DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

A. Cabrera Martínez

Abel Cabrera Martínez

Universitat Rovira i Virgili

email: abel.cabrera@urv.cat

0000-0003-2806-4842

J.A. Rodríguez-Velázquez

Juan Alberto Rodríguez-Velázquez

Universitat Rovira i Virgili

email: juanalberto.rodriguez@urv.cat

0000-0002-9082-7647

Title:

Total protection of lexicographic product graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 42(3) (2022) 967-984

Received: 2019-06-13 , Revised: 2020-03-25 , Accepted: 2020-03-26 , Available online: 2020-04-21 , https://doi.org/10.7151/dmgt.2318

Abstract:

Given a graph $G$ with vertex set $V(G)$, a function $f : V(G) \rightarrow \{0,1,2 \}$ is said to be a total dominating function if $\sum_{u\in N(v)}f(u)>0$ for every $v\in V(G)$, where $N(v)$ denotes the open neighbourhood of $v$. Let $V_i=\{x\in V(G):f(x)=i\}$. A total dominating function $f$ is a total weak Roman dominating function if for every vertex $v\in V_0$ there exists a vertex $u\in N(v)\cap (V_1\cup V_2)$ such that the function $f'$, defined by $f'(v)=1$, $f'(u)=f(u)-1$ and $f'(x)=f(x)$ whenever $x\in V(G)\setminus\{u,v\}$, is a total dominating function as well. If $f$ is a total weak Roman dominating function and $V_2=\emptyset$, then we say that $f$ is a secure total dominating function. The weight of a function $f$ is defined to be $\omega(f)= \sum_{v\in V(G)} f(v).$ The total weak Roman domination number (secure total domination number) of a graph $G$ is the minimum weight among all total weak Roman dominating functions (secure total dominating functions) on $G$. In this article, we show that these two parameters coincide for lexicographic product graphs. Furthermore, we obtain closed formulae and tight bounds for these parameters in terms of invariants of the factor graphs involved in the product.

Keywords:

total weak Roman domination, secure total domination, total domination, lexicographic product

References:

  1. R.A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016) 23–29.
    https://doi.org/10.1016/j.dam.2016.03.017
  2. S. Benecke, E.J. Cockayne and C.M. Mynhardt, Secure total domination in graphs, Util. Math. 74 (2007) 247–259.
  3. S. Benecke, E.J. Cockayne and C.M. Mynhardt, Total protection of a graph, unpublished manuscript.
  4. R. Brigham, J. Carrington and R. Vitray, Connected graphs with maximum total domination number, J. Combin. Math. Combin. Comput. 34 (2000) 81–96.
  5. A. Cabrera Martínez, L.P. Montejano and J.A. Rodríguez-Velázquez, Total weak Roman domination in graphs, Symmetry 11 (2019) No. 831.
    https://doi.org/10.3390/sym11060831
  6. A. Cabrera Martínez and J.A. Rodríguez-Velázquez, On the secure total domination number of graphs, Symmetry 11 (2019) No. 1165.
    https://doi.org/10.3390/sym11091165
  7. M. Chellali, T.W. Haynes, S.T. Hedetniemi and A. McRae, Roman $\{2\}$-domination, Discrete Appl. Math. 204 (2016) 22–28.
    https://doi.org/10.1016/j.dam.2015.11.013
  8. M. Chellali, T.W. Haynes and S.T. Hedetniemi, Bounds on weak Roman and $2$-rainbow domination numbers, Discrete Appl. Math. 178 (2014) 27–32.
    https://doi.org/10.1016/j.dam.2014.06.016
  9. E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22.
    https://doi.org/10.1016/j.disc.2003.06.004
  10. E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211–219.
    https://doi.org/10.1002/net.3230100304
  11. E.J. Cockayne, O. Favaron and C.M. Mynhardt, Secure domination, weak Roman domination and forbidden subgraphs, Bull. Inst. Combin. Appl. 39 (2003) 87–100.
  12. E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga and J.H. van Vuuren, Protection of a graph, Util. Math. 67 (2005) 19–32.
  13. O. Duginov, Secure total domination in graphs: Bounds and complexity, Discrete Appl. Math. 222 (2017) 97–108.
    https://doi.org/10.1016/j.dam.2016.08.018
  14. T.W. Haynes and M.A. Henning, Perfect Italian domination in trees, Discrete Appl. Math. 260 (2019) 164–177.
    https://doi.org/10.1016/j.dam.2019.01.038
  15. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Taylor & Francis, 1998).
  16. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
  17. M.A. Henning and W.F. Klostermeyer, Italian domination in trees, Discrete Appl. Math. 217 (2017) 557–564.
    https://doi.org/10.1016/j.dam.2016.09.035
  18. M.A. Henning and S.T. Hedetniemi, Defending the Roman Empire–-A new strategy, Discrete Math. 266 (2003) 239–251.
    https://doi.org/10.1016/S0012-365X(02)00811-7
  19. M.A. Henning and A. Yeo, Total Domination in Graphs (Springer, New York, 2013).
    https://doi.org/10.1007/978-1-4614-6525-6
  20. W.F. Klostermeyer and C.M. Mynhardt, Secure domination and secure total domination in graphs, Discuss. Math. Graph Theory 28 (2008) 267–284.
    https://doi.org/10.7151/dmgt.1405
  21. A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225–233.
    https://doi.org/10.2140/pjm.1975.61.225
  22. M. Valveny, H. Pérez-Rosés and J.A. Rodríguez-Velázquez, On the weak Roman domination number of lexicographic product graphs, Discrete Appl. Math. 263 (2019) 257–270.
    https://doi.org/10.1016/j.dam.2018.03.039
  23. I. Stewart, Defend the Roman Empire$ !$, Sci. Amer. 281 (1999) 136–138.
    https://doi.org/10.1038/scientificamerican1299-136

Close