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Abstract

In 1940, in attempts to solve the Four Color Problem, Henry Lebesgue
gave an approximate description of the neighborhoods of 5-vertices in the
class P5 of 3-polytopes with minimum degree 5. This description depends
on 32 main parameters.

(6, 6, 7, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11),
(5, 6, 7, 7, 8), (5, 6, 6, 7, 12), (5, 6, 6, 8, 10), (5, 6, 6, 6, 17),

(5, 5, 7, 7, 13), (5, 5, 7, 8, 10), (5, 5, 6, 7, 27),
(5, 5, 6, 6,∞), (5, 5, 6, 8, 15), (5, 5, 6, 9, 11),
(5, 5, 5, 7, 41), (5, 5, 5, 8, 23), (5, 5, 5, 9, 17),

(5, 5, 5, 10, 14), (5, 5, 5, 11, 13).

Not many precise upper bounds on these parameters have been obtained
as yet, even for restricted subclasses in P5. In 2018, Borodin, Ivanova,
Kazak proved that every forbidding vertices of degree from 7 to 11 re-
sults in a tight description (5, 5, 6, 6,∞), (5, 6, 6, 6, 15), (6, 6, 6, 6, 6). Re-
cently, Borodin, Ivanova, and Kazak proved every 3-polytope in P5 with no
vertices of degrees 6, 7, and 8 has a 5-vertex whose neighborhood is ma-
jorized by one of the sequences (5, 5, 5, 5,∞) and (5, 5, 10, 5, 12), which is
tight and improves a corresponding description (5, 5, 5, 5,∞), (5, 5, 9, 5, 17),
(5, 5, 10, 5, 14), (5, 5, 11, 5, 13) that follows from the Lebesgue Theorem.
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The purpose of this paper is to prove that every 3-polytope with mini-
mum degree 5 and no vertices of degree 6 or 7 has a 5-vertex whose neighbor-
hood is majorized by one of the ordered sequences (5, 5, 5, 5,∞), (5, 5, 8, 5, 14),
or (5, 5, 10, 5, 12).

Keywords: planar graph, structural properties, 3-polytope, 5-star, neigh-
borhood.
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1. Introduction

By a 3-polytope P we mean a finite 3-connected plane graph. The degree d(v) of
a vertex v (d(f) of a face f) in P is the number of edges incident with it. Let P5

denote the class of 3-polytopes with minimum degree 5. A k-vertex (k-face) is a
vertex (face) of degree k; a k+-vertex has degree at least k, etc.

By a minor k-star S
(m)
k we mean a star with k rays centered at a 5−-vertex.

The weight (height) of an S
(m)
k in P is the degree sum (maximum degree) of its

boundary vertices, and wk(P ) (hk(P )) denotes the minimum weight (height) of
minor k-stars in P .

In 1904, Wernicke [27] proved that every 3-polytope in P5 has a 5-vertex
adjacent to a 6−-vertex, which was strengthened by Franklin [16] in 1922 by
proving that in fact there is a 5-vertex adjacent to two 6−-vertices. Recently,
Borodin and Ivanova [2] proved that every 3-polytope in P5 has also a vertex of
degree at most 6 adjacent to a 5-vertex and another vertex of degree at most 6,
which description is tight.

We say that a 5-vertex v is of type (k1, . . . , k5) or simply a (k1, . . . , k5)-vertex
if the ordered sequence of degrees of its neighbors is majorized by the vector
(k1, . . . , k5). If the order of certain entries in the type is irrelevant, then we put
a line over them.

In 1940, the following description of the neighborhoods of 5-vertices in P5

was given by Lebesgue [24, p. 36], which absorbs the results of Wernicke [27] and
Franklin [16].

