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1. Roman Domatic Number and Its Variants in Graphs

1.1. Introduction

For notation and graph theory terminology, we in general follow Haynes, Hedet-
niemi and Slater [21,22]. Specifically, let G be a graph with vertex set V (G) = V
and edge set E(G) = E. The integers n = n(G) = |V (G)| and m = m(G) =
|E(G)| are the order and the size of the graph G, respectively. The open neigh-

borhood of vertex v is NG(v) = N(v) = {u ∈ V (G) |uv ∈ E(G)}, and the closed

neighborhood of v is NG[v] = N [v] = N(v) ∪ {v}. The degree of a vertex v is
dG(v) = d(v) = |N(v)|. The minimum and maximum degree of a graph G are
denoted by δ(G) = δ and ∆(G) = ∆, respectively. If X ⊆ V (G), then G[X] is
the subgraph of G induced by X. For a set X ⊆ V (G), its open neighborhood

is the set NG(X) = N(X) =
⋃

v∈X N(v), and its closed neighborhood is the set
NG[X] = N [X] = N(X)∪X. The complement of a graph G is denoted by G. Let
Kn be the complete graph of order n and Kp,q be the complete bipartite graph
with the bipartition X and Y such that |X| = p and |Y | = q. We write Cn and
Pn for the cycle and path of order n, respectively.

A subset S of vertices of G is a dominating set if N [S] = V (G). The dom-

ination number γ(G) is the minimum cardinality of a dominating set of G. A
domatic partition is a partition of V (G) into dominating sets, and the domatic

number d(G) is the largest number of sets in a domatic partition. The domatic
number was introduced by Cockayne and Hedetniemi [18]. In their paper they
showed that γ(G) · d(G) ≤ n(G). For more information on the domatic number
and their variants, we refer the reader to the survey article of Zelinka [57].

Inspired by the strategies for defending the Roman Empire presented by
Steward [37] and ReVelle and Rosing [28], Cockayne, Dreyer Jr., S.M. Hedetniemi
and S.T. Hedetniemi [11] defined in 2004 a Roman dominating function (RDF) on
a graph G as a function f : V (G) −→ {0, 1, 2} satisfying the condition that every
vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2.
The weight of an RDF f on a graph G is defined by ω(f) =

∑

v∈V (G) f(v). The
Roman domination number, denoted γR(G), is the minimum weight of an RDF
in G. An RDF of weight γR(G) is called a γR(G)-function.

The concept of the domatic number is in a certain sense dual to the domina-
tion number. Rall has defined a variant of the domatic number of G, namely the
fractional domatic number of G, using functions. (This was mentioned by Slater
and Trees in [36].) Analogous to the fractional domatic number we may define
the Roman domatic number of a graph.

We emphasize that all graphs considered in this section are undirected.
Through the next subsections, we will present the Roman domatic number and
its variants. It should be noted that the results on Roman domination and its
variations have recently been collected in book chapters and surveys. For more
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details, we refer the reader to [13–16].

1.2. Roman domatic number

A set {f1, f2, . . . , fd} of distinct Roman dominating functions on G such that
∑d

i=1 fi(v) ≤ 2 for each v ∈ V (G), is called by Sheikholeslami and Volkmann
in [29] a Roman dominating family (of functions) on G. The maximum number
of functions in a Roman dominating family (RD family) on G is the Roman

domatic number of G, denoted by dR(G). The Roman domatic number is well-
defined and dR(G) ≥ 1 for all graphs G, since the set consisting of any RDF forms
an RD family on G. It is easy to see that dR(G) = 1 if and only if G has no edges.
In addition, Sheikholeslami and Volkmann [29] showed that dR(Kn) = n for the
complete graph and dR(T ) = 2 for each tree T with at least two vertices. If G is
a cactus graph, then dR(G) ≤ 3. This bound is sharp, since we have dR(Cn) = 3
if n ≡ 0 (mod 3) and dR(Cn) = 2 if n ≡ 1, 2 (mod 3). An analogue to the result
γ(G) · d(G) ≤ n(G) also holds.

