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Abstract

Given a graph G with vertex set V (G), a function f : V (G) → {0, 1, 2}
is said to be a total dominating function if

∑

u∈N(v) f(u) > 0 for every

v ∈ V (G), where N(v) denotes the open neighbourhood of v. Let Vi =
{x ∈ V (G) : f(x) = i}. A total dominating function f is a total weak
Roman dominating function if for every vertex v ∈ V0 there exists a vertex
u ∈ N(v) ∩ (V1 ∪ V2) such that the function f ′, defined by f ′(v) = 1,
f ′(u) = f(u) − 1 and f ′(x) = f(x) whenever x ∈ V (G) \ {u, v}, is a total
dominating function as well. If f is a total weak Roman dominating function
and V2 = ∅, then we say that f is a secure total dominating function. The
weight of a function f is defined to be ω(f) =

∑

v∈V (G) f(v). The total weak

Roman domination number (secure total domination number) of a graph G
is the minimum weight among all total weak Roman dominating functions
(secure total dominating functions) on G. In this article, we show that these
two parameters coincide for lexicographic product graphs. Furthermore, we
obtain closed formulae and tight bounds for these parameters in terms of
invariants of the factor graphs involved in the product.
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1. Introduction

It is well known that the theory of domination in graphs can be developed using
functions f : V (G) → A, where V (G) is the vertex set of a graph G and A
is a set of nonnegative numbers. With this approach, the different types of
domination are obtained by imposing certain restrictions on f . For instance,
f : V (G) → {0, 1, . . . } is said to be a dominating function if for every vertex v
such that f(v) = 0, there exists a vertex u ∈ N(v) such that f(u) > 0, where
N(v) denotes the open neighbourhood of v. Analogously, f : V (G) → {0, 1, . . . }
is said to be a total dominating function (TDF) if for every vertex v, there exists
u ∈ N(v) such that f(u) > 0.

The weight of a function f is defined to be ω(f) =
∑

v∈V (G) f(v). The (total)
domination number of G, denoted by (γt(G)) γ(G), is the minimum weight among
all (total) dominating functions. These two parameters have been extensively
studied. For instance, we cite the following books [15, 16, 19]. Although the use
of functions is not necessary to reach the concept of (total) domination number,
later we will see that this idea helps us to easily introduce other more elaborate
concepts. Obviously, a set X ⊆ V (G) is a (total) dominating set if there exists a
(total) dominating function f such that such that X = {x : f(x) > 0}.

From now on, we restrict ourselves to the case of functions f : V (G) →
{0, 1, 2}, which are related to the following approach to protection of a graph
described by Cockayne et al. [12]. Suppose that one or more guards are stationed
at some of the vertices of a simple graph G and that a guard at a vertex can deal
with a problem at any vertex in its closed neighbourhood. Consider a function
f : V (G) → {0, 1, 2} where f(v) is the number of guards at v, and let Vi =
{v ∈ V (G) : f(v) = i} for every i ∈ {0, 1, 2}. We will identify f with the
partition of V (G) induced by f and write f(V0, V1, V2). Given a set S ⊆ V (G),
f(S) =

∑

v∈S f(v). In this case, the weight of f is ω(f) = f(V (G)) = |V1|+2|V2|.

We now consider some graph protection approaches. The functions in each
approach protect the graph according to a certain strategy.

A Roman dominating function (RDF) is a function f(V0, V1, V2) such that
for every vertex v ∈ V0 there exists a vertex u ∈ V2 which is adjacent to v. The
Roman domination number, denoted by γR(G), is the minimum weight among
all RDFs on G. This concept of protection has historical motivation [23] and was
formally proposed by Cockayne et al. in [9]. Many variations and generalizations
of Roman domination number like double Roman domination number [1], Italian
domination number [17] (also known as Roman 2-domination number [7]), perfect
Italian domination number [14] and weak Roman domination number [18] are
available in literature.

A weak Roman dominating function (WRDF) is defined to be a dominating
function f(V0, V1, V2) satisfying that for every vertex v ∈ V0 there exists a vertex
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u ∈ N(v) ∩ (V1 ∪ V2) such that the function f ′, defined by f ′(v) = 1, f ′(u) =
f(u)−1 and f ′(x) = f(x) whenever x ∈ V (G)\{u, v}, is a dominating function as
well. The weak Roman domination number, denoted by γr(G), is the minimum
weight among all weak Roman dominating functions on G. This concept of
protection was introduced by Henning and Hedetniemi [18] and studied further
in [8, 11, 22].

In this paper we will use the following idea of total protection of a vertex. A
vertex v ∈ V0 is said to be totally protected under f(V0, V1, V2) if f is a TDF and
there exists a vertex u ∈ N(v) ∩ (V1 ∪ V2) such that the function f ′, defined by
f ′(v) = 1, f ′(u) = f(u) − 1 and f ′(x) = f(x) whenever x ∈ V (G) \ {u, v}, is a
TDF as well. In such a case, if it is necessary to emphasize the role of u, then we
will say that v is totally protected by u under f . In this context, if V2 = ∅, then
we also say that v is totally protected by u under V1.

