Article in volume
Authors:
Title:
The Roman domatic problem in graphs and digraphs: a survey
PDFSource:
Discussiones Mathematicae Graph Theory 42(3) (2022) 861-891
Received: 2019-09-26 , Revised: 2020-02-21 , Accepted: 2020-02-24 , Available online: 2020-03-14 , https://doi.org/10.7151/dmgt.2313
Abstract:
In this paper, we survey results on the Roman domatic number and
its variants in both graphs and digraphs. This fifth survey
completes our works on Roman domination and its variations
published in two book chapters and two other surveys.
Keywords:
Roman domination, domatic
References:
- H.A. Ahangar, M.A. Henning, C. Löwenstein, Y. Zhao and V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim. 27 (2014) 241–255.
https://doi.org/10.1007/s10878-012-9500-0 - H.A. Ahangar, M.A. Henning, V. Samodivkin and I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016) 501–517.
https://doi.org/10.2298/AADM160802017A - J. Amjadi, The signed total Roman domatic number of a digraph, Discrete Math. Algorithms Appl. 10 (2018) 1850020.
https://doi.org/10.1142/S1793830918500209 - J. Amjadi, Twin signed total Roman domatic numbers in digraphs, Commun. Comb. Optim. 6 (2021) 17–26.
https://doi.org/10.22049/CCO.2020.26791.1142 - J. Amjadi, S. Nazari-Moghaddam and S.M. Sheikholeslami, Total Roman domatic number of a graph, Asian-Eur. J. Math. 13 (2020) 2050110.
https://doi.org/10.1142/S1793557120501107 - J. Amjadi and M. Soroudi, Twin signed total Roman domination numbers in digraphs, Asian-Eur. J. Math. 11 (2018) 1850034.
https://doi.org/10.1142/S1793557118500341 - H. Aram, S. Norouzian, S.M. Sheikholeslami and L. Volkmann, The distance Roman domination numbers of graphs, Discuss. Math. Graph Theory 33 (2013) 717–730.
https://doi.org/10.7151/dmgt.1703 - H. Aram, S.M. Sheikholeslami and L. Volkmann, The distance Roman domatic number of a graph, AKCE Int. J. Graphs Comb. 9 (2012) 205–212.
- R.A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016) 23–29.
https://doi.org/10.1016/j.dam.2016.03.017 - A. Bodaghli, S.M. Sheikholeslami and L. Volkmann, Twin signed Roman domination numbers in directed graphs, Tamkang J. Math. 47 (2016) 357–371.
https://doi.org/10.5556/j.tkjm.47.2016.2035 - E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22.
https://doi.org/10.1016/j.disc.2003.06.004 - M. Chellali, T.W. Haynes, S.T. Hedetniemi and A.A. McRae, Roman $\{2\}$-domination, Discrete Appl. Math. 204 (2016) 22–28.
https://doi.org/10.1016/j.dam.2015.11.013 - M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Roman domination in graphs, in: Topics in Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), (Springer 2020) 365–409.
https://doi.org/10.1007/978-3-030-51117-3_11 - M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination, in: Structures of Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), (Springer 2021).
- M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination II, AKCE Int. J. Graphs Comb. 17 (2020) 966–984.
https://doi.org/10.1016/j.akcej.2019.12.001 - M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, A survey on Roman domination parameters in directed graphs, J. Combin. Math. Combin. Comput. 115 (2020) 141–171.
- E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga and J.H. van Vuuren, Protection of a graph, Util. Math. 67 (2005) 19–32.
- E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247–261.
https://doi.org/10.1002/net.3230070305 - G. Hao, X. Chen and L. Volkmann, Double Roman domination in digraphs, Bull. Malays. Math. Sci. Soc. 42 (2019) 1907–1920.
https://doi.org/10.1007/s40840-017-0582-9 - G. Hao, Z. Xie and X. Chen, A note on Roman domination of digraphs, Discuss. Math. Graph Theory 39 (2019) 13–21.
https://doi.org/10.7151/dmgt.2067 - T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
- T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).
- M.A. Henning and L. Volkmann, Signed Roman $k$-domination in graphs, Graphs Combin. 32 (2016) 175–190.
https://doi.org/10.1007/s00373-015-1536-3 - K. Kämmerling and L. Volkmann, The Roman $k$-domination in graphs, J. Korean Math. Soc. 46 (2009) 1309–1318.
https://doi.org/10.4134/JKMS.2009.46.6.1309 - M. Kamaraj and P. Jakkamal, Directed Roman domination in digraphs, Int. J. Comb. Graph Theory Appl. 4 (2011) 103–116.
- C.-H. Liu and G.J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013) 608–619.
https://doi.org/10.1007/s10878-012-9482-y - A.P. Kazemi, S.M. Sheikholeslami and L. Volkmann, The Roman $(k,k)$-domatic number of a graph, Ann. Math. Inform. 38 (2011) 45–57.
