would also have lsrc2(G) = 2, a contradiction. So lrc2(G) = 3.

Figure 1. A 2-local rainbow coloring on the Petersen graph.

For the rest, assume (n, k) 6= (5, 2). Then lrc2(G) ≤ lsrc2(G) ≤ χ′(G) = 3.
By the previous lemma, lrc2(G) = lsrc2(G). If n = 3, or n ≥ 4 is even and k = 1,
we construct a 2-local (strong) rainbow coloring on G as follows.

Figure 2. 2-local rainbow colorings with two colors.
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Suppose n ≥ 4 is odd and k = 1. We will show lsrc2(G) = 3. The graph is a
prism with two rims (Cn’s). Suppose there is a 2-local rainbow coloring c on G
with two colors. Since there are only two colors, any two vertices with distance 2
in the inner or outer rim must be connected by a rainbow path within that rim.
So c restricts to a 2-local rainbow coloring on Cn and the edge colors alternate
1, 2, 1, 2, . . . . But n is odd, so the first and last edges have the same color and it
is impossible to connect their endpoints with a rainbow path.

Now suppose n ≥ 4 and k ≥ 2. We will show lsrc2(G) = 3. Suppose there is
a 2-local strong rainbow coloring c on G with two colors. Suppose u0−u1−u2 is
a rainbow geodesic between u0 and u2, with c(u0u1) = 1 and c(u1u2) = 2. Since
there are only two colors, we may assume c(u1v1) = 1. Since dG(u0, v1) = 2,
there must be a rainbow geodesic between them. But k ≥ 2, so the only geodesic
between them is u0 − u1 − v1 which is not rainbow.

As functions of d, the d-local rc and src are non-decreasing.

Lemma 6. For any graph G and any positive integer d,

lrcd(G) ≤ lrcd+1(G),(5)

lsrcd(G) ≤ lsrcd+1(G).(6)

Proof. Any (d+ 1)-local (strong) rainbow coloring is automatically d-local.

The following example shows that this bound can be sharp.

Theorem 7. Let G be the vertex amalgamation of n copies of Cn, where n ≥ 3.
That is, G is obtained from n disjoint Cn’s by choosing one vertex in each cycle
and identifying those vertices as a single vertex. Then, for each d ≥ 2,

lrcd(G) = n.(7)

Proof. Put the colors 1, 2, . . . , n in each cycle. It is easy to see that this is a
rainbow coloring, so rc(G) ≤ n. Now, because

lrc2(G) ≤ lrc3(G) ≤ lrc4(G) ≤ · · · ≤ rc(G) = n(8)

it remains to show lrc2(G) ≥ n. Suppose there is a 2-local rainbow coloring c
on G with n − 1 colors. Let the i’th cycle be ui,1 − ui,2 − · · · − ui,n − ui,1, with
v = u1,1 = u2,1 = · · · = un,1 being the common vertex, where 1 ≤ i ≤ n. Consider
ui,2 and uj,2 with i 6= j. The shortest path between them is ui,2 − v − uj,2. Any
other path has length at least n. So c(vui,2) 6= c(vuj,2) for all i 6= j, and at least
n colors are needed.
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2.1. Trees

For a tree G, it is known that rc(G) = src(G) = |E(G)| (see [2]). We will compute
the local rc and src. From Lemma 2 we already know lsrcd(G) = χ(L(G)d−1),
but we still need to compute the right hand side.

Theorem 8. Let G be a tree and d ≤ diam(G). Then

lrcd(G) = lsrcd(G) = max{|E(S)| : S a subtree of G, diam(S) = d}.(9)

Proof. Let f(G) be the right hand side, that is, the maximum number of edges
in a subtree of G with diameter exactly d. Because d ≤ diam(G), any subtree
with diameter less than d can always be enlarged to a subtree with diameter
exactly d. So f(G) is also the maximum number of edges in a subtree of G with
diameter at most d.

Every path in a tree is a geodesic, so lrcd(G) = lsrcd(G). If c is a d-local
rainbow coloring on G and S is a subtree with diam(S) = d, then the restriction
of c to S is a rainbow coloring. So lrcd(G) ≥ f(G).

We prove lrcd(G) ≤ f(G) inductively. In G, choose a vertex x with maximum
eccentricity, and a path L : x− x1 − x2 − · · · − xp with p = diam(G). We define
the d-step open neighborhood of x as

Nd
G(x) = {y ∈ V (G) : 1 ≤ d(x, y) ≤ d}.(10)

Let S be the subtree induced by the d-step closed neighborhood of x, which is
defined as Nd

G[x] = {x} ∪Nd
G(x).

Claim. diam(S) = d.