Theorem 1 (Lebesgue [24]). Every triangulated 3-polytope with minimum degree
5 contains a 5-vertex of one of the following types:

(6, 6, 7, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11),
(5, 6, 7, 7, 8), (5, 6, 6, 7, 11), (5, 6, 6, 8, 8),

(5, 6, 6, 9, 7), (5, 7, 6, 6, 12), (5, 8, 6, 6, 10), (5, 6, 6, 6, 17),
(5, 5, 7, 7, 8), (5, 13, 5, 7, 7), (5, 10, 5, 7, 8),
(5, 8, 5, 7, 9), (5, 7, 5, 7, 10), (5, 7, 5, 8, 8),
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(5, 5, 7, 6, 12), (5, 5, 8, 6, 10), (5, 6, 5, 7, 12),
(5, 6, 5, 8, 10), (5, 17, 5, 6, 7), (5, 11, 5, 6, 8),

(5, 11, 5, 6, 9), (5, 7, 5, 6, 13), (5, 8, 5, 6, 11), (5, 9, 5, 6, 10), (5, 6, 6, 5,∞),
(5, 5, 7, 5, 41), (5, 5, 8, 5, 23), (5, 5, 9, 5, 17), (5, 5, 10, 5, 14), (5, 5, 11, 5, 13).

In particular, Theorem 1 implies that there is a 5-vertex with three 7−-

neighbors, which means that h
(
S
(m)
3

)
≤ 7. Another corollary of Theorem 1 is

that w
(
S
(m)
3

)
≤ 24, which was improved in 1996 by Jendrol’ and Madaras [21] to

the sharp bound w
(
S
(m)
3

)
≤ 23. Furthermore, Jendrol’ and Madaras [21] gave

a tight description of minor 3-stars in P5: there is a (6, 6, 6)- or (5, 6, 7)-star.

Recently, Borodin and Ivanova [1], using the sharp bound w
(
S
(m)
4

)
≤ 30 by

Borodin and Woodall [14], obtained a tight description of minor 4-stars in P5.

Jendrol’ and Madaras [21] also showed that if a polytope P in P5 is allowed to
have a 5-vertex adjacent to four 5-vertices (such a 5-vertex is also called a minor
(5, 5, 5, 5,∞)-star), then h5(P ) (and hence w5(P )) can be arbitrarily large. In
2014, Borodin, Ivanova, and Jensen [7] showed that the same phenomenon holds
under a weaker assumption that 5-vertices are allowed to have two 5-neighbors
and two 6-neighbors. Thus, the term (5, 6, 6, 5,∞) in Theorem 1 is necessary.

Some recent sharp bounds on the height and weight of minor 5-stars in various
subclasses of P5, along with several related results, can be found in [1–9, 11–15,
17,20,22] and surveys [4, 23].

In particular, Borodin, Ivanova and Nikiforov [13] obtained a sharp bound

h
(
S
(m)
5

)
≤ 17 under the absence of 6-vertices, which improves the upper bound

41 that follows from Theorem 1.

In 2013, Ivanova and Nikiforov [18] corrected two misprints in the statement
of Theorem 1: 11 in (5, 11, 5, 6, 8) should be replaced by 15, and in (5, 17, 5, 6, 7)
there should be 27 instead of 17. Later on, they improved [19, 26] thus corrected
version of Theorem 1 by replacing 41 and 23 in the types (5, 5, 7, 5, 41) and
(5, 5, 8, 5, 23) to 31 and 22, respectively.

Theorem 2 (Ivanova, Nikiforov [18, 19, 26]). Every 3-polytope with minimum
degree 5 contains a 5-vertex of one of the following types:

(6, 6, 7, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11),
(5, 8, 6, 7, 7), (5, 7, 6, 8, 7), (5, 6, 6, 7, 11), (5, 6, 6, 8, 8),

(5, 7, 6, 6, 12), (5, 8, 6, 6, 10), (5, 6, 6, 6, 17),
(5, 5, 7, 7, 8), (5, 13, 5, 7, 7), (5, 10, 5, 7, 8), (5, 8, 5, 7, 9),
(5, 7, 5, 7, 10),(5, 7, 5, 8, 8), (5, 5, 7, 6, 12), (5, 5, 8, 6, 10),

(5, 6, 5, 7, 12), (5, 6, 5, 8, 10), (5, 27, 5, 6, 7), (5, 15, 5, 6, 8),
(5, 11, 5, 6, 9), (5, 7, 5, 6, 13), (5, 8, 5, 6, 11), (5, 9, 5, 6, 10),
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(5, 6, 6, 5,∞),
(5, 5, 7, 5, 31), (5, 5, 8, 5, 22), (5, 5, 9, 5, 17), (5, 5, 10, 5, 14), (5, 5, 11, 5, 13).

Recently, Li, Rao, and Wang [25] obtained two descriptions of minor 5-stars
in plane graphs with minimum degree 5, in which some parameters are better
and some are worse than in Theorems 1 and 2.

