
Discussiones Mathematicae
Graph Theory 42 (2022) 959–966
https://doi.org/10.7151/dmgt.2322

TREES WHOSE EVEN-DEGREE VERTICES INDUCE
A PATH ARE ANTIMAGIC

Antoni Lozano

Computer Science Department
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Abstract

An antimagic labeling of a connected graph G is a bijection from the set
of edges E(G) to {1, 2, . . . , |E(G)|} such that all vertex sums are pairwise
distinct, where the vertex sum at vertex v is the sum of the labels assigned to
edges incident to v. A graph is called antimagic if it has an antimagic label-
ing. In 1990, Hartsfield and Ringel conjectured that every simple connected
graph other than K2 is antimagic; however the conjecture remains open,
even for trees. In this note we prove that trees whose vertices of even degree
induce a path are antimagic, extending a result given by Liang, Wong, and
Zhu [Anti-magic labeling of trees, Discrete Math. 331 (2014) 9–14].
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1. Introduction

All graphs considered in this work are finite, undirected and simple. Given a
graph G = (V (G), E(G)) and a vertex v ∈ V (G), we denote by EG(v) the set of
edges incident to v and by dG(v) = |EG(v)| the degree of v in G. We will just
write E(v) and d(v) when G is clear from the context. A tree is a connected and
acyclic graph, and a forest is a disjoint union of trees. Undefined terms in this
work can be found in [2].

An (edge) labeling of a graph G is a mapping from E(G) to the set of non-
negative integers. A labeling φ of a connected graph G is called antimagic if
it is a bijection φ : E(G) → {1, 2, . . . , |E(G)|} such that all vertex sums are
pairwise distinct, where the vertex sum s(v) at vertex v ∈ V (G) is defined as
s(v) =

∑
e∈E(v) φ(e). A graph is called antimagic if it has an antimagic labeling.

In 1990, Hartsfield and Ringel [5] conjectured that every simple connected
graph other than K2 is antimagic. The conjecture has received much attention
(see [4]); but it is widely open in general, even for trees. Nevertheless, several
classes of trees are known to be antimagic (see [1, 3, 5–10]).

Given a tree T , Veven(T ) (respectively, Vodd(T )) denotes the set of even (re-
spectively, odd) degree vertices of T . Regarding trees such that Veven induces a
path, Liang, Wong, and Zhu [7] proved the following two theorems.

Theorem 1 [7]. If T is a tree such that Veven(T ) induces a path and |Veven(T )|
is odd, then T is antimagic.

Theorem 2 [7]. Let T be a tree such that Veven(T ) induces a path of order 2p,
(v1, . . . , v2p). Let v0 (respectively, v2p+1) be a neighbor of v1 (respectively, v2p)
different from v2 (respectively, v2p−1). If d(vp) 6= d(v2p+1) + 1 or d(vp+1) 6=
d(v0) + 1, then T is antimagic.

The aim of this note is to extend Theorem 2 to all cases, that is, to prove
the antimagicness of trees such that Veven(T ) induces a path whenever |Veven(T )|
is even, obtaining as a consequence that trees whose even-degree vertices induce
a path are antimagic.

2. Constructing an Antimagic Labeling

In the proof of the next theorem we follow and extend the main idea developed by
Liang, Wong, and Zhu in [7]. We denote by [a, b] the set of consecutive integers
{a, a+ 1, . . . , b}, where a ≤ b.

Theorem 3. If T is a tree such that Veven(T ) induces a path and |Veven(T )| is
even, then T is antimagic.
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Proof. Let |Veven(T )| = 2p, it is known that trees without vertices of degree 2 are
antimagic [6, 7], hence we may assume p ≥ 1. Let P =

(
v0, v1, v2, . . . , v2p, v2p+1

)
be a path induced by Veven(T ) extended with endpoints in Vodd(T ), that is,
Veven(T ) = {v1, . . . , v2p} and {v0, v2p+1} ⊆ Vodd(T ). For every 1 ≤ i ≤ 2p+ 1, we
denote by ei the edge vi−1vi.

We prove the theorem by constructing an antimagic labeling φ of T in two
steps. The first step produces a labeling of a subtree of T containing the path P
and satisfying a particular additional condition. This labeling will be extended
to an antimagic labeling of T at the second step.

Let m = |E(T )|. We will use the residues modulo m + 2 to compare vertex
sums: since vertex sums are distinct if they are distinct modulo m + 2, it is
enough to compare vertex sums whenever they are equal modulo m+ 2 in order
to check that they all are pairwise distinct.

For each (not necessarily connected) subgraph T ′ of T , we set Lφ(T ′) =
{φ(e) : e ∈ E(T ′)} and sT ′(v) =

∑
e∈ET ′ (v) φ(e) for every v ∈ V (T ′) such that

dT ′(v) ≥ 1. Obviously, if T ′ = T , then sT ′ = s. The set of all vertex sums modulo
m+ 2 in T ′ will be denoted by Rm+2(T

′), that is,

Rm+2(T
′) = {sT ′(v) (mod m+2) : v ∈ V (T ′) and dT ′(v) ≥ 1} ⊆ {0, 1, . . . ,m+1}.