Proof. Suppose there are y1, y2 ∈ Nd
G(x) with dG(y1, y2) > d. Let z be where y1

and y2 meet, and let xi be where z meets the path L.

Figure 3. Branches connecting y1 and y2.

Since dG(y1, y2) > d, we may assume dG(y1, z) > d/2 so i = d(x, xi) ≤ d(x, z) <
d/2. Then dG(y1, xp) > dG(z, xp) + d/2 ≥ p− i+ d/2 > p, impossible.
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Continuing the proof of the theorem, let S′ = S\x and G′ = G\x be the
graphs obtained by deleting x from S and G, respectively. If x has another
neighbor w 6= x1, then by the uniqueness of paths in a tree, the only path from
w to xp is w− x− x1− · · · − xp so dG(w, xp) = 1 + p, a contradiction. Therefore,
x only has one neighbor in G, namely x1. As a result, S′ and G′ are connected
graphs.

Moreover, diam(S′) ≤ diam(S) = d, diam(G′) ≤ diam(G), and f(G′) ≤
f(G). By induction, lrcd(G′) ≤ f(G′) so G′ has a d-local rainbow coloring with
f(G′) colors. Consider x1, the (only) vertex adjacent to x. If f(G′) ≤ f(G)− 1,
then we can put a new color on x1x. If f(G′) = f(G), then |E(S′)| = |E(S)|−1 ≤
f(G)− 1 = f(G′)− 1 so S′ does not use up all f(G′) colors, and we can put one
unused color on x1x.

For small d, we can be more explicit.

Corollary 9. If G is a tree, then

1. lrc2(G) = lsrc2(G) = ∆(G),

2. lrc3(G) = lsrc3(G) = max{deg(x) + deg(y)− 1 : xy ∈ E(G)}.

Trees are the only graphs with src(G) = |E(G)| (see [2]). A similar fact also
holds for local rc and src.

Corollary 10. If G is connected and d ≤ diam(G), then the following are equiv-
alent.

1. lrcd(G) = |E(G)|.
2. lsrcd(G) = |E(G)|.
3. G is a tree and d = diam(G).

Proof. The nontrivial implication is 2=⇒3. Suppose lsrcd(G) = |E(G)|. Since
lsrcd(G) ≤ src(G), this implies src(G) = |E(G)| so G is a tree. By the previous
result, lsrcd(G) = |E(S)| with diam(S) = d, so |E(S)| = |E(G)| and S = G.

2.2. Cycles

For the cycle, we know rc(Cn) = src(Cn) = dn/2e (see [2]). Here, we compute
the local rc and src.

Theorem 11. If n ≥ 3 and d ≤ n/2, then

lrcd(Cn) = lsrcd(Cn) =

⌈
n

bn/dc

⌉
.(11)
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Proof. Let n = dq + r with 0 ≤ r ≤ d− 1 and q = bn/dc. Note that q ≥ 2 since
n ≥ 2d. Let b = dn/qe. Then

b =

⌈
n

q

⌉
=

⌈
dq + r

q

⌉
= d+

⌈
r

q

⌉
.(12)

First, we prove lsrcd(Cn) ≤ b. If r = 0, then n = dq and we can put the
colors 1, 2, . . . , d consecutively on the edges of Cn. This is clearly a d-local strong
rainbow coloring. Now suppose r > 0, so that b = d + dr/qe ≥ d + 1. Let t =

(b−d)q−r. Then t =
⌈
r
q

⌉
q−r ≥ r

q q−r = 0 and t <
(

1 + r
q

)
q−r = q+r−r = q

so q > t ≥ 0. Note that

n = qd+ r = qb− t = (q − t)b+ t(b− 1).(13)

On the edges of Cn, put the colors 1, 2, . . . , b consecutively for q − t times, and
then put the colors 1, 2, . . . , b−1 consecutively for t times. Since b−1 ≥ d, this is
a d-local strong rainbow coloring on Cn, and we have proved that lsrcd(Cn) ≤ b.

Now we prove lsrcd(Cn) ≥ b. Suppose otherwise, so Cn has a d-local strong
rainbow coloring c with b− 1 colors. Let e be an edge of Cn with color c(e) = i.
Let Le and Re be the set of the first d − 1 edges from e in the left and right
direction, respectively. Then Le ∩Re = ∅ because n > 2d− 1. Since the coloring
is d-local strong rainbow, the color i cannot occur again on Le ∪ Re. Therefore,
the color i can only occur again on the remaining n− 2(d− 1)− 1 = n− 2d+ 1
edges. From each further occurence of the color i, the next d − 1 edges are free
of the color i, and so on. In total, the number of occurence of color i is at most
n−2d+1

d + 1 = n+1
d − 1. Note that

n+ 1

d
− 1 =

dq + r + 1

d
− 1 = q +

r + 1

d
− 1 ≤ q + 1− 1 = q.(14)

Since there are n edges, and each edge must be colored with one of the b − 1
colors, we have n ≤ (b− 1)q. This contradicts n/q > b− 1.