Recently, Borodin, Ivanova, and Kazak proved in [8] that forbidding ver-
tices of degree from 7 to 11 in P5 results in a tight description (5, 5, 6, 6,∞),
(5, 6, 6, 6, 15), (6, 6, 6, 6, 6), which improves a description (5, 5, 6, 6,∞),
(5, 6, 6, 6, 17), (6, 6, 6, 6, 6) that follows from Theorem 1.

If vertices of degrees 6, 7, and 8 are forbidden, then Theorem 1 implies a 5-
vertex of one of the following types: (5, 5, 5, 5,∞), (5, 5, 9, 5, 17), (5, 5, 10, 5, 14),
(5, 5, 11, 5, 13). Recently, Borodin, Ivanova, and Kazak [10] proved a precise
description of 5-stars in this subclass of P5: (5, 5, 5, 5,∞) and (5, 5, 10, 5, 12),
where all parameters are best possible.

The purpose of this paper is to extend and strengthen the description in [10]
as follows.

Theorem 3. Every 3-polytope with minimum degree 5 and without vertices of
degrees of 6 or 7 has a 5-vertex of one of the following types: (5, 5, 5, 5,∞),
(5, 5, 8, 5, 14), or (5, 5, 10, 5, 12).

2. Proof of Theorem 3

2.1. The tightness

To confirm the tightness of the term (5, 5, 10, 5, 12), we start with the (5, 6, 6)-
Archimedean solid, which is a cubic 3-polytope whose each vertex is incident with
a 5-face and two 6-faces, replace all its vertices by small 3-faces, and cap each
10+-face obtained.

The resulting 3-polytope has only 5-vertices, 10-vertices, and 12-vertices, and
all 5-vertices are of type (5, 5, 10, 5, 12) or (5, 5, 12, 5, 12), as desired.

The construction confirming the tightness of (5, 5, 5, 5,∞) is due to Jendrol’
and Madaras [21].

To confirm the tightness of the term (5, 5, 8, 5, 14) we start with the (3, 4, 4, 4)
Archimedean solid A(3, 4, 4, 4), which is a 4-regular 3-polytope whose each vertex
is incident with a 3-face and three 4-faces. Now cap each 4-face of A(3, 4, 4, 4)
to obtain a triangulation T whose each face is incident with a 4-vertex and two
7+-vertices. The dual D of T is a cubic 3-polytope, and we replace all its vertices
by small 3-faces.

The resulting 3-polytope R is cubic and such that each vertex is incident
with a 3-face, 8-face, and 14+-face. Capping all 8+-faces of R yields a desired
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3-polytope in which every 5-vertex has a 14+-neighbor and another 8+-neighbor,
where these two major neighbors are non-consecutive.

2.2. Discharging

Suppose that a 3-polytope P ′5 is a counterexample to the main statement of
Theorem 3. In particular, each 5-vertex in P ′5 has at most three 5-neighbors and
is adjacent either to at most two 5-vertices, or otherwise to two consecutive 8+-
vertices, or a 8-vertex non-consecutive with a 15+-vertex, or a vertex of degree 9
or 10 non-consecutive with a 13+-vertex, or two non-consecutive 11+-vertices.

Let P5 be a counterexample with the most edges on the same vertices as P ′5.

Remark 4. P5 has no 4+-face with two non-consecutive 8+-vertices along the
boundary, for otherwise adding a diagonal between these vertices would result in
a counterexample with a greater number of edges.

Let V , E, and F be the sets of vertices, edges, and faces of P5. Euler’s
formula |V | − |E|+ |F | = 2 implies∑

v∈V
(d(v)− 6) +

∑
f∈F

(2d(f)− 6) = −12.(1)

We assign an initial charge µ(v) = d(v) − 6 to each v ∈ V and µ(f) =
2d(f) − 6 to each f ∈ F , so that only 5-vertices have negative initial charge.
Using the properties of P5 as a counterexample to Theorem 3, we define a local
redistribution of charges, preserving their sum, such that the final charge µ(x) is
non-negative for all x ∈ V ∪ F . This will contradict the fact that the sum of the
final charges is, by (1), equal to −12.

The final charge µ′(x) whenever x ∈ V ∪ F is defined by applying the rules
R1–R8 below (see Figure 1).