Step I. The labeling of the tree T1 constructed at this step will satisfy the
following condition: all vertex sums in T1 will be pairwise distinct modulo m+ 2
with at most one exception; moreover, if the vertex sums are equal modulo m+2
for a pair of vertices, then exactly one of them will be a leaf in T , and the vertex
sums in T1 for both vertices in the pair will be different.

As a starting point, let T1 := P and define

φ(e2i+1) := i+ 1, for 0 ≤ i ≤ p;
φ(e2i) := m− p+ i, for 1 ≤ i ≤ p.

Hence,

(1) Lφ(T1) = [1, p+ 1] ∪ [m− p+ 1,m].

Moreover, sT1(v0) = 1, sT1(v2p+1) = p + 1, and for 1 ≤ i ≤ 2p, sT1(vi) =
m− p+ i+ 1. Next, we calculate the set Rm+2(T1) according to the values of p
and to the degrees of v0 and v2p+1.

Case 1. p = 1. In this case, |V (T1)| = 4 and

(2) Rm+2(T1) = {0, 1, 2,m+ 1}.

Hence, vertex sums at the vertices of T1 are distinct.
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Case 2. p > 1. In such a case,

(3) Rm+2(T1) =
(

[0, p+ 1] \ {p}
)
∪ [m− p+ 2,m+ 1],

and only the residues of vertex sums at vertices v0 and vp+2 are equal. In fact, we
have that sT1(v0) ≡ 1 ≡ sT1(vp+2) (mod m+ 2) (see an example in Figures 1(a)
and 2(a)).
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Figure 1. Labeling of T1 for p = 5 and m = 21; (a) before the swaps, and (b) after the
swaps. The shadowed label at each vertex is the vertex sum modulo 23. Squared vertices
have the same label.
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Figure 2. Labeling of T1 for p = 4 and m = 21; (a) before the swap, and (b) after the
swap. The shadowed label at each vertex is the vertex sum modulo 23. Squared vertices
have the same label.

Now we distinguish two subcases.

Subcase 2.1. At least one of the vertices v0 or v2p+1 is a leaf in T . Notice
that by properly relabeling the vertices of T1, we may assume dT (v0) = 1. Then,
sT1(v0) ≡ 1 ≡ sT1(vp+2) (mod m+ 2), but sT1(v0) = 1 < m+ 3 = sT1(vp+2).

Subcase 2.2. Neither v0 nor v2p+1 are leaves in T . In this case, for 1 ≤ i ≤⌊p−1
2

⌋
, we swap the labels of the edges e2i−1 and e2i, that is,

φ(e2i−1) := m− p+ i, for 1 ≤ i ≤
⌊p−1

2

⌋
;

φ(e2i) := i, for 1 ≤ i ≤
⌊p−1

2

⌋
.

Notice that the endpoints of the subpath of T1 involved in the swaps are v0 and
vk, where k = p − 2, if p is even; and k = p − 1, if p is odd. After the swaps,
sT1(v0) = m − p + 1; also it can be easily checked that sT1(vk) = p − 1, if p is
even; and sT1(vk) = p, if p is odd; and the vertex sum at any other vertex in T1
remains unchanged. We distinguish cases depending on the parity of p.

(a) p odd. In this case we have that sT1(vk) = p, implying that the residues
modulo m+ 2 at the vertices of T1 are pairwise distinct. Concretely,

(4) Rm+2(T1) = [0, p+ 1] ∪
(

[m− p+ 1,m+ 1] \ {m}
)
.
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(b) p even. In this case, even if p = 2 (in which case no swaps take place),
we have that sT1(vk) = p− 1 ≡ sT1(v2p) (mod m+ 2), and thus

(5) Rm+2(T1) =
(

[0, p+ 1] \ {p}
)
∪
(

[m− p+ 1,m+ 1] \ {m− 1}
)
.

Notice that only sT1(vk) and sT1(v2p) have the same residue in T1 (see an example
in Figure 2(b)). Now, let x0 = v2p+1 and let P ′ = (x0, x1, . . . , x`) be a maximal
subpath of T starting at x0 and with vertices in Vodd(T ). Observe that, in such
a case, x` is a leaf in T and there exist vertices y0, . . . , y`−1 ∈ Vodd(T ) such that
xiyi ∈ E(T ) (see an example in Figure 3). We update T1 as the tree induced by
the set of vertices of the paths P and P ′, and {y0, . . . , y`−1}:

T1 := T [{v0, . . . , v2p} ∪ {x0, . . . , x`} ∪ {y0, . . . , y`−1}].
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Figure 3. Labeling of T1 with p = 4, ` = 3, and m = 21. The shadowed label at each
vertex is the vertex sum modulo 23. Squared vertices have the same label.