The following concept was introduced in [5]. A total weak Roman dominating

function (TWRDF) is a TDF f(V0, V1, V2) such that every vertex in V0 is totally
protected under f . The total weak Roman domination number, denoted by γtr(G),
is the minimum weight among all total weak Roman dominating functions on G.

A secure total dominating function (STDF) is defined to be a TWRDF
f(V0, V1, V2) in which V2 = ∅. Obviously, f(V0, V1, ∅) is a STDF if and only if V1

is a total dominating set and for every vertex v ∈ V0 there exists u ∈ N(v) ∩ V1

such that (V1 \ {u}) ∪ {v} is a total dominating set as well. In such a case, V1

is said to be a secure total dominating set (STDS). The secure total domination

number, denoted by γst(G), is the minimum cardinality among all secure total
dominating sets. This concept was introduced by Benecke et al. in [2] and studied
further in [3, 4, 6, 13, 20].

Given a graph G, the problem of computing γtr(G) is NP-hard [5], and the
problem of computing γst(G) is also NP-hard [13]. This suggests finding the
total weak Roman domination number and the secure total domination number
for special classes of graphs or obtaining good bounds on these invariants. In
this article, we show that these two parameters coincide for lexicographic prod-
uct graphs. Furthermore, we obtain closed formulae and tight bounds for these
parameters in terms of invariants of the factor graphs involved in the product.

The lexicographic product of two graphs G and H is the graph G ◦H whose
vertex set is V (G ◦H) = V (G) × V (H) and (u, v)(x, y) ∈ E(G ◦H) if and only
if ux ∈ E(G) or u = x and vy ∈ E(H). Notice that for any vertex u ∈ V (G) the
subgraph of G ◦ H induced by {u} × V (H) is isomorphic to H. For simplicity,
we will denote this subgraph by Hu.

Throughout the paper, we will use the notation Kn, Nn, K1,n−1, Cn and Pn

for complete graphs, empty graphs, star graphs, cycle graphs and path graphs of
order n, respectively. We will use the notation G ∼= H if G and H are isomorphic
graphs. For a vertex v of a graph G, the closed neighbourhood, denoted by N [v],



970 A. Cabrera Mart́ınez and J.A. Rodŕıguez-Velázquez

equals N(v) ∪ {v}. A vertex v ∈ V (G) such that N [v] = V (G) is said to be a
universal vertex.

A TWRDF of weight γtr(G) will be called a γtr(G)-function. A similar agree-
ment will be assumed when referring to optimal functions (and sets) associated to
other parameters used in the article. For the remainder of the paper, definitions
will be introduced whenever a concept is needed.

2. Some Tools

In this short section we collect some tools, which are known results on the (total)
weak Roman domination number and the secure total domination number.

Proposition 1 [5]. The following inequalities hold for any graph G with no

isolated vertex.

(i) γ(G) ≤ γr(G) ≤ γtr(G) ≤ 2γt(G).

(ii) γt(G) ≤ γtr(G) ≤ γst(G).

(iii) γ(G) + 1 ≤ γtr(G).

Theorem 2 [5]. Let G be a graph. The following statements are equivalent.

(a) γtr(G) = γr(G).

(b) There exists a γr(G)-function f(V0, V1, V2) such that V1 = ∅ and V2 is a total

dominating set.

(c) γr(G) = 2γt(G).

The problem of characterizing the graphs with γst(G) = γt(G) was solved by
Klostermeyer and Mynhardt [20].

Theorem 3 [20]. If G is a connected graph, then the following statements are

equivalent.

• γst(G) = γt(G).

• γst(G) = 2.

• G has at least two universal vertices.

The following result is a direct consequence of Proposition 1(ii) and Theo-
rem 3.

Theorem 4. Let G be a connected graph. If G does not have two universal

vertices, then

γst(G) ≥ γt(G) + 1.

Remark 5. For any nontrivial path Pn and any cycle Cn of order n ≥ 4,
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(i) γtr(Pn)
[5]
= γst(Pn)

[2]
=

⌈

5(n−2)
7

⌉

+ 2;

(ii) γtr(Cn)
[5]
= γst(Cn)

[3]
=

⌈

5n
7

⌉

.

A set X ⊆ V (G) is called a 2-packing if N [u] ∩ N [v] = ∅ for every pair of
different vertices u, v ∈ X [16]. The 2-packing number ρ(G) is the maximum
cardinality among all 2-packings of G. A 2-packing of cardinality ρ(G) is called
a ρ(G)-set.

