DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

Ts.Ch-D. Batueva

Tsyndyma Ch-D. Batueva

Sobolev Institute of Mathematics

email: tsyn.batueva@gmail.com

O.V. Borodin

Oleg V. Borodin

IM SO RANNovosibirsk, 630090Russia

email: brdnoleg@math.nsc.ru

A.O. Ivanova

Anna O. Ivanova

Ammosov North-Eastern Federal University

email: shmgnanna@mail.ru

0000-0002-6179-3740

D.V. Nikiforov

Dmitrii V. Nikiforov

Sobolev Institute of Mathematics

email: zerorebelion@mail.ru

Title:

Describing minor 5-stars in 3-polytopes with minimum degree 5 and no vertices of degree 6 or 7

PDF

Source:

Discussiones Mathematicae Graph Theory 42(2) (2022) 535-548

Received: 2019-10-03 , Revised: 2019-12-13 , Accepted: 2019-12-13 , Available online: 2020-05-11 , https://doi.org/10.7151/dmgt.2323

Abstract:

In 1940, in attempts to solve the Four Color Problem, Henry Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class $\bf P_5$ of 3-polytopes with minimum degree 5. This description depends on 32 main parameters.
$(6,6,7,7,7)$, $(6,6,6,7,9)$, $(6,6,6,6,11)$,
$(5,6,7,7,8)$, $(5,6,6,7,12)$, $(5,6,6,8,10)$, $(5,6,6,6,17)$,
$(5,5,7,7,13)$, $(5,5,7,8,10)$, $(5,5,6,7,27)$,
$(5,5,6,6,\infty)$, $(5,5,6,8,15)$, $(5,5,6,9,11)$,
$(5,5,5,7,41)$, $(5,5,5,8,23)$, $(5,5,5,9,17)$,
$(5,5,5,10,14)$, $(5,5,5,11,13)$.

Not many precise upper bounds on these parameters have been obtained as yet, even for restricted subclasses in $\bf P_5$. In 2018, Borodin, Ivanova, Kazak proved that every forbidding vertices of degree from 7 to 11 results in a tight description $(5,5,6,6,\infty)$, $(5,6,6,6,15)$, $(6,6,6,6,6)$. Recently, Borodin, Ivanova, and Kazak proved every $3$-polytope in $\bf P_5$ with no vertices of degrees 6, 7, and 8 has a $5$-vertex whose neighborhood is majorized by one of the sequences $(5,5,5,5,\infty)$ and $(5,5,10,5,12)$, which is tight and improves a corresponding description $(5,5,5,5,\infty)$, $(5,5,9,5,17)$, $(5,5,10,5,14)$, $(5,5,11,5,13)$ that follows from the Lebesgue Theorem. The purpose of this paper is to prove that every $3$-polytope with minimum degree 5 and no vertices of degree 6 or 7 has a $5$-vertex whose neighborhood is majorized by one of the ordered sequences $(5,5,5,5,\infty)$, $(5,5,8,5,14)$, or $(5,5,10,5,12)$.

Keywords:

planar graph, structural properties, 3-polytope, 5-star, neighborhood

References:

  1. O.V. Borodin and A.O. Ivanova, Describing $4$-stars at $5$-vertices in normal plane maps with minimum degree $5$, Discrete Math. 313 (2013) 1710–1714.
    https://doi.org/10.1016/j.disc.2013.04.025
  2. O.V. Borodin and A.O. Ivanova, An analogue of Franklin's Theorem, Discrete Math. 339 (2016) 2553–2556.
    https://doi.org/10.1016/j.disc.2016.04.019
  3. O.V. Borodin and A.O. Ivanova, Light and low $5$-stars in normal plane maps with minimum degree $5$, Sib. Math. J. 57 (2016) 470–475.
    https://doi.org/10.1134/S0037446616030071
  4. O.V. Borodin and A.O. Ivanova, New results about the structure of plane graphs: a survey, AIP Conference Proceedings 1907 (2017) 030051.
    https://doi.org/10.1063/1.5012673
  5. O.V. Borodin and A.O. Ivanova, Low $5$-stars in normal plane maps with minimum degree $5$, Discrete Math. 340 (2017) 18–22.
    https://doi.org/10.1016/j.disc.2016.07.013
  6. O.V. Borodin and A.O. Ivanova, On light neighborhoods of $5$-vertices in $3$-polytopes with minimum degree $5$, Discrete Math. 340 (2017) 2234–2242.
    https://doi.org/10.1016/j.disc.2017.04.012
  7. O.V. Borodin, A.O. Ivanova and T.R. Jensen, $5$-stars of low weight in normal plane maps with minimum degree $5$, Discuss. Math. Graph Theory 34 (2014) 539–546.
    https://doi.org/10.7151/dmgt.1748
  8. O.V. Borodin, A.O. Ivanova and O.N. Kazak, Describing neighborhoods of $5$-vertices in $3$-polytopes with minimum degree $5$ and without vertices of degrees from $7$ to $11$, Discuss. Math. Graph Theory 38 (2018) 615–625.
    https://doi.org/10.7151/dmgt.2024
  9. O.V. Borodin, A.O. Ivanova, O.N. Kazak and E.I. Vasil'eva, Heights of minor $5$-stars in $3$-polytopes with minimum degree $5$ and no vertices of degree $6$ and $7$, Discrete Math. 341 (2018) 825–829.
    https://doi.org/10.1016/j.disc.2017.11.021
  10. O.V. Borodin, A.O. Ivanova and O.N. Kazak, Describing the neighborhood of $5$-stars in $3$-polytopes with minimum degree $5$ and no vertices of degree from $6$ to $8$, Discrete Math. 342 (2019) 2439–2444.
    https://doi.org/10.1016/j.disc.2019.05.010
  11. O.V. Borodin and A.O. Ivanova, Light minor $5$-stars in $3$-polytopes with minimum degree $5$, Sib. Math. J. 60 (2019) 272–278.
    https://doi.org/10.1134/S0037446619020071
  12. O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low and light $5$-stars in $3$-polytopes with minimum degree $5$ and restrictions on the degrees of major vertices, Sib. Math. J. 58 (2017) 600–605.
    https://doi.org/10.1134/S003744661704005X
  13. O.V. Borodin, A.O. Ivanova and D.V. Nikiforov, Low minor $5$-stars in $3$-polytopes with minimum degree $5$ and no $6$-vertices, Discrete Math. 340 (2017) 1612–1616.
    https://doi.org/10.1016/j.disc.2017.03.002
  14. O.V. Borodin and D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree $5$, Discuss. Math. Graph Theory 18 (1998) 159–164.
    https://doi.org/10.7151/dmgt.1071
  15. B. Ferencová and T. Madaras, Light graph in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight, Discrete Math. 310 (2010) 1661–1675.
    https://doi.org/10.1016/j.disc.2009.11.027
  16. Ph. Franklin, The four colour problem, Amer. J. Math. 44 (1922) 225–236.
    https://doi.org/10.2307/2370527
  17. J. Harant and S. Jendrol', On the existence of specific stars in planar graphs, Graphs Combin. 23 (2007) 529–543.
    https://doi.org/10.1007/s00373-007-0747-7
  18. A.O. Ivanova and D.V. Nikiforov, The structure of neighborhoods of $5$-vertices in plane triangulation with minimum degree $5$, Math. Notes of Yakutsk State University 20 (2013) 66–78, in Russian.
  19. A.O. Ivanova and D.V. Nikiforov, Combinatorial structure of triangulated $3$-polytopes with minimum degree $5$, in: Proceedings of the Scientific Conference of Students, Graduate Students, and Young Researchers, XVII and XVIII Lavrent'ev's Reading, Yakutsk; Kirov, (International Center for Research Projects 2015) 22–27, in Russian.
  20. S. Jendrol', A structural property of convex $3$-polytopes, Geom. Dedicata 68 (1997) 91–99.
    https://doi.org/10.1023/A:1004993723280
  21. S. Jendrol' and T. Madaras, On light subgraphs in plane graphs of minimum degree five, Discuss, Math. Graph Theory 16 (1996) 207–217.
    https://doi.org/10.7151/dmgt.1035
  22. S. Jendrol' and T. Madaras, Note on an existence of small degree vertices with at most one big degree neighbour in planar graphs, Tatra Mt. Math. Publ. 30 (2005) 149–153.
  23. S. Jendrol' and H.-J. Voss, Light subgraphs of graphs embedded in the plane–-A survey, Discrete Math. 313 (2013) 406–421.
    https://doi.org/10.1016/j.disc.2012.11.007
  24. H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 27–43.
  25. Y. Li, M. Rao and T. Wang, Minor stars in plane graphs with minimum degree five, Discrete Appl. Math. 257 (2019) 233–242.
    https://doi.org/10.1016/j.dam.2018.10.019
  26. D.V. Nikiforov, The structure of neighborhoods of normal plane maps with minimum degree $5$, Math. Notes of North-Eastern Federal University 23 (2016) 56–66, in Russian.
  27. P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413–426.
    https://doi.org/10.1007/BF01444968

Close