Theorem 1 [29]. If G is a graph of order n, then γR(G) ·dR(G) ≤ 2n. Moreover,

if γR(G) · dR(G) = 2n, then for each RD family {f1, f2, . . . , fd} on G with d =
dR(G), each function fi is a γR(G)-function and

∑d
i=1 fi(v) = 2 for all v ∈ V (G).

As applications of Theorem 1, we obtain the following results.

Corollary 2 [29]. If G is a graph of order n, then d(G) ≤ dR(G) ≤ n.

Proposition 3 [29]. Let G be a graph of order n ≥ 2. Then γR(G) = n and

dR(G) = 2 if and only if ∆(G) = 1.

Proposition 4 [29]. If G is a graph of order n ≥ 2, then dR(G) = n if and only

if G = Kn.

Theorem 5 [29]. If G is a graph of order n ≥ 2, then γR(G) + dR(G) ≤ n+ 2,
with equality if and only if ∆(G) = 1 or G = Kn.

Next we present a sharp upper bound on the Roman domatic number in
terms of minimum degree.

Theorem 6 [29]. If G is a graph, then dR(G) ≤ δ(G) + 2.

The authors of [29] gave the following example to illustrate the sharpness of
Theorem 6. LetGi be the copy ofKk+3 with vertex set V (Gi) =

{

vi1, v
i
2, . . . , v

i
k+3

}

for 1 ≤ i ≤ k, and let G be the graph obtained from
⋃k

i=1Gi by adding a new
vertex v attached to each vi1. Then δ(G) = k and dR(G) = k + 2.

In [29], the authors presented the bound γR(G) ≥
⌈

2n
∆+1

⌉

+ ǫ for graphs G of
order n and maximum degree ∆ ≥ 1, with ǫ = 0 when n ≡ 0, 1 (mod (∆+1)) and
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ǫ = 1 when n 6≡ 0, 1 (mod (∆+1)). The following example shows that this bound
is incorrect. Let H be the graph obtained from a path v1v2 . . . v12 by adding a
pendant edge at the vertices v2, v5 and v8. Then γR(H) = 8, however, it follows
from the bound above that γR(H) ≥ 9.

For ∆ ≥ 1, one can find in [17] the inequality γR(G) ≥
⌈

2n
∆+1

⌉

. Combining
this bound with Theorem 1, we obtain the following corollary immediately.

Corollary 7. If G is a graph with maximum degree ∆ ≥ 1, then dR(G) ≤ ∆+1.

Corollary 7 leads to dR(G) ≤ r + 1 for r-regular graphs. Again using the
inequality γR(G) ≥

⌈

2n
∆+1

⌉

, this bound can be improved slightly.

Theorem 8 [13]. If G is an r-regular graph of order n, then dR(G) ≤ r+ ǫ with
ǫ = 1 when n ≡ 0, r+1

2 (mod (r + 1)) and ǫ = 0 when n 6≡ 0, r+1
2 (mod (r + 1)).

As applications of Theorems 6 and 8, we obtain the following Nordhaus-
Gaddum type results.

Theorem 9 [29]. If G is a graph of order n, then dR(G) + dR(G) ≤ n+ 2.

Theorem 10 [13]. If G is an r-regular graph of order n, then dR(G) + dR(G) ≤
n + 1, and if dR(G) + dR(G) = n + 1, then n ≡ 0, r+1

2 (mod (r + 1)) and n ≡
0, n−r

2 (mod (n− r)).

If G is isomorphic to the complete graph, then we observe that dR(G) = n
and dR(G) = 1 and therefore dR(G) + dR(G) = n + 1, and thus Theorem 10 is
sharp. Tan, Liang, Wang and Zhou [38] proved the following useful theorem from
which several (old and new) results follow easily.

Theorem 11 [38]. Let G be an arbitrary graph. Construct H by adding a new

vertex attached to each vertex of G. Then dR(H) = dR(G) + 1.