Theorem 6 [22]. For any graph G with no isolated vertex and any noncomplete

graph H,

γr(G ◦H) ≥ max{γr(G), γt(G), 2ρ(G)}.

Furthermore, for any graph G and any integer n ≥ 1,

γr(G ◦Kn) = γr(G).

Theorem 7 [22]. Let n ≥ 2 be an integer and let H be a graph. If γ(H) ≥ 4,
then

γr(Pn ◦H) =







n, n ≡ 0 (mod 4),
n+ 2, n ≡ 2 (mod 4),
n+ 1, otherwise.

A double total dominating set of a graph G with minimum degree at least
two is a set S of vertices of G such that every vertex in V (G) is adjacent to at
least two vertices in S [19]. The double total domination number of G, denoted
by γ2,t(G), is the minimum cardinality among all double total dominating sets.

Theorem 8 [22]. If G is a graph with minimum degree at least two, then for any

graph H,

γ2,t(G ◦H) ≤ γ2,t(G).

To conclude this section we would recall the following upper bound on the
total domination number.

Theorem 9 [10]. For any connected graph G of order n ≥ 3,

γt(G) ≤
2n

3
.

3. Main Results on Lexicographic Product Graphs

The next theorem shows that the total weak Roman domination number and the
secure total domination number coincide for all lexicographic product graphs.
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Theorem 10. For any graph G with no isolated vertex and any nontrivial graph

H, i.e., any graph H of order greater than one,

γtr(G ◦H) = γst(G ◦H).

Proof. Proposition 1(ii) leads to γtr(G ◦H) ≤ γst(G ◦H). Let f(V0, V1, V2) be
a γtr(G ◦H)-function such that |V2| is minimum. We suppose that γtr(G ◦H) <
γst(G◦H). In such a case, V2 6= ∅ and we fix a vertex (u, v) ∈ V2. We differentiate
two cases.

Case 1. (N(u)× V (H)) ∩ (V1 ∪ V2) 6= ∅. If f(u, v′) > 0 for every v′ ∈ V (H),
then the function g, defined by g(u, v) = 1 and g(a, b) = f(a, b) whenever (a, b) 6=
(u, v), is a TWRDF onG◦H and ω(g) = ω(f)−1, which is a contradiction. Hence,
there exists v′ ∈ V (H) such that f(u, v′) = 0. In this case, we define the function
g(V ′

0 , V
′

1 , V
′

2) by V ′

0 = V0\{(u, v
′)}, V ′

1 = V1∪{(u, v), (u, v
′)} and V ′

2 = V2\{(u, v)}.
Now, if a vertex w ∈ V ′

0 ⊆ V0 is totally protected by z ∈ V1∪V2 ⊆ V ′

1∪V
′

2 under f ,
then w is also totally protected under g by z, which implies that g is a γtr(G◦H)-
function. Notice that |V ′

2 | = |V2| − 1, which is a contradiction again.

Case 2. N(u, v) ∩ (V1 ∪ V2) ⊆ V (Hu). In this case, for any (u′, v′) ∈ N(u)×
V (H) we define the function g(V ′

0 , V
′

1 , V
′

2) by V ′

0 = V0 \ {(u′, v′)}, V ′

1 = V1 ∪
{(u, v), (u′, v′)} and V ′

2 = V2 \ {(u, v)}. As above, if a vertex w ∈ V ′

0 ⊆ V0

is totally protected by z ∈ V1 ∪ V2 ⊆ V ′

1 ∪ V ′

2 under f , then w is also totally
protected by z under g. Hence, g is a γtr(G ◦ H)-function and |V ′

2 | = |V2| − 1,
which is a contradiction.

According to the two cases above we conclude that V2 = ∅, which implies
that f is a γst(G ◦H)-function, an so γtr(G ◦H) = γst(G ◦H).

From now on we proceed to express the value of γst(G ◦H) (or its bounds)
in terms of several parameters of G and H. To this end, we need to introduce
the following notation. For a set S ⊆ V (G ◦H) we define the following subsets
of V (G):

AS = {v ∈ V (G) : |S ∩ V (Hv)| ≥ 2};

BS = {v ∈ V (G) : |S ∩ V (Hv)| = 1};

CS = {v ∈ V (G) : S ∩ V (Hv) = ∅}.

Surprisingly, we have not been able to find any reference about the following
basic result.

Theorem 11. For any graph G with no isolated vertex and any graph H,

γt(G ◦H) = γt(G).
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Proof. Let D be a γt(G)-set and let v ∈ V (H). Observe that D′ = D×{v} is a
total dominating set of G ◦H. Hence, γt(G ◦H) ≤ |D′| = |D| = γt(G).

Now, let S be a γt(G ◦H)-set and define S′ ⊆ V (G) as follows.

• For every vertex x ∈ AS ∪ BS , set x ∈ S′.

• For every vertex x ∈ AS , choose a vertex x′ ∈ N(x) \ (AS ∪BS) (if any) and
set x′ ∈ S′.