For a vertex v, let v1, . . . , vd(v) be the vertices adjacent to v in a cyclic order.
A vertex is simplicial if it is completely surrounded by 3-faces. A 5-vertex v is
strong if d(v1) = d(v2) = 5, d(v3) ≥ 8, d(v4) ≥ 8, d(v5) ≥ 8, and there is a 3-face
vv1v2. Note that v also is incident to 3-faces v3vv4 and v4vv5 due to Remark 4.

A simplicial 5-vertex v such that d(v1) = d(v2) = d(v4) = 5, 8 ≤ d(v3) ≤ 10,
and hence d(v5) ≥ 13 is poor, and v1 is paired with v.

We note that the poor and paired neighbors in the neighborhood of each 13+-
vertex w are in one-to-one correspondence with each other. Indeed, if w2 were
paired with two poor vertices w1 and w3, then w2 would have four 5-neighbors, a
contradiction. On the other hand, if w1, w2, w3 are poor neighbors of w, where
w1 and w2 have a common neighbor of degree from 8 to 10, then w2 is paired
with w3, but not with w1 due to a unique 3-face incident with three 5-vertices at
a poor vertex. We also see that a paired vertex v1 is poor itself if and only if v2
is strong.
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A simplicial 5-vertex v such that d(v1) = d(v2) = d(v3) = 5, d(v4) = 8, and
hence d(v5) ≥ 8 is bad, and v3 is conjugate with v. By symmetry, v1 is also
conjugate with v if d(v5) = 8.

R1. A 4+-face f = v1 · · · vd(f) gives each incident 5-vertex v2 :

(a) 1
2 if d(v1) = d(v3) = 5, or

(b) 3
4 if d(v1) ≥ 8 and d(v3) = 5.

R2. A 5-vertex v with d(v1) ≥ 8 receives the following charge from its 8+-neighbor
v2 :

(a) if d(v3) = 5, then 3
8 , 1

2 , 7
12 , or 3

4 in the cases d(v2) = 8, 9 ≤ d(v2) ≤ 12,
13 ≤ d(v2) ≤ 14, or d(v2) ≥ 15, respectively, and

(b) 1
2 if d(v3) ≥ 8.

R3. A non-simplicial 5-vertex v with d(v1) = d(v3) = d(v4) = 5 receives 1
4 from

each of its 8+-neighbors v2 and v5.

R4. A strong 5-vertex v with d(v1) = d(v2) = 5 gives 1
8 or 1

6 to v1 if d(v5) = 8
or d(v5) ≥ 9, respectively, and the same is valid for v2 depending on d(v3) by
symmetry.

R5. A simplicial 5-vertex v with d(v1) = d(v2) = d(v4) = 5 receives from v5 :

(a) 1
4 if d(v5) = 8,

(b) 1
3 if 9 ≤ d(v5) ≤ 10, and

(c) 1
2 if 11 ≤ d(v5) ≤ 12.

R6. If a simplicial vertex v satisfies d(v1) = d(v2) = d(v4) = 5, d(v3) ≥ 8,
and d(v5) ≥ 13, then v5 gives 1

2 or 5
8 to v if 13 ≤ d(v5) ≤ 14 or d(v5) ≥ 15,

respectively, with the following two exceptions:

(ex1) if 13 ≤ d(v5) ≤ 14, 9 ≤ d(v3) ≤ 10 and v2 is not strong (hence v2 has
three 5-neighbors and a 13+-neighbor), then v5 gives 7

12 to v;

(ex2) if 13 ≤ d(v5) ≤ 14, v1 is a poor vertex paired with v, and v2 is not strong
(so v2 has three 5-neighbors), then v5 also gives 7

12 to v.

R7. Every poor 5-vertex v with a non-strong neighbor v2 receives from its paired
vertex v1 :

(a) 1
8 if v has an 8-neighbor v3, or

(b) 1
12 if 9 ≤ d(v3) ≤ 10.

R8. If vertex v satisfies d(v1) = d(v3) = 5, d(v2) ≥ 8, d(v4) ≥ 8 and d(v5) = 8,
then v receives 1

4 from v2.