For n ≥ 3, the fan Fn (the wheel Wn) is the graph obtained from a path Pn

(a cycle Cn), by adding a new vertex attached to each vertex of Pn (of Cn). Using
Theorem 11 and the Roman domatic number of paths and cycles, given above,
the next results in [38] are immediate. For n ≥ 3, dR(Fn) = 3 and dR(Wn) =
4 if n ≡ 0 (mod 3) and dR(Wn) = 3 if n ≡ 1, 2 (mod 3). Furthermore they
proved dR(Km,n) = max{2,min{m,n}}. In addition, Tian et al. [38] showed that
the decision problem corresponding to the problem of computing dR(G) is NP-
complete even when restricted to bipartite graphs. They also proved that there is
a (lnn+O(ln lnn))-approximation algorithm for Roman Domatic Number, where
n is the order of the input graph.
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1.3. Roman k-domatic and Roman (k, k)-domatic numbers

If k ≥ 1 is an integer, then Kämmerling and Volkmann [24] defined a Roman

k-dominating function (RkDF) on a graph G as a function f : V (G) −→ {0, 1, 2}
satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at
least k vertices v for which f(v) = 2. The weight of an RkDF f on a graph G
is defined by ω(f) =

∑

v∈V (G) f(v). The Roman k-domination number, denoted
γkR(G), is the minimum weight of an RkDF in G. An RkDF of weight γkR(G) is
called a γkR(G)-function.

Sheikholeslami and Volkmann [30] introduced the Roman k-domatic number
of a graph. A set {f1, f2, . . . , fd} of distinct Roman k-dominating functions on
G with the property that

∑d
i=1 fi(v) ≤ 2 for each v ∈ V (G), is called a Roman

k-dominating family (of functions) on G. The maximum number of functions
in a Roman k-dominating family (RkD family) on G is the Roman k-domatic

number of G, denoted by dkR(G). The Roman k-domatic number is well-defined
and dkR(G) ≥ 1 for all graphs G, since the set consisting of any RkDF forms an
RkD family on G. Sheikholeslami and Volkmann [30] showed that dkR(G) = 1 if
and only if G has no connected bipartite subgraph with minimum degree at least
k, and they proved that dkR(Kn) = 1 if n < k and dkR(Kn) = ⌊n

k
⌋ if n ≥ k. The

following extension of Theorem 1 holds.

Theorem 12 [30]. If G is a graph of order n, then γkR(G) · dkR(G) ≤ 2n.
Moreover, if γkR(G) · dkR(G) = 2n, then for each RkD family {f1, f2, . . . , fd} on

G with d = dkR(G), each function fi is a γkR(G)-function and
∑d

i=1 fi(v) = 2
for all v ∈ V (G).

The next results are applications of Theorem 12.

Proposition 13 [30]. Let G be a graph of order n ≥ 2. Then dkR(G) = n if and

only if k = 1 and G is the complete graph on n vertices.

Theorem 14 [30]. If G is a graph of order n ≥ 2, then γkR(G)+dkR(G) ≤ n+2,
with equality if and only if k = 1 and G is a complete graph, or k ≥ 2 and G
contains a bipartite subgraph H with bipartition X,Y such that |X| = |Y | ≥ k
and dH(v) ≥ k for each v ∈ X ∪ Y and G has no bipartite subgraph H ′ with

bipartition A,B such that |A| > |B| ≥ k and dH′(v) ≥ k for each v ∈ A.

Proposition 15 [30]. If k ≥ 1 and p ≥ 1 are integers, then dkR(Kp,p) = 1 if

p < k, dkR(Kp,p) = 2 if k ≤ p < 3k and dkR(Kp,p) =
⌊

p
k

⌋

if p ≥ 3k.

Theorem 6 is the special case k = 1 of the next upper bound of the Roman
k-domatic number.

Theorem 16 [30]. For every graph G, we have dkR(G) ≤
⌊

δ(G)
k

⌋

+ 2.
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Examples in [30] show that the bound in Theorem 16 is sharp. For δ(G)-

regular graphs the slightly better bound dkR(G) ≤
⌊

δ(G)
k

⌋

+ 1 holds. As an

application of Theorems 12 and 16, we obtain the following Nordhaus-Gaddum
type result, of which Theorem 9 is a special case.

Theorem 17 [30]. If G is a graph of order n, then dkR(G) + dkR(G) ≤ n−1
k

+3,
with equality only for graphs G with ∆(G)− δ(G) = k.