Since G does not have isolated vertices, S′ is a total dominating set of G.
Hence, γt(G) ≤ |S′| ≤ |S| = γt(G ◦H), which completes the proof.

Theorem 12. For any graph G with no isolated vertex and any nontrivial

graph H,

max{γr(G), γt(G), 2ρ(G)} ≤ γst(G ◦H) ≤ 2γt(G).

Proof. By Proposition 1 and Theorems 10 and 11, we have that

γt(G) = γt(G ◦H) ≤ γst(G ◦H) = γtr(G ◦H) ≤ 2γt(G ◦H) = 2γt(G).

Now, by Proposition 1 and Theorems 6 and 11 we have that

γst(G ◦H) = γtr(G ◦H) ≥ γr(G ◦H) ≥ γr(G).

Finally, for any ρ(G)-set X and any γst(G ◦H)-set S we have that

γst(G◦H) = |S| =
∑

u∈V (G)

|S∩V (Hu)| ≥
∑

u∈X

∑

w∈N [u]

|S∩V (Hw)| ≥ 2|X| = 2ρ(G).

Therefore, the result follows.

In Theorem 22 we will characterize the graphs satisfying γst(G ◦H) = γt(G)
and later we will give some examples of graphs achieving the remaining bounds
established in Theorem 12.

Corollary 13. If G is a nontrivial graph and γ(G) = 1, then for any nontrivial

graph H,

γst(G ◦H) ≤ 4.

In Section 4 we characterize the graphs with γst(G ◦H) ∈ {2, 3}. Hence, by
Corollary 13 the graphs with γst(G ◦H) = 4 will be automatically characterized
whenever γ(G) = 1.

The following result is a direct consequence of Theorems 2 and 12.

Theorem 14. Let G be a graph with no isolated vertex and let H be any graph.

(i) If γtr(G) = γr(G), then γst(G ◦H) = 2γt(G).

(ii) If γt(G) = 1
2 max{γr(G), 2ρ(G)}, then γst(G ◦H) = 2γt(G).
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Theorem 15. For any graph G with no isolated vertex and any nontrivial graph

H, the following statements are equivalent.

(i) γst(G ◦H) = γr(G ◦H).

(ii) γr(G ◦H) = 2γt(G).

Proof. The result is obtained by combining Theorems 2, 10 and 11.

We now consider the case where G is a graph of minimum degree at least
two.

Theorem 16. Let G be a graph of minimum degree at least two and order n.
The following statements hold.

(i) For any graph H, γst(G ◦H) ≤ γ2,t(G).

(ii) For any graph H, γst(G ◦H) ≤ n.

Proof. Since every γ2,t(G ◦H)-set is an STDS of G ◦H, we deduce that γst(G ◦
H) ≤ γ2,t(G◦H). Hence, from Theorem 8 we deduce (i). Finally, since γ2,t(G) ≤
n, from (i) we deduce (ii).

Particular cases of graphs where γst(G◦H) = γ2,t(G) will be shown in Theo-
rem 23(iii) and (v). Moreover, an example of graphs where γst(G◦H) = γ2,t(G) =
n will be shown in Theorem 31.

As shown in [22] there exists a family Hk of graphs such that γr(G) = γ2,t(G),
for every G ∈ Hk. Hence, for any G ∈ Hk and any graph H we have that
γst(G ◦ H) = γ2,t(G). A graph G belongs to Hk if and only if it is constructed
from a cycle Ck and k empty graphs Ns1 , . . . , Nsk of order s1, . . . , sk, respectively,
and joining by an edge each vertex from Nsi with the vertices vi and vi+1 of Ck.
Here we are assuming that vi is adjacent to vi+1 in Ck, where the subscripts
are taken modulo k. Figure 1 shows a graph G belonging to Hk, where k = 4,
s1 = s3 = 3 and s2 = s4 = 2.

Theorems 12 and 9 lead to the following bound which is useful if G has
vertices of degree one.

Theorem 17. For any connected graph G of order n ≥ 3 and any graph H,

γst(G ◦H) ≤ 2

⌊

2n

3

⌋

.

As shown in [22] there exists a family of trees Tn, which we will call combs,
such that for any graph H with γ(H) ≥ 4 we have that γr(Tn ◦ H) = 2

⌊

2n
3

⌋

.
Therefore, for these graphs, γst(Tn◦H) = 2

⌊

2n
3

⌋

. We now proceed to describe the
family of combs. Take a path Pk of length k =

⌈

n
3

⌉

, with vertices v1, . . . , vk, and
attach a path P3 to each vertex v1, . . . , vk−1, by identifying each vi with a leaf of
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Figure 1. The set of black-coloured vertices is a γ2,t(G)-set.

its corresponding copy of P3. Finally, we attach a path of length l = n−3
⌈

n
3

⌉

+2
to vk. Figure 2 shows the construction of Tn for different values of n. Notice that
the comb of order six is simply T6

∼= P6.