R9. A bad 5-vertex v receives 1
8 from each conjugate vertex that is neither strong

nor simplicial.
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R10. If a bad 5-vertex v has a conjugate neighbor v3 that is simplicial and non-
strong (so v3 is poor with a 15+-neighbor), then v receives 1

8 from the 5-vertex v2
across the face v2vv3. By symmetry, the same holds for v1 and v1vv2 if d(v5) = 8.
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Figure 1. Rules of discharging.

2.3. Checking µ′(x) ≥ 0 whenever x ∈ V ∪ F

If f is a 4+-face, then the donation of 3
4 by R1b may be interpreted as giving 1

2 to
the 5-vertex and 1

4 to the neighbor 8+-vertex along the boundary ∂(f) of f . As
a result, each vertex in ∂(f) receives at most 2 × 1

4 from f after this averaging,

so we have µ′(f) ≥ 2d(f)− 6− d(f)× 1
2 = 3(d(f)−4)

2 ≥ 0.

Now suppose v ∈ V .

Case 1. d(v) = 5. If v is adjacent to at least four 8+-vertices, then µ′(v) ≥
5−6 + 4× 3

8 > 0 by R2, since v does not give charge away by R4, R7, R9 or R10.
Suppose v has precisely three 8+-neighbors. If they are consecutive round v,

say v1, v2, v3, then v receives at least 1
2 + 2× 3

8 > 1 from them by R2 in view of
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Remark 4. Also, v can give 1
8 or 1

6 to each of the two 5-neighbors v4 and v5 by
R4, and 1

8 or 1
12 to one of v4 and v5 by R7, if v is strong.

More specifically, if d(v3) = 8 then v4 receives 1
8 from v while v receives 3

8
from v3 by R2a, so v3 brings v the total of 1

4 = 3
8 − 1

8 . If d(v3) ≥ 9, then v4
receives 1

6 from v by R4 while v receives at least 1
2 from v3 by R2a, so v3 actually

brings at least 1
3 = 1

2 − 1
6 to v.

Thus each of v1 and v3 thus brings v the total of at least 1
4 by R2 combined

with R4, while v2 brings 1
2 to v by R2b, so µ′(v) ≥ −1 + 1

2 + 2× 1
4 = 0 if v does

not give charge by R7.

If v gives 1
8 by R7a, then v receives 3

4 from each of v1, v3 by R2a, so µ′(v) ≥
−1 + 1

2 + 2× 3
4 − 1

8 −2× 1
6 > 0 in view of R2 and R4. If v gives 1

12 by R7b, then v
receives 7

12 from each of v1, v3 by R2a, so µ′(v) ≥ −1+ 1
2 +2× 7

12 − 1
12 −2× 1

6 > 0
in view of R2 and R4.

Now suppose d(v1) = d(v3) = 5. Here, v does not give charge to v1 and v3
by R4 or R7, so it suffices for v to collect the total of at least 1 from its three
8+-neighbors. If d(v4) ≥ 9 and d(v5) ≥ 9, then µ′(v) ≥ −1 + 2 × 1

2 = 0 by R2a
in view of Remark 4; otherwise, we have d(v4) = 8 and d(v5) ≥ 8 by symmetry,
which yields µ′(v) ≥ −1 + 2× 3

8 + 1
4 = 0 by R2a combined with R8, as desired.

It remains to assume that v has precisely two 8+-neighbors due to the absence
of (5, 5, 5, 5,∞)-vertex. First suppose d(v4) ≥ 8 and d(v5) ≥ 8. If v is not
simplicial, then µ′(v) ≥ −1 + 1

2 + 2× 3
8 − 2× 1

8 = 0 by R1, R2a, R4, R7 and R10.
So suppose v is simplicial.

We next show that the total balance of v caused by donations from v4 ac-
cording to R2a, from v3 due to R9, and from v2 across the face v2vv3 by R10,
in view of possible giving charge from v to a poor vertex v3 by R7 and, when
d(v4) ≥ 15, to a bad vertex v2 by R10. By symmetry between v4 and v5 this will
result in µ′(v) ≥ −1 + 2× 1

2 = 0.

First suppose d(v4) = 8. Now v receives 3
8 from v4 by R2a and does not loose

charge by R7, but can gives 1
8 by R10. If v gives 1

8 by R10, then d(v5) ≥ 15
and v receives 3

4 from v5 by R2a, so µ′(v) ≥ −1 + 3
8 + 3

4 − 1
8 = 0. If v does

not give 1
8 by R10, then the required 1

8 comes from v3 either by R4 if v3 is
strong, or by R9 if v3 is not simplicial, or by R10 (the same is true for v1), hence
µ′(v) ≥ −1 + 2× 3

8 + 2× 1
8 = 0.