Kazemi, Sheikholeslami and Volkmann [27] introduced the Roman (k, k)-
domatic number of a graph. A set {f1, f2, . . . , fd} of distinct Roman k-dominating
functions on G with the property that

∑d
i=1 fi(v) ≤ 2k for each v ∈ V (G), is

called a Roman (k, k)-dominating family (of functions) on G. The maximum
number of functions in a Roman (k, k)-dominating family (R(k, k)D family) on
G is the Roman (k, k)-domatic number of G, denoted by d(k,k)R(G). The Roman
(k, k)-domatic number is well-defined and d(k,k)R(G) ≥ 1 for all graphs G, since
the set consisting of any RkDF forms an R(k, k)D family on G, and if k ≥ 2, then
d(k,k)R(G) ≥ 2, since the functions fi : V (G) −→ {0, 1, 2} defined by fi(v) = i
for each v ∈ V (G) and for i = 1, 2 forms an R(k, k)D family on G of size 2. It is
easy to see that d(k,k)R(G) = 1 if and only if k = 1 and G is empty, and if k ≥ 2,
then d(k,k)R(G) = 2 if and only if G is trivial. For large k, we have the following
nice result.

Theorem 18 [27]. Let G be a graph of order n. If k ≥ 3 · 2n−2, then d(k,k)R(G)
= 2n.

The next extension of Theorem 1 also holds.

Theorem 19 [27]. If G is a graph of order n, then γkR(G) · d(k,k)R(G) ≤ 2kn.
Moreover, if γkR(G) · d(k,k)R(G) = 2kn, then for each R(k, k)D family {f1, f2,
. . . , fd} on G with d = d(k,k)R(G), each function fi is a γkR(G)-function and
∑d

i=1 fi(v) = 2k for all v ∈ V (G).

The next results are applications of Theorem 19.

Theorem 20 [27]. If G is a graph, then d(k,k)R(G) ≤ max{∆(G), k − 1}+ k.

Theorem 21 [27]. If G is a graph of order n ≥ 2, then

γkR(G) + d(k,k)R(G) ≤ n+ 2k,

with equality if and only if γkR(G) = 2n and d(k,k)R(G) = 2k, or γkR(G) = 2k
and d(k,k)R(G) = n.

Theorem 22 [27]. We have d(k,k)R(Kn) = n if n ≥ 2k, d(k,k)R(Kn) ≤ 2k − 1 if

n ≤ 2k − 1 and d(k,k)R(Kn) = 2k − 1 if k ≥ 2 and 2k − 2 ≤ n ≤ 2k − 1.
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In [27], one can find the Roman (k, k)-domatic numbers for some special cases
of complete bipartite graphs. The next result is an extension of Theorem 6.

Theorem 23 [27]. For every graph G, we have d(k,k)R(G) ≤ δ(G) + 2k.

Examples in [27] demonstrate that the bound in Theorem 23 is sharp. For
regular graphs, the following improvement of Theorem 23 holds.

Theorem 24 [27]. If G is an r-regular graph, then d(k,k)R(G) ≤ max{2k − 1,
r + k} ≤ r + 2k − 1.

As an application of Theorems 23 and 24, we obtain the following Nordhaus-
Gaddum type result, which extends Theorem 9.

Theorem 25 [27]. If G is a graph of order n, then d(k,k)R(G) + d(k,k)R(G) ≤
n+ 4k − 2, with equality only for graphs G with ∆(G)− δ(G) = 1.

1.4. Distance Roman domatic number

For two vertices x and y of a graph G, let dG(x, y) = d(x, y) be the distance
between x and y. The k-th power Gk of a graph G is the graph with vertex set
V (G), where two different vertices x and y are adjacent if and only if dG(x, y) ≤ k.
If k ≥ 1 is an integer, then Aram, Norouzian, Sheikholeslami and Volkmann [7]
defined a k-distance Roman dominating function (kDRDF) on a graph G as a
function f : V (G) −→ {0, 1, 2} satisfying the condition that every vertex u for
which f(u) = 0, there is a vertex v for which f(v) = 2 and d(u, v) ≤ k. The
weight of an kDRDF f on a graph G is defined by ω(f) =

∑

v∈V (G) f(v) and the

k-distance Roman domination number, denoted γkR(G), is the minimum weight
of an kDRDF in G.