...
...

...

Figure 2. Tn for l = 0, 1, 2.

Lemma 18. For any graph G with no isolated vertex and any nontrivial graph

H, there exists a γst(G◦H)-set S such that |S∩V (Hu)| ≤ 2, for every u ∈ V (G).

Proof. Given an STDS S of G◦H, we define S3 = {x ∈ V (G) : |S∩V (Hx)| ≥ 3}.
Let S be a γst(G ◦H)-set such that |S3| is minimum among all γst(G ◦H)-sets.
If |S3| = 0, then we are done. Hence, we suppose that there exists u ∈ S3 and
let (u, v) ∈ S. We assume that |S ∩ V (Hu)| is minimum among all vertices in
S3. It is readily seen that if there exists u′ ∈ N(u) such that |S ∩ V (Hu)| ≥ 2,
then S′ = S \ {(u, v)} is an STDS of G ◦H, which is a contradiction. Hence, if
u′ ∈ N(u), then |S ∩V (Hu′)| ≤ 1, and in this case it is not difficult to check that
for (u′, v′) /∈ S the set S′′ = (S \ {(u, v)}) ∪ {(u′, v′)} is an STDS of G ◦ H. If
|S′′

3 | < |S3|, then we obtain a contradiction, otherwise we can repeat this process
with S′′, until obtaining a contradiction. Therefore, the result follows.
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Theorem 19. Let G be a graph with no isolated vertex and let H be a nontrivial

graph.

(i) If γ(H) = 1, then γst(G ◦H) ≤ γtr(G).

(ii) If H has at least two universal vertices, then γst(G ◦H) ≤ 2γ(G).

(iii) If γ(H) > 2, then γst(G ◦H) ≥ γtr(G).

Proof. Let f be a γtr(G)-function and let v be a universal vertex of H. Let f ′

be the function defined by f ′(u, v) = f(u) for every u ∈ V (G) and f ′(x, y) = 0
whenever x ∈ V (G) and y ∈ V (H) \ {v}. It is readily seen that f ′ is a TWRDF
on G ◦H. Hence, by Theorem 10 we conclude that γst(G ◦H) = γtr(G ◦H) ≤
ω(f ′) = ω(f) = γtr(G) and (i) follows.

Let D be a γ(G)-set and let y1, y2 be two universal vertices of H. It is
not difficult to see that S = D × {y1, y2} is an STDS of G ◦ H. Therefore,
γst(G ◦H) ≤ |S| = 2γ(G) and (ii) follows.

From now on, let S be a γst(G ◦H)-set that satisfies Lemma 18 and assume
that γ(H) > 2. Let g(V0, V1, V2) be the function defined by g(u) = |S ∩ V (Hu)|
for every u ∈ V (G). We claim that g is a TWRDF on G. It is clear that every
vertex in V1 has to be adjacent to some vertex in V1 ∪ V2 and, if γ(H) > 2, then
by Theorem 3 we have that γst(H) > 3, which implies that every vertex in V2 has
to be adjacent to some vertex in V1 ∪ V2. Hence, V1 ∪ V2 is a total dominating
set of G. Now, if x ∈ V0, then S ∩ V (Hx) = ∅, and so there exists a vertex
(x1, y1) ∈ N(V (Hx))∩ S which totally protects every vertex in V (Hx). Hence, x
is totally protected by x1 ∈ V1 ∪ V2 under g. Thus, g is a TWRDF on G and so
γtr(G) ≤ ω(g) = |S| = γst(G ◦H). Therefore, (iii) follows.

The following result is a direct consequence of Theorems 12 and 19. Notice
that a graph H has at least two universal vertices if and only if γst(H) = 2, by
Theorem 3.

Theorem 20. Let G be a graph with no isolated vertex and let H be a nontrivial

graph.

(i) If γ(G) = ρ(G) and γst(H) = 2, then γst(G ◦H) = 2γ(G).

(ii) If γtr(G) ∈ {γr(G), γt(G), 2ρ(G)} and γ(H) = 1, then γst(G ◦H) = γtr(G).

(iii) If γtr(G) = 2γt(G) and γ(H) > 2, then γst(G ◦H) = γtr(G).

In general, for a graphH such that γ(H) ≥ 2, the equality γst(G◦H) = γtr(G)
does not imply that γtr(G) = 2γt(G). For instance, the graph P5 ◦ P4 shown in
Figure 3 satisfies γst(P5 ◦ P4) = γtr(P5) = 5 < 6 = 2γt(P5).

It is well known that γ(T ) = ρ(T ) for any tree T . Hence, the following
corollary is a direct consequence of Theorem 20.
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Figure 3. The set of black-coloured vertices is a γst(P5 ◦ P4)-set.

