DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

A. Lozano

Antoni Lozano

email: antoni@cs.upc.edu

M. Mora

Mercé Mora

Universitat Politècnica de Catalunya

email: merce.mora@upc.edu

C. Seara

Carlos Seara

Universidad Politécnica de Catalunya

email: carlos.seara@upc.edu

J. Tey

Joaquín Tey

email: jtey@xanum.uam.mx

Title:

Trees whose even-degree vertices induce a path are antimagic

PDF

Source:

Discussiones Mathematicae Graph Theory 42(3) (2022) 959-966

Received: 2019-08-30 , Revised: 2020-03-21 , Accepted: 2020-03-25 , Available online: 2020-05-01 , https://doi.org/10.7151/dmgt.2322

Abstract:

An antimagic labeling of a connected graph $G$ is a bijection from the set of edges $E(G)$ to $\{1,2,\dots,|E(G)|\}$ such that all vertex sums are pairwise distinct, where the vertex sum at vertex $v$ is the sum of the labels assigned to edges incident to $v$. A graph is called antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel conjectured that every simple connected graph other than $K_2$ is antimagic; however the conjecture remains open, even for trees. In this note we prove that trees whose vertices of even degree induce a path are antimagic, extending a result given by Liang, Wong, and Zhu [ Anti-magic labeling of trees, Discrete Math. 331 (2014) 9–14].

Keywords:

antimagic labeling, tree

References:

  1. F.H. Chang, P. Chin, W.T. Li and Z. Pan, The strongly antimagic labelings of double spiders (2017).
    arXiv: 1712.09477
  2. G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs (CRC Press Boca Raton, 2011).
  3. K. Deng and Y. Li, Caterpillars with maximum degree $3$ are antimagic, Discrete Math. 342 (2019) 1799–1801.
    https://doi.org/10.1016/j.disc.2019.02.021
  4. J.A. Gallian, Graph labeling, Electron. J. Combin. 2018 (#DS6).
    https://doi.org/10.37236/27
  5. N. Hartsfield and G. Ringel, Pearls in Graph Theory (Academic Press INC., Boston, 1990 (revised version, 1994).
  6. G. Kaplan, A. Lev and Y. Roditty, On zero-sum partitions and anti-magic trees, Discrete Math. 309 (2009) 2010–2014.
    https://doi.org/10.1016/j.disc.2008.04.012
  7. Y.-Ch. Liang, T.-L. Wong and X. Zhu, Anti-magic labeling of trees, Discrete Math. 331 (2014) 9–14.
    https://doi.org/10.1016/j.disc.2014.04.021
  8. A. Lozano, M. Mora and C. Seara, Antimagic labelings of caterpillars, Appl. Math. Comput. 347 (2019) 734–740.
    https://doi.org/10.1016/j.amc.2018.11.043
  9. A. Lozano, M. Mora, C. Seara and J. Tey, Caterpillars are antimagic (2018).
    arXiv: 1812.06715
  10. J.L. Shang, Spiders are antimagic, Ars Combin. 118 (2015) 367–372.

Close