- C.S. ReVelle and K.E. Rosing, Defendens Iperium Romanum: A classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585–594.
https://doi.org/10.1080/00029890.2000.12005243 - S.M. Sheikholeslami and L. Volkmann, The Roman domatic number of a graph, Appl. Math. Lett. 23 (2010) 1295–1300.
https://doi.org/10.1016/j.aml.2010.06.016 - S.M. Sheikholeslami and L. Volkmann, The Roman $k$-domatic number of a graph, Acta Math. Sin. (Engl. Ser.) 27 (2011) 1899–1906.
https://doi.org/10.1007/s10114-011-0385-0 - S.M. Sheikholeslami and L. Volkmann, The Roman domination number of a digraph, Acta Univ. Apulensis Math. Inform. 27 (2011) 77–86.
- S.M. Sheikholeslami and L. Volkmann, The signed Roman domatic number of a graph, Ann. Math. Inform. 40 (2012) 105–112.
- S.M. Sheikholeslami and L. Volkmann, Signed Roman domination in digraphs, J. Comb. Optim. 30 (2015) 456–467.
https://doi.org/10.1007/s10878-013-9648-2 - S.M. Sheikholeslami and L. Volkmann, The signed Roman domatic number of a digraph, Electron. J. Graph Theory Appl. 3 (2015) 85–93.
https://doi.org/10.5614/ejgta.2015.3.1.9 - S.M. Sheikholeslami and L. Volkmann, Twin signed Roman domatic numbers in digraphs, Tamkang J. Math. 48 (2017) 265–272.
https://doi.org/10.5556/j.tkjm.48.2017.2306 - P.J. Slater and E.L. Trees, Multi-fractional domination, J. Combin. Math. Combin. Comput. 40 (2002) 171–181.
- I. Stewart, Defend the Roman Empire, Sci. Amer. 281 (1999) 136–139.
https://doi.org/10.1038/scientificamerican1299-136 - H. Tan, H. Liang, R. Wang and J. Zhou, Computing Roman domatic number of graphs, Inform. Process. Lett. 116 (2016) 554–559.
https://doi.org/10.1016/j.ipl.2016.04.010 - L. Volkmann, The signed Roman $k$-domatic number of a graph, Discrete Appl. Math. 180 (2015) 150–157.
https://doi.org/10.1016/j.dam.2014.07.030 - L. Volkmann, Signed total Roman domination in graphs, J. Comb. Optim. 32 (2016) 855–871.
https://doi.org/10.1007/s10878-015-9906-6 - L. Volkmann, On the signed total Roman domination and domatic numbers of graphs, Discrete Appl. Math. 214 (2016) 179–186.
https://doi.org/10.1016/j.dam.2016.06.006 - L. Volkmann, Signed Roman $k$-domination in digraphs, Graphs Combin. 32 (2016) 1217–1227.
https://doi.org/10.1007/s00373-015-1641-3 - L. Volkmann, The signed Roman $k$-domatic number of digraphs, Australas. J. Combin. 64 (2016) 444–457.
- L. Volkmann, Signed total Roman domination in digraphs, Discuss. Math. Graph Theory 37 (2017) 261–272.
https://doi.org/10.7151/dmgt.1929 - L. Volkmann, The signed total Roman $k$-domatic number of a graph, Discuss. Math. Graph Theory 37 (2017) 1027–1038.
https://doi.org/10.7151/dmgt.1970 - L. Volkmann, Signed total Roman $k$-domination in graphs, J. Combin. Math. Combin. Comput. 105 (2018) 105–116.
- L. Volkmann, The double Roman domatic number of a graph, J. Combin. Math. Combin. Comput. 104 (2018) 205–215.
- L. Volkmann, Double Roman domination and domatic numbers of graphs, Commun. Comb. Optim. 3 (2018) 71–77.
https://doi.org/10.22049/CCO.2018.26125.1078 - L. Volkmann, The Italian domatic number of a digraph, Commun. Comb. Optim. 4 (2019) 61–70.
https://doi.org/10.22049/CCO.2019.26360.1102 - L. Volkmann, The Roman $\{2\}$-domatic number of graphs, Discrete Appl. Math. 258 (2019) 235–241.
https://doi.org/10.1016/j.dam.2018.11.027 - L. Volkmann, Italian domination in digraphs (J. Combin. Math. Combin. Comput.), to appear.
- L. Volkmann, The double Roman domatic number of a digraph, Discuss. Math. Graph Theory 40 (2020) 995–1004.
- L. Volkmann and D. Meierling, A note on the Roman domatic number of a digraph, Commun. Comb. Optim. 5 (2020) 19–26.
https://doi.org/10.22049/CCO.2019.26419.1107 - Z. Xie, G. Hao and S. Wei, The Roman domination and domatic numbers of a digraph, Commun. Comb. Optim. 4 (2019) 47–59.
https://doi.org/10.22049/CCO.2019.26356.1101 - B. Zelinka, $k$-domatic number of graphs, Czechoslovak Math. J. 33 (1983) 309–313.
- B. Zelinka, Domatic number and degrees of vertices of a graph, Math. Slovaca 33 (1983) 145–147.
- B. Zelinka, Domatic numbers of graphs and their variants: A survey, in: Domination in Graphs: Advanced Topics, T.W. Haynes, S.T. Hedetniemi and P.J. Slater (Ed(s)), (Marcel Dekker, Inc., New York 1998) 351–374.
Close