Corollary 21. For any tree T of order at least two and any graph H with

γst(H) = 2,

γst(T ◦H) = 2γ(T ).

4. Small Values of γst(G ◦H)

We now characterize the graphs with γst(G ◦H) ∈ {2, 3}.

Theorem 22. For any nontrivial connected graph G and any nontrivial graph

H, the following statements are equivalent.

(i) γst(G ◦H) = γt(G).

(ii) γst(G ◦H) = 2.

(iii) γst(G) = γ(G) + 1 = γ(H) + 1 = 2 or γst(H) = γ(G) + 1 = γ(H) + 1 = 2.

Proof. By Theorems 3 and 11 we conclude that (i) and (ii) are equivalent. Notice
that G◦H has at least two universal vertices if and only if γ(G) = γ(H) = 1, and
also G has at least two universal vertices or H has at least two universal vertices.
Hence, by Theorem 3 we conclude that (ii) and (iii) are equivalent.

Theorem 23. Let G be a nontrivial connected graph and H a graph with no

isolated vertex. Then γst(G◦H) = 3 if and only if one of the following conditions

is satisfied.

(i) G ∼= P2 and γ(H) = 2.

(ii) G has exactly one universal vertex and either γ(H) = 2 or H has exactly

one universal vertex.

(iii) G has exactly one universal vertex, γ2,t(G) = 3 and γ(H) ≥ 3.

(iv) G 6∼= P2 has at least two universal vertices and γ(H) ≥ 2.

(v) γ(G) = 2 and γ2,t(G) = 3.
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(vi) γ(G) = 2, γst(G) = 3 < γ2,t(G) and γ(H) = 1.

Proof. Let S be a γst(G ◦H)-set and assume that |S| = 3. By Theorems 4 and
11 we have that 3 = γst(G ◦ H) > γt(G ◦ H) = γt(G) ≥ 2, which implies that
γt(G) = 2 and so γ(G) ∈ {1, 2}. We differentiate two cases.

Case 1. γ(G) = 1. In this case, Theorem 22 leads to γst(H) ≥ 3. Now, we
consider the following subcases.

Subcase 1.1. G ∼= P2. Notice that Theorem 22 leads to γ(H) ≥ 2. Suppose
that γ(H) ≥ 3 and let V (G) = {u,w}. By Theorem 4 we have γst(H) ≥ 4
and so S ∩ V (Hu) 6= ∅ and S ∩ V (Hw) 6= ∅. Without loss of generality, let
S ∩ V (Hu) = {(u, v1), (u, v2)} and |S ∩ V (Hw)| = 1. Since γ(H) ≥ 3, we have
that {v1, v2} is not a dominating set of H, which implies that no vertex in {u}×
(V (H) \ (N(v1) ∪N(v2)) is totally protected under S, which is a contradiction.
Hence γ(H) = 2. Therefore, (i) follows.

Subcase 1.2. G has exactly one universal vertex. If γ(H) ≤ 2, then by
Theorem 22 we deduce that either γ(H) = 2 or H has exactly one universal
vertex, and (ii) follows. Assume that γ(H) ≥ 3. As in Subcase 1.1, we conclude
that γst(H) ≥ 4 and so |S ∩ V (Hx)| ≤ 2 for every x ∈ V (G). Now, if there exist
two vertices u,w ∈ V (G) and two vertices v1, v2 ∈ V (H) such that S ∩ V (Hu) =
{(u, v1), (u, v2)} and |S ∩ V (Hw)| = 1, then we deduce that no vertex in {u} ×
(V (H) \ (N(v1) ∪N(v2)) is totally protected under S, which is a contradiction.
Therefore, AS = ∅ and BS has to be a γ2,t(G)-set, as if there exists x ∈ V (G)
such that |N(x)∩BS | ≤ 1, then V (Hx) has vertices which are no totally protected
under S. Therefore, (iii) follows.

Subcase 1.3. G 6∼= P2 has at least two universal vertices. In this case, by
Theorem 22 we deduce that γ(H) ≥ 2, and so (iv) follows.

Case 2. γ(G) = 2. In this case, Theorem 4 leads to γst(G) ≥ 3. If there
exist two vertices u,w ∈ V (G) such that AS = {u} and BS = {w}, then {u,w}
is a γt(G)-set, and so for any x ∈ N(w) \N [u] we have that no vertex in V (Hx)
is totally protected under S, which is a contradiction. Therefore, AS = ∅ and
|BS | = 3, which implies that BS is a γst(G)-set. Let 〈BS〉 be the subgraph induced
by BS . Notice that either 〈BS〉 ∼= K3 or 〈BS〉 ∼= P3. In the first case, BS is a
γ2,t(G)-set and (v) follows. Now, assume that 〈BS〉 ∼= P3. If γ(H) ≥ 2, then for
any vertex x of degree one in 〈BS〉 we have that V (Hx) has vertices which are not
totally protected under S, which is a contradiction. Therefore, γ(H) = 1 and if
γst(G) = γ2,t(G), then G satisfies (v), otherwise G satisfies (vi), by Theorem 16.