It remains to prove lrcd(Cn) ≥ b. Suppose otherwise, so Cn has a d-local
rainbow coloring c with b − 1 colors. Let x, y ∈ V (Cn) with d(x, y) ≤ d. There
are two paths between them: one of length d, and one of length n− d. Note that

n− d ≥ 2(n− d)

q
=
n+ n− 2d

q
≥ n

q
> b− 1,(15)

so the shorter path is rainbow. Therefore, c is actually a d-local strong rainbow
coloring, contradicting lsrcd(Cn) = b.

As noted in the proof, another way to express this result is

lrcd(Cn) = lsrcd(Cn) = d+

⌈
r

q

⌉
,(16)
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where n = dq + r with q, r integers such that 0 ≤ r ≤ d− 1 and q ≥ 2.
From here, we may conclude

d ≤ lrcd(Cn) = lsrcd(Cn) ≤ d+

⌈
d− 1

2

⌉
.(17)

For small d we have the following results.

Corollary 12.

1. For n ≥ 4, lrc2(Cn) = lsrc2(Cn) =

{
2, if n is even,

3, if n is odd.

2. For n ≥ 6, lrc3(Cn) = lsrc3(Cn) =

{
3, if 3|n,
4, otherwise.

3. For n ≥ 8, lrc4(Cn) = lsrc4(Cn) =


4, if 4|n,
5, if 46 |n and n 6= 11,

6, if n = 11.

3. Graphs with lrcd(G) = d

The bound rc(G) ≥ diam(G) is useful because it often becomes equality. How-
ever, this makes it difficult to completely characterize the equality cases. Sur-
prisingly, for the local version lrcd(G) ≥ d, it is possible to characterize equality,
at least when d is small compared to the girth. First, an observation.

Lemma 13. If g(G) > D + lrcD(G) for some D, then lrcd(G) = lsrcd(G) for
all d ≤ D.

Proof. Note g(G) > D + lrcD(G) ≥ d + lrcd(G). Let c be a d-local rainbow
coloring on G with k = lrcd(G) colors. We show that this coloring is actually
strong. Suppose otherwise. Then some x, y with dG(x, y) ≤ d are not connected
by a rainbow geodesic. Let L1 be any geodesic in G between x and y. Let L2

be a rainbow path in G between x and y. Let z be the first vertex after x that
the rainbow path L2 intersects the non-rainbow geodesic L1 (possibly z = y).
The concatenated paths xL1z and xL2z combine to form a cycle of length at
least g(G). Since xL1z has at most d edges, the rainbow path xL2z has at least
g(G)− d > k edges. But there are only k colors, a contradiction.

As a side note, we get the following.

Corollary 14. Let G be a connected graph which is not a tree, and suppose
g(G) > rc(G) + diam(G). Then rc(G) = src(G) = diam(G) = g(G)−1

2 and
lrcd(G) = lsrcd(G) for each d ≤ diam(G).
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Proof. Let g = g(G). It is well known that g ≤ 2 diam(G) + 1, so diam(G) ≥
bg/2c and g > rc(G)+diam(G) ≥ 2

⌊g
2

⌋
. Then g is odd, rc(G)+diam(G) = g−1,

and g = 2 diam(G) + 1. We are done by Lemma 13.

Now we prove the main result.

Theorem 15. If G is connected and d < g(G)/2, then the following are equiva-
lent.

1. lrcd(G) = d.

2. lsrcd(G) = d.

3. G is either a path Pn with n ≥ d+ 1 or a cycle Cdq with q ≥ 3.

Proof. The non-trivial implication is 1=⇒3. Suppose lrcd(G) = d. Then g(G) >
2d = d+ lrcd(G), so Lemma 13 gives d = lsrcd(G) = χ(L(G)d−1). If G is a tree,
Theorem 8 can be used to show G = Pn. We assume G has a cycle.

For any graph H we have χ(H) ≥ ω(H), where ω(H) is the clique num-
ber of H, i.e., the largest number of pairwise adjacent vertices in H. We have
ω(L(G)d−1) ≤ χ(L(G)d−1) = d, so there are at most d vertices in L(G) with
pairwise distance not exceeding d− 1.

Suppose d = 2. Then 2 = χ(L(G)) ≥ ∆(G), and G is a cycle. It must be
even by Corollary 12.