If 9 ≤ d(v4) ≤ 12, then it suffices to observe that v receives 1
2 by R2a and

does not give charge away by R7. If v gives 1
8 by R10, then v receives 3

4 from
15+-neighbor by R2a, and we have µ′(v) ≥ −1 + 1

2 + 3
4 − 1

8 > 0.

When 13 ≤ d(v4) ≤ 14, our v receives 7
12 by R2a and can give away 1

12 by
R7b if v is paired with a poor vertex v3 or 1

8 to v2 by R10.

Finally, if d(v4) ≥ 15 then v receives 3
4 by R2a and can give away 1

8 to a poor
vertex v3 by R7b and also 1

8 to a bad vertex v2 by R10. So again the balance of
v3 is at least 1

2 = 3
4 − 2× 1

8 , as desired.
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From now on suppose d(v1) ≥ 8 and d(v3) ≥ 8. If v is not simplicial,
then v receives 2 × 1

4 from v1 and v3 by R3 and at least 1
2 from an incident

4+-face by R1. Thus we are done unless v gives 1
12 or 1

8 to at least one of
v4 and v5 by R7 or R9, which can happen only if the face f = · · · v4vv5 is a
triangle. However, then v actually receives 3

4 by R1b at least once, and we have
µ′(v) ≥ −1 + 3

4 + 2× 1
4 − 2× 1

8 = 0.

Finally, suppose v is simplicial. Now v does not give charge by R9. If
v gives 1

8 or 1
12 to v5 by R7, so that v is paired with a poor vertex v5, then

d(v1) ≥ 15 or d(v1) ≥ 13, respectively, due to the absence (5, 5, 5, 8, 14)- and
(5, 5, 5, 10, 12)-vertex by assumption. (Hereafter, we consider two possibilities in
parallel, depending on whether v5 has an 8-neighbor or a neighbor of degree 9 or
10.) Furthermore, v4 is not strong, which implies that v4 has a 5-neighbor differ-
ent from v and v5. In turn, this means that d(v3) ≥ 15 or d(v3) ≥ 13, respectively,
since otherwise we would have a (5, 5, 5, 8, 14)-vertex or (5, 5, 10, 5, 12)-vertex, a
contradiction.

Thus v receives from v1 either 5
8 by R6 or 7

12 by R6ex2, respectively, and
hence v1 brings the total of 1

2 = 5
8 − 1

8 = 7
12 − 1

12 to v. By symmetry, the same is
true for v3: no matter whether it is paired with v4 or not, it brings 1

2 either by
R6 or by R6ex2 combined with R7.

Thus we have µ′(v) = −1 + 2 × 1
2 = 0 when v gives away 1

8 or 1
12 at least

once to a poor neighbor according to R7, so from now we can assume that v is
not a donator of charge by R7.

We know that each 11+-neighbor gives v at least 1
2 by R5c and R6, so it

remains to assume that d(v1) ≤ 10, which means that v is poor.

First suppose d(v1) = 8; then d(v3) ≥ 15 since we have no (5, 5, 8, 5, 14)-
vertex by assumption. No matter whether v5 is strong or otherwise, our v receives
1
8 either from v5 by R4 or from its paired vertex v4 by R7a, respectively. Also, v
receives 1

4 from v1 by R5a and 5
8 from v3 by R6a, so we have µ′(v) = 0 in both

options.

Now, if 9 ≤ d(v1) ≤ 10 then d(v3) ≥ 13 due to the absence (5, 5, 10, 5, 12)-
vertex. Now if v5 is strong, then v receives 1

6 from v5 by R4, 1
3 from v1 by R5b,

and 1
2 from v3 by R6a, so we have µ′(v) = 0. Otherwise, v receives 1

12 from v4 by
R7b and 1

3 from v1. Also, v receives from v3 either 7
12 by R6ex1 if d(v3) ≤ 14 or

5
8 (which is greater than 7

12) by R6 if d(v3) ≥ 15. This again makes µ′(v) ≥ 0, as
desired.