Conversely, notice that if G and H satisfy one of the six conditions above,
then Theorem 22 leads to γst(G ◦H) ≥ 3. To conclude that γst(G ◦H) = 3, we
proceed to show how to define an STDS D of G ◦H of cardinality three for each
of the six conditions.
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(i) Let {v1, v2} be a γ(H)-set and V (G) = {u,w}. In this case, we define
D = {(u, v1), (u, v2), (w, v1)}.

(ii) Let u be a universal vertex of G and w ∈ V (G) \ {u}. If {v1, v2} is a
γ(H)-set or v1 is a universal vertex of H and v2 ∈ V (H) \ {v1}, then we set
D = {(u, v1), (u, v2), (w, v1)}.

(iii) Let X be a γ2,t(G)-set and v ∈ V (H). In this case, D = X × {v}.
(iv) Let u,w ∈ V (G) be two universal vertices, z ∈ V (G) \ {u,w} and v ∈

V (H). In this case, D = {(u, v), (w, v), (z, v)}.
(v) Let X be a γ2,t(G)-set and v ∈ V (H). In this case, D = X × {v}.
(vi) Let X be a γst(G)-set and v be a universal vertex of H. In this case,

D = X × {v}.

It is readily seen that in all cases D is an STDS of G ◦H. Therefore, γst(G ◦H)
= 3.

Theorem 24. Let G be a nontrivial connected graph and H a nontrivial graph

with at least one isolated vertex. Then γst(G ◦H) = 3 if and only if at least one

of the following conditions is satisfied.

(i) γ(G) = 1 and γ(H) = 2.

(ii) γ2,t(G) = 3.

Proof. Notice that γ(H) ≥ 2, as H is a nontrivial graph with at least one
isolated vertex. Let S be a γst(G ◦ H)-set that satisfies Lemma 18 and assume
that |S| = 3. Now, we consider two cases.

Case 1. AS 6= ∅. In this case we have that |AS | = |BS | = 1. Let u,w ∈ V (G)
such that AS = {u} and BS = {w}. Notice that {u,w} is a γt(G)-set and, if
there exists x ∈ N(w) \N [u], then no vertex in V (Hx) is totally protected under
S, which is a contradiction. Hence, γ(G) = 1. Now, since H has at least one
isolated vertex, if γ(H) > 2, then Hu has at least one vertex which is not totally
protected under S, which is a contradiction. Therefore, γ(H) = 2 and (i) follows.

Case 2. AS = ∅. In this case we have that |BS | = 3, which implies that
BS is a γst(G)-set. Let 〈BS〉 be the subgraph induced by BS . Notice that either
〈BS〉 ∼= K3 or 〈BS〉 ∼= P3. Suppose that 〈BS〉 ∼= P3 and let x be a vertex of degree
one in 〈BS〉. Since H has at least one isolated vertex, there exists at least one
vertex in V (Hx) which is not totally protected under S, which is a contradiction.
Hence, 〈BS〉 ∼= K3, which implies that BS is a γ2,t(G)-set and so (ii) follows.

Conversely, notice that if G and H satisfy one of the two conditions above,
then Theorem 22 leads to γst(G ◦H) ≥ 3. To conclude that γst(G ◦H) = 3, we
proceed to show how to define an STDS D of G ◦H of cardinality three for each
of the two conditions.

(i) Let {u} be a γ(G)-set, w ∈ V (G)\{u} and {v1, v2} be a γ(H)-set. In this
case, D = {(u, v1), (u, v2), (w, v1)}.
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(ii) Let X be a γ2,t(G)-set and v ∈ V (H). In this case, D = X × {v}.

It is readily seen that in both cases D is an STDS of G◦H. Therefore, γst(G◦H)
= 3.

The following result, which is a direct consequence of Theorems 12, 22, 23
and 24, shows the cases when G is isomorphic to a complete graph or a star
graph.

Proposition 25. For any integer n ≥ 3, the following statements hold.

(i) If H is a graph with no isolated vertex, then

γst(Kn ◦H) =

{

2, if γ(H) = 1,
3, otherwise.

and

γst(K1,n−1 ◦H) =







2, if γst(H) = 2,
3, if γst(H) ≥ 3 and γ(H) ≤ 2,
4, otherwise.

(ii) If H is a nontrivial graph with at least one isolated vertex, then

γst(Kn ◦H) = 3

and
γst(K1,n−1 ◦H) =

{

3, if γ(H) = 2,
4, otherwise.

We now consider the cases in which G is a double star graph or a complete
bipartite graph. Recall that a double star Sn1,n2

is the graph obtained by joining
the center of two stars K1,n1

and K1,n2
with an edge. The following result is a

direct consequence of Theorems 12, 22, 23 and and 24.