Following Aram, Sheikholeslami and Volkmann [8], a set {f1, f2, . . . , fd} of
distinct k-distance Roman dominating functions on G with the property that
∑d

i=1 fi(v) ≤ 2 for each v ∈ V (G), is called a k-distance Roman dominating

family (of functions) on G. The maximum number of functions in a k-distance
Roman dominating family (kDRD family) on G is the k-distance Roman domatic

number of G, denoted by dkR(G). The k-distance Roman domatic number is well-
defined and dkR(G) ≥ 1 for all graphs G, since the set consisting of any kDRDF
forms an kDRD family on G. In the case k = 1, we write dR(G) instead of
d1R(G). Obviously, dkR(G) = dR(G

k). Aram, Sheikholeslami and Volkmann [8]
showed that dkR(G) = 1 if and only if G is empty, dkR(Kn) = n. Moreover, if the
diameter diam(G) ≤ k, then dkR(G) = dR(Kn). The following upper bounds were
obtained in [8].

Theorem 26 [8]. If G is a graph of order n, then γkR(G) · dkR(G) ≤ 2n.
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Since γkR(G) ≥ 2 for each graph G of order n ≥ 2, Theorem 26 implies that
dkR(G) ≤ n. Therefore dkR(G) + dkR(G) ≤ 2n for each graph of order n ≥ 2. If

Gk and G
k
are complete graphs, then we observe that dkR(G) + dkR(G) = 2n, and

thus the presented Nordhaus-Gaddum inequality is sharp.

Theorem 27 [8]. For every graph G, we have dkR(G) ≤ δ(Gk) + 2.

Using a result of Zelinka [55] on the k-distance domatic number, the next
result is easy to prove.

Corollary 28 [8]. If G is a connected graph of order n, then dkR(G) ≥ min{n,
k + 1}.

As applications of Corollary 28, we arrive at the following observations.

Proposition 29 [8]. If n ≥ k + 2, then dkR(Pn) = k + 1.

Proposition 30 [8]. Let G be a connected graph of order n ≥ 2. Then γkR(G) = n
and dkR(G) = 2 if and only if G = K2.

Proposition 31 [8]. If G is a connected graph of order n ≥ 2, then dkR(G) = n
if and only if Gk is the complete graph.

Combining Theorem 26 and Propositions 30 and 31, we obtain the next
result.

Theorem 32 [8]. If G is a connected graph of order n ≥ 2, then

γkR(G) + dkR(G) ≤ n+ 2,

with equality if and only if Gk = Kn.

1.5. Italian domatic number

In 2016, Chellali, Haynes, Hedetniemi and McRae [12] defined the following vari-
ant of Roman dominating function. An Italian dominating function (IDF) (or
Roman {2}-dominating function as called in [12]) on a graph G is a function
f : V (G) −→ {0, 1, 2} having the property that

∑

x∈N(u) ≥ 2 if f(u) = 0. The
Italian domination number γI(G) (or Roman {2}-domination number) equals the
minimum weight of an IDF on G, and an IDF of G with weight γI(G) is called a
γI(G)-function.

Following Volkmann [50], a set {f1, f2, . . . , fd} of distinct Italian dominating
functions on G with the property that

∑d
i=1 fi(v) ≤ 2 for each v ∈ V (G), is

called an Italian dominating family (of functions) on G. The maximum number of
functions in an Italian dominating family (ID family) on G is the Italian domatic

number of G, denoted by dI(G). The Italian domatic number is well-defined and
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dI(G) ≥ 1 for all graphs G, since the set consisting of any IDF forms an Italian
dominating family on G. We note that γI(G) ≤ γR(G) and dI(G) ≥ dR(G).
Therefore, every lower bound of dR(G) is also a lower bound of dI(G). The
following upper bounds were proved in [50].

Theorem 33 [50]. If G is a graph of order n, then γI(G)·dI(G) ≤ 2n. Moreover,

if γI(G) · dI(G) = 2n, then for each Italian dominating family {f1, f2, . . . , fd} on

G with d = dI(G), each function fi is a γI(G)-function and
∑d

i=1 fi(v) = 2 for

all v ∈ V (G).

Theorem 33 implies that dI(G) ≤ n for each graph G of order n ≥ 2. Fur-
thermore, it is proved in [50] that dI(G) = n if and only if G is isomorphic to the
complete graph Kn, and dI(G) = 1 if and only if G is empty. Using Theorem 33,
one can prove the following result analogously to Theorem 5.