Finally, suppose d ≥ 3 and consider a shortest cycle Cg in G, where g = g(G).
This cycle has no chord. We claim that G = Cg. Suppose otherwise. Then there
is a vertex v outside of this cycle that is adjacent to some vertex x in the cycle.
Consider a path x1 − · · · − xd − xd+1 in the cycle with x2 = x. Let S be the set
of edges in this path together with the edge xv. Then any two edges in S have
distance at most d − 1 in L(G) (since d ≥ 3), so S is a clique in L(G)d−1. But
|S| = d+ 1, contrary to ω(L(G)d−1) ≤ d. Therefore, G = Cg.

Write g = dq + r with q = bg/dc and 0 ≤ r ≤ d − 1. By Theorem 11,
lrcd(G) = d+ dr/qe. So r = 0, and g = dq with q > 2.

We always have g(G) ≤ 2 diam(G) + 1. Applying the theorem with d =
diam(G), we get the following.

Corollary 16. Let G be a connected graph which is not a path. If rc(G) =
diam(G), then g(G) ≤ 2 diam(G).

4. Existence of Graphs with Prescribed Values of Local RC and
SRC

The authors of [2] asked whether any pair of positive integers a ≤ b can be realized
as a = rc(G) and b = src(G) for some connected graph G.
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Theorem 17 [5]. Let a, b be positive integers. Then there is a connected graph
G such that a = rc(G) and src(G) = b if and only if one of the following holds.

1. a = b ∈ {1, 2}.
2. 3 ≤ a ≤ b.

There is an analogous result for local rc and src. In part of the proof, we will
use the following.

Theorem 18 [11]. Let m1, . . . ,mt, t ≥ 2 be positive integers. If G is the vertex
amalgamation of Km1 , . . . ,Kmt, then src(G) = t and

rc(G) =

{
2, if t = 2,

max{3, u}, otherwise,

where u is the number of i ∈ {1, . . . , t} with mi = 2.

Now, we solve the realization problem for local rc and src: given positive
integers d, a, b, is there a connected graph G with lrcd(G) = a and lsrcd(G) = b?

Theorem 19. Let d, a, b be positive integers. Then there is a graph G such that
a = lrcd(G) and b = lsrcd(G) if and only if one of the following holds.

1. d = a = b ∈ {1, 2}.
1. d = 2 and 3 ≤ a ≤ b.
1. 3 ≤ d ≤ a ≤ b.

Moreover, we can always choose G to be connected and d = diam(G).

Proof. The forward direction follows from the results in Section 2. It remains
to prove the converse. If d = a = b, then we can choose G = Pd+1. If d = 2 and
3 ≤ a ≤ b, then we can choose G to be the vertex amalgamation of a copies of
K2 and b − a copies of K3, because diam(G) = 2 and lrc2(G) = max{3, a} = a
and lsrc2(G) = b by Theorem 18.

Suppose 3 ≤ d = a < b. Let G be a connected graph with diam(G) =
rc(G) = a and src(G) = b (see Theorem 17). Then lrcd(G) = a and lsrcd(G) = b.

Now suppose 3 ≤ d < a ≤ b. Let G be the graph in Figure 4.

Since diam(G) = d, it remains to show rc(G) = a and src(G) = b. Let H be
the subgraph of G induced by x1, . . . , xa+1. Any path in G between two vertices
in H must be contained in H. Thus, any rainbow coloring of G restricts to a
rainbow coloring on H. Moreover, H is a tree. So rc(G) ≥ rc(H) = |E(H)| = a.
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Figure 4. A construction for the case 3 ≤ d < a ≤ b.

On the other hand, the coloring c1 below is a rainbow coloring,

c1(e) =



i, if e = xixi+1 with 1 ≤ i ≤ d− 2,

i, if e = xd−1xi+1 with d− 1 ≤ i ≤ a,
d− 1, if e = x1yi or e = yi+1yi+2 with i ≡ 1 (mod 3),

d, if e = x1yi or e = yi+1yi+2 with i ≡ 2 (mod 3),

d+ 1, if e = x1yi or e = yi+1yi+2 with i ≡ 0 (mod 3),

(18)

where the indices in yi are read modulo 3(b− a).
Let K be the subgraph of G induced by H and yi for all i ≡ 1(mod 3).

Any geodesic in G between two vertices in K must be contained in K. Thus,
any strong rainbow coloring of G restricts to a strong rainbow coloring on K.
Moreover, K is a tree. So src(G) ≥ src(K) = |E(K)| = b. On the other hand,
the coloring c2 below is a strong rainbow coloring,

c2(e) =

{
c1(e), if e ∈ E(H) ∪ {yiyi+1 : 1 ≤ i ≤ 3(b− a)− 1},
a+

⌈
i
3

⌉
, if e = x1yi with 0 ≤ i ≤ 3(b− a).

(19)
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