Proposition 26. Let H be a nontrivial graph. For any integers n2 ≥ n1 ≥ 2,
the following statements hold.

γst(Sn1,n2
◦H) = 4

and
γst(Kn1,n2

◦H) =

{

3, if n1 = 2 and γ(H) = 1,
4, otherwise.

5. Special Cases Where G ∼= Pn and G ∼= Cn

First, we analyse the case where G ∼= Pn and γ(H) = 1 or γ(H) ≥ 4.
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Theorem 27. Let n ≥ 2 be an integer and let H be a graph with γ(H) = 1.
If γst(H) = 2, then

γst(Pn ◦H) = 2
⌈n

3

⌉

.

Otherwise, γst(Pn ◦H ≤ 2
⌈

5(n−2)
7

⌉

+ 2.

Proof. If γst(H) = 2, then by Corollary 21 we deduce that γst(Pn◦H) = 2γ(Pn).
Now, if γst(H) ≥ 3, then by Theorem 19 we deduce γst(Pn ◦H) ≤ γtr(Pn).

As shown in [22], if γ(H) ≥ 4, then γr(Pn ◦ H) = 2γt(Pn). Hence, from
Proposition 1 and Theorems 12 and 7 we derive the following result.

Theorem 28. Let n ≥ 2 be an integer and let H be a graph. If γ(H) ≥ 4, then

γst(Pn ◦H) = γr(Pn ◦H) =







n, n ≡ 0 (mod 4),
n+ 2, n ≡ 2 (mod 4),
n+ 1, otherwise.

The following result is a direct consequence of Theorems 19 and 20.

Theorem 29. Let n ≥ 3 be an integer and let H be a graph.

• If H has exactly one universal vertex, then γst(Cn ◦H) ≤
⌈

5n
7

⌉

.

• If H has at least two universal vertices, then γst(Cn◦H) ≤ 2
⌈

n
3

⌉

, and if n ≡ 0
(mod 3), then the equality holds.

Lemma 30. Let G be a nontrivial connected graph and let H be any graph. The

following statements hold for every γst(G ◦H)-set S.

(i) If γ(H) ≥ 2 and x ∈ BS, then
∑

u∈N(x) |S ∩ V (Hu)| ≥ 2.

(ii) If γt(H) ≥ 3 and x ∈ AS, then
∑

u∈N(x) |S ∩ V (Hu)| ≥ 2.

Proof. If γ(H) ≥ 2 and there exists a vertex x ∈ BS such that
∑

u∈N(x) |S ∩
V (Hu)| ≤ 1, then there exists a vertex in V (Hx)\S which is not totally protected
under S. Therefore, (i) follows.

Now, assume that γt(H) ≥ 3, and notice that Theorem 4 leads to γst(H) ≥ 4.
Suppose that there exists x ∈ AS such that

∑

u∈N(x) |S ∩ V (Hu)| ≤ 1. Notice

that, in such a case, either 2 ≤ |S ∩V (Hx)| ≤ 3 and S ∩
(
⋃

u∈N(x) V (Hu)
)

= ∅ or

|S ∩ V (Hx)| = 2 and
∣

∣S ∩
(
⋃

u∈N(x) V (Hu)
)∣

∣ = 1, which implies that there exists
a vertex in V (Hx) \S which is not totally protected under S, as γst(Hx) ≥ 4 and
γt(Hx) ≥ 3. Therefore, (ii) follows.

Theorem 31. Let n ≥ 3 be an integer and let H be a graph. If γt(H) ≥ 3, then

γst(Cn ◦H) = n.
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Proof. From Theorem 16 we know that γst(Cn ◦H) ≤ n. We only need to prove
that γst(Cn ◦ H) ≥ n. Let S be a γst(G ◦ H)-set that satisfies Lemma 18. If
CS = ∅, then γst(Cn ◦H) = |S| ≥ n. Thus we assume that CS 6= ∅.

Let V (Cn) = {ui, . . . , un}, where the subscripts are taken modulo n and
consecutive vertices are adjacent. We differentiate two cases for ui ∈ CS .

Case 1. ui is not adjacent to any vertex in CS . In this case, by Lemma
30 we have that ui+2 ∈ AS and ui+1 ∈ AS ∪ BS . Analogously, ui−2 ∈ AS and
ui−1 ∈ AS ∪ BS .

Case 2. ui+1 ∈ CS . Since every vertex in V (Hui
) has to be totally protected

under S, we have that ui−1, ui+2 ∈ AS and so Lemma 30(ii) leads to ui−2, ui+3

∈ AS .

According to the two cases above, |AS | ≥ |CS |, which implies that γst(Cn ◦
H) ≥ 2|AS |+ |BS | ≥ n. Therefore, the result follows.
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