We define the labels of the new edges and update the label of the edge e2p+1

as follows:
φ(e2p+1) := p+ `+ 1;

φ(xixi+1) := p+ i+ 1, for 0 ≤ i ≤ `− 1;

φ(xiyi) := m− p− i, for 0 ≤ i ≤ `− 1.

Thus, we have

(6) Lφ(T1) = [1, p+ `+ 1] ∪ [m− p− `+ 1,m],

and

sT1(xi) = m+ p+ i+ 1 ≡ p+ i− 1 (mod m+ 2), for 1 ≤ i ≤ `− 1,

sT1(v2p) = m+ p+ `+ 1 ≡ p+ `− 1 (mod m+ 2),

sT1(x0) = m+ p+ `+ 2 ≡ p+ ` (mod m+ 2),

sT1(x`) = p+ ` ≡ p+ ` (mod m+ 2),

sT1(yi) = m− p− i ≡ m− p− i (mod m+ 2), for 0 ≤ i ≤ `− 1.

Therefore, taking into account equality (5);

(7) Rm+2(T1) = [0, p+ `] ∪
(

[m− p− `+ 1,m+ 1] \ {m− 1}
)
,
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where m ≥ 2p + 2` + 1. So, only sT1(x0) and sT1(x`) have the same residue,
concretely p+ `. However, sT1(x0) = m+ p+ `+ 2 > p+ ` = sT1(x`), and hence
all vertex sums in T1 are different (see an example in Figure 3).

Notice that, in each of the above cases, |Lφ(T1)| = |E(T1)|. Hence φ, re-
stricted to E(T1), is a bijection from E(T1) to Lφ(T1).

Step II. Now, let T2 be the forest obtained by removing all the edges of T1. Each
component of T2 has exactly one vertex in T1. Therefore, if T2(v) denotes the
component of T2 containing v,

T2 := T − E(T1) =
⋃

v∈V (T1)

T2(v).

Clearly, T2(v) can be viewed as a directed rooted tree with root at v, where
every edge is directed away from the root. Moreover, since every vertex of T2(v)
different from v has odd degree in T , each vertex in T2(v) has an even number of
children in this rooted tree and, therefore, |E(T2(v))| is even for every v ∈ V (T1).
Hence, |E(T2)| is even. If we set ` = 0 whenever T1 = P , then, by equalities (1)
and (6), the available labels for the edges of T2 are

(8) Lφ(T2) := [p+ `+ 2,m− p− `].

As Lφ(T2) = [a, b], where a+ b = m+2, and each w ∈ V (T2) has an even number
of children, we can label the edges of T2 with integers in Lφ(T2) fulfilling the
following additional condition: if a vertex w has an outgoing edge with label t in
the corresponding rooted tree of T2, then w has another outgoing edge with label
m+ 2− t (see an example in Figure 4).
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Figure 4. An antimagic labeling of a tree with m = 21. Thicker edges correspond to the
forest T2 and are labeled in Step II (in this example, the forest T2 has two nontrivial
components). The shadowed label at each vertex is the vertex sum modulo 23. Squared
vertices have the same label, but different vertex sums.

Clearly, by the previous discussion, the labeling φ already constructed is a
bijection from E(T ) to [1,m]. Finally, we just need to show that the vertex sums
defined by φ in T are pairwise distinct.

Observe that in T2, the sum of the labels of the outgoing edges of v is a
multiple of m+ 2. Thus, the following two conditions hold.
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1. For every v ∈ V (T1), s(v) ≡ sT1(v) (mod m+ 2).

2. For every v ∈ V (T ) \ V (T1), s(v) ≡ φ(f) (mod m + 2), where f is the
incoming edge of v in T2.

Let u, v ∈ V (T ). We consider the following cases.

(a) u, v ∈ V (T ) \ V (T1). Since φ : E(T ) → [1,m] is a bijection, condition 2
implies that s(u) 6= s(v).

(b) u, v ∈ V (T1). If sT1(u) 6≡ sT1(v) (mod m + 2), then by condition 1 we
have that s(u) 6= s(v). Otherwise, as we have seen in Cases 2.1 and 2.2(b) of
Step I, just one of these vertices, say u, is a leaf in T and sT1(u) < sT1(v).
Therefore, we have that s(u) = sT1(u) < sT1(v) ≤ s(v), as we wanted to prove.

(c) One of the vertices belongs to V (T1) and the other to V (T ) \ V (T1). We
can assume without loss of generality that u ∈ V (T1) and v ∈ V (T ) \ V (T1).
By condition 1, s(u) (mod m + 2) ∈ Rm+2(T1). Moreover, by condition 2,
s(v) (mod m + 2) ∈ Lφ(T2). By equalities (2), (3), (4), (7), and (8), we have
Rm+2(T1) ∩ Lφ(T2) = ∅. Hence, s(u) 6= s(v).

Thus, the theorem holds.

The next result follows from Theorems 1 and 3.

Corollary 4. If T is a tree such that Veven(T ) induces a path, then T is antimagic.
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