Finally, if 11 ≤ d(v1) ≤ 12 and 11 ≤ d(v3) ≤ 12, then µ′(v) = 0 by R5c.

Case 2. d(v) = 8. We can average donations of v to its 5-neighbors according
to R2, R3, R5a, and R8 as follows. If d(v1) = d(v2) = 5 and d(v3) ≥ 8, which
is the situation of R2a, then v instead gives 1

4 to v2 and 1
8 to v3. Similarly,

instead of giving 1
2 to a 5-neighbor v2 by R2b, our v now gives 1

4 to v2 and 1
8 to

each of the 8+-vertices v1 and v3. As a result, each neighbor receives at most
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1
4 = 1

8+ 1
8 = 3

8− 1
8 from v after averaging, so µ′(v) ≥ d(v)−6− d(v)

4 = 3(d(v)−8)
4 ≥ 0,

as desired.

Case 3. 9 ≤ d(v) ≤ 10. We now average donations of v to its 5-neighbors
according to R2, R3, R5b, and R8 in the same fashion. Instead of giving 1

2 to
a 5-neighbor v2 by R2b, our v gives 1

6 to each of the vertices v1, v2, and v3. If
d(v1) = d(v2) = 5 and d(v3) ≥ 9, which happens in R2a, then v rather gives 1

3 to
v2 and 1

6 to v3. As a result, each neighbor receives at most 1
3 = 1

6 + 1
6 = 1

2 − 1
6

from v, so µ′(v) ≥ d(v)− 6− d(v)
3 = 2(d(v)−9)

3 ≥ 0, and we are done.

Case 4. 11 ≤ d(v) ≤ 12. We note that v gives each neighbor at most 1
2 by

R2, R3, R5c, and R8, so µ′(v) ≥ d(v)− 6− d(v)
2 = d(v)−12

2 , which settles the case
d(v) = 12.

So suppose d(v) = 11. If v has an 8+-neighbor, then µ′(v) ≥ 11−6−10× 1
2 =

0. Thus we can assume that v is completely surrounded by 5-vertices. If v is
incident with a 4+-face · · · v1vv2, then each of v1 and v2 is non-simplicial and
hence can only receive 1

4 from v by R3 or R8. Indeed, if the neighbors of v1 in a
cyclic order are . . . , x1, v, y1, then d(x1) = d(y1) = 5 due to Remark 1, and the
same argument works for v2. This implies µ′(v) ≥ 5− 2× 1

4 − (11− 2)× 1
2 = 0.

Therefore, it remains to assume in addition that v is simplicial. Now if
there is a 4+-face · · · v′1v1v2v′2, then each of v1 and v2 receives at most 1

4 from v:
either by R3, which happens when v1 has three 5-neighbors, or possibly by R8,
otherwise. So again µ′(v) ≥ 0.

Thus we are done unless there are vertices w1, . . . , w11 lying in 3-faces
wkvkvk+1 whenever 1 ≤ k ≤ 11 (addition mod 11 throughout proving Case 4).
If so, then we cannot have d(wk) ≤ 8 ≥ d(wk+1) for any k, for otherwise
w(S5(vk+1)) ≤ 3 × 5 + 2 × 8 + 11 = 42, which is impossible. By the oddness
of 11, this implies that, say, d(w1) ≥ 9 and d(w2) ≥ 9. It follows from Remark 1
that there is a 3-face w1v2w2, and it suffices to observe that v gives no charge to
v2 by R8 or any other our rule. Hence we have µ′(v) ≥ 5− 10× 1

2 = 0.

Case 5. 13 ≤ d(v) ≤ 14. We know that v gives at most 7
12 to each adjacent

5-vertex by R1–R8. Since µ(v) = d(v) − 6 − 7d(v)
12 = 5d(v)−72

12 , it follows that
µ′(v) ≥ − 2

12 for d(v) = 14, and µ′(v) ≥ − 7
12 for d(v) = 13. Therefore, we use

some additional reasons to improve these rough estimations in order to prove
µ′(v) ≥ 0.

First of all, we can assume that v is completely surrounded by 5-vertices, for
otherwise µ′(v) ≥ d(v)− 6− 7(d(v)−1)

12 = 5(d(v)−13)
12 ≥ 0, as desired.