Theorem 34 [50]. If G is a graph of order n ≥ 2, then γI(G) + dI(G) ≤ n+ 2,
with equality if and only if ∆(G) = 1 or G = Kn.

Theorem 35 [50]. For every graph G, dI(G) ≤ δ(G) + 2.

Applying Theorems 33 and 35, it is shown in [50] that dI(Cn) = 3 for n ≥ 3
and dI(Pn) = 3 for n ≥ 6.

Volkmann [50] also determines the Italian domatic number of different com-
plete r-partite graphs for r ≥ 2. Using the bound γI(G) ≥ ⌈(2n(G))/(∆(G)+2)⌉
(see [12]) and Theorem 35, one can prove the following Nordhaus-Gaddum type
inequality.

Theorem 36 [50]. If G is a graph of order n, then dI(G)+dI(G) ≤ n+2, except
when G is 4-regular of order 9, 7-regular of order 18 or 16-regular of order 45.

However, we think that Theorem 36 holds for all graphs.

Conjecture 37 [50]. If G is a graph of order n, then dI(G) + dI(G) ≤ n+ 2.

Conjecture 38 [50]. If G is a δ-regular graph, then dI(G) ≤ δ + 1.

Conjecture 37 would be a consequence of Conjecture 38. The next conjecture
would be another consequence of Conjecture 38.

Conjecture 39 [50]. If G is an regular graph of order n, then dI(G) + dI(G) ≤
n+ 1.

The complete graph, C3, C4 and C5 show that the bound stated in Conjecture
39 would be sharp.
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1.6. Double Roman domatic number

A double Roman dominating function (DRD function) on a graph G is defined
by Beeler, Haynes and Hedetniemi in [9] as a function f : V (G) −→ {0, 1, 2, 3}
having the property that if f(v) = 0, then the vertex v must have at least
two neighbors assigned 2 under f or one neighbor w with f(w) = 3, and if
f(v) = 1, then the vertex v must have at least one neighbor u with f(u) ≥ 2.
The double Roman domination number γdR(G) equals the minimum weight of
a double Roman dominating function on G, and a double Roman dominating
function of G with weight γdR(G) is called a γdR(G)-function.

In [47], a set {f1, f2, . . . , fd} of distinct double Roman dominating functions
on G with the property that

∑d
i=1 fi(v) ≤ 3 for each v ∈ V (G), is called a

double Roman dominating family (of functions) on G. The maximum number of
functions in a double Roman dominating family (DRD family) on G is the double
Roman domatic number of G, denoted by ddR(G). The double Roman domatic
number is well-defined and ddR(G) ≥ 1 for all graphs G, since the set consisting
of any DRD function forms a DRD family on G. If G has no isolated vertices,
then we even have ddR(G) ≥ 2. We start with the following basic property.

Theorem 40 [47]. If G is a graph of order n, then γdR(G) · ddR(G) ≤ 3n.
Moreover, if γdR(G) · ddR(G) = 3n, then for each DRD family {f1, f2, . . . , fd} on

G with d = ddR(G), each function fi is a γdR(G)-function and
∑d

i=1 fi(v) = 3
for all v ∈ V (G).

Since γdR(G) ≥ 3 for each graph G of order n ≥ 2, Theorem 40 implies
that ddR(G) ≤ n. In [18], the authors note that d(Kn) = n. Using the simple
observation d(G) ≤ ddR(G), we obtain ddR(Kn) = n.

Theorem 41 [47]. If G is a graph, then γdR(G) ≤ δ(G) + 1.

Using Theorem 41, we observe that if G is a graph of order n ≥ 2, then
ddR(G) = n if and only if G = Kn. As a further application of Theorem 41, we
note that ddR(Cn) = 3 if n ≡ 0 (mod 3) and ddR(Cn) = 2 if n ≡ 1, 2 (mod 3).

Theorem 42 [48]. Let G = Kn1,n2,...,nr
be the complete r-partite graph with r ≥ 2

and n1 = n2 = · · · = nr = q ≥ 2. Then ddR(G) =
⌊

rq
2

⌋

=
⌊

n(G)
2

⌋

.