Secondly, if v is not simplicial then v gives at most 1
4 to each of at least

two vertices incident with a common 4+-face with v due to the argument used
in Case 4, which means that in fact µ′(v) ≥ d(v) − 6 − 2 × 1

4 −
7(d(v)−2)

12 ≥
5(d(v)−13)

12 + 1
12 > 0.
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Thus we are done unless v is simplicial and completely surrounded by 5-
vertices. Furthermore, if there is a 4+-face · · · v′1v1v2v′2, then we similarly have
µ′(v) ≥ 1

12 .

So again there is a cyclic sequence Wd(v) = w1, . . . , wd(v) such that there are
3-faces wkvkvk+1 whenever 1 ≤ k ≤ d(v) (addition mod d(v)). As before, there
are no two consecutive 5-vertices in Wd(v) since each vk must have an 8+-neighbor
other than v.

If there is an 8-vertex in Wd(v), say w2, then d(w1) ≥ 8 and d(w3) ≥ 8, since

43−3×5−13−8 = 7. Thus, in fact each of v2 and v3 receives at most 1
4 from v by

R3, R8 rather than 7
12 , and we again have µ′(v) ≥ d(v)−6−2× 1

4 −
7(d(v)−2)

12 > 0,
as above. In what follows, we can assume that d(wi) ≥ 9 or d(wi) = 5 whenever
1 ≤ k ≤ d(v).

If there are two consecutive 9+-vertices in Wd(v), say w1 and w2, then v2
receives no charge from v by R1–R8, so we can improve our rough estimation
µ′(v) ≥ − 7

12 to µ′(v) ≥ − 7
12 + 7

12 ≥ 0, as desired. This completes the proof for
d(v) = 13 due to the oddness of 13.

So suppose d(v) = 14, all neighbors of v are simplicial, and d(w1) = d(w3) =
· · · = d(w13) = 5, for otherwise v gives at most 1

4 to one of its neighbors, and we
already have µ′(v) ≥ − 2

12 + 7
12 − 1

4 > 0.

Now if at least one of 5-vertices in W14, say w1, is strong, that is w1 has an
8+-neighbor outside W14, then each of v1 and v2 receives 1

2 by R6a rather than
7
12 by R6ex1 or R6ex2, which yields µ′(v) ≥ 8− 2× 1

2 − 12× 7
12 = 0.

Thus we can assume that all w1, w3, . . . , w13 are non-strong, that is each of
them has a 5-neighbor outside W14. Among the seven 9+-vertices w2, w4, . . . , w14,
there are no two consecutive (cyclically) 10−-vertices, for otherwise we would have
a minor 5-star with weight at most 40, which is impossible.

By parity reasons and symmetry, we can assume that d(w14) ≥ 11 and
d(w2) ≥ 11. So each of v1 and v2 obeys the general rule R6 rather than its excep-
tions R6ex1 or R6ex2. This means that again µ′(v) ≥ 14−6−2× 1

2−12× 7
12 = 0,

as desired.

Case 6. d(v) ≥ 15. We know that v gives at most 5
8 to each adjacent 5-vertex

by R1–R8, except for giving 3
4 in R2a.

We now average these donations so that each 8+-neighbor will receive at
most 2× 1

8 from v, while each 5-neighbor will receive at most 5
8 . To this end, it

suffices to switch 1
8 from the donation of 3

4 to a 5-vertex v2 by R2a to the neighbor
8+-vertex v1.

Since µ(v) = d(v)−6− 5d(v)
8 = 3(d(v)−16)

8 , it follows that our averaging results
in µ′(v) ≥ 0 for d(v) ≥ 16.

Finally, suppose d(v) = 15. If v has an 8+-neighbor or a non-simplicial
5-neighbor, then µ′(v) ≥ 15− 6− 1

4 − 14× 5
8 = 0 by R1–R8.
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Thus we can assume that v is completely surrounded by simplicial 5-vertices,
which means that the sequence W15 introduced in Case 5 is actually a 15-cycle.
Again, W15 has no two consecutive 5-vertices, which implies by parity reasons
and symmetry that d(w1) ≥ 8 and d(w2) ≥ 8. Since v2 receives 1

4 from v by R8
and nothing by any other our rule, we are done.

Thus we have proved µ′(x) ≥ 0 whenever x ∈ V ∪ F , which contradicts (1)
and completes the proof of Theorem 3.
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