Theorem 43 [47]. Let G be a graph of order n ≥ 2. If ∆(G) ≤ n − 2, then

γdR(G) ≤ n/2.

As an application of Theorems 41 and 43, we arrive at the following Nordhaus-
Gaddum type bound.

Theorem 44 [47]. If G is a graph of order n, then ddR(G) + ddR(G) ≤ n + 1,
with equality if and only if G = Kn or G = Kn.
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For a large family of graphs, the following improvement of Theorem 44 holds.

Theorem 45 [48]. Let G be a graph of order n such that δ(G), δ(G) ≥ 1. If n is

odd, or if n is even and min{δ(G), δ(G)} ≤ n
2 −2, then ddR(G)+ddR(G) ≤ n−1.

If G = Kp,p for p ≥ 2, then ddR(G) + ddR(G) = 2p = n(G). Thus Theorem
45 does not hold for n even and δ(G) = n

2 − 1 in general. In [9], the authors
proved the sharp bound γdR(G) ≤ 5n

4 for all connected graphs of order n ≥ 3.
Combining this bound with Theorem 40, we obtain the following sharp result.

Theorem 46 [47]. If G is a connected graph of order n ≥ 3, then

ddR(G) + γdR(G) ≤
5n

4
+ 2,

except when G = K3, in which case ddR(K3) + γdR(K3) = 6.

Restricted to bipartite graphs G with δ(G) ≥ 2, Volkmann [47] presents the
improvement ddR(G) + γdR(G) ≤ n(G) + 3 of Theorem 46.

1.7. Total Roman domatic number

In 2013, Liu and Chang [26] introduced the concept of total Roman domination
as follows. A total Roman dominating function of a graph G with no isolated
vertex, abbreviated TRD-function, is a Roman dominating function on G with
the additional property that the subgraph of G induced by the set of all vertices
of positive weight has no isolated vertices. The total Roman domination number

γtR(G) is the minimum weight of a TRD-function on G. A TRD-function with
weight γtR(G) in G is called a γtR(G)-function.

Following Amjadi, Nazari-Moghaddam and Sheikholeslami [5], a set {f1, f2,
. . . , fd} of distinct total Roman dominating functions on G with the property
that

∑d
i=1 fi(v) ≤ 2 for each v ∈ V (G), is called a total Roman dominating

family (of functions) on G. The maximum number of functions in a total Roman
dominating family (TRD family) on G is called the total Roman domatic number

of G, denoted by dtR(G). The total Roman domatic number is well-defined and
dtR(G) ≥ 1 for all graphs G since the set consisting of the constant function 1
forms a TRD family on G. It is shown that if G is a connected graph of order
n ≥ 2, then dtR(G) = 1 if and only if any edge of G is a pendant edge or is
adjacent to a pendant edge.

The following upper bounds hold.

Theorem 47 [5]. For every graph G with δ(G) ≥ 1,

dtR(G) ≤ δ(G) + 1.



872 M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann

Moreover, if dtR(G) = δ(G) + 1, then for each TRD family {f1, f2, . . . , fd} of G
with d = dtR(G), and for all vertices v of degree δ(G),

∑

u∈N [v] fi(u) = 2 for each

i ∈ {1, 2, . . . , d}.

Examples in [5] show that the bound in Theorem 47 is sharp. For δ-regular
graphs the aforementioned bound can be slightly improved.

Theorem 48 [5]. If G is a connected δ-regular graph of order n with minimum

degree δ ≥ 3, then

dtR(G) ≤ δ − 1 + ǫ

with ǫ = 1 when n ≡ 0 (mod δ) or δ is even and n ≡ δ
2 (mod δ), and ǫ = 0

otherwise.

As an application of Theorems 47 and 48, the following Nordhaus-Gaddum
type result is derived.

Theorem 49 [5]. For every graph G of order n ≥ 5 with δ(G) ≥ 1 and δ(G) ≥ 1,

(1) dtR(G) + dtR(G) ≤ n.

Theorem 50 [5]. Let G be a graph of order n with δ(G) ≥ 1. Then

γtR(G) · dtR(G) ≤ 2n.

Moreover, if γtR(G) · dtR(G) = 2n, then for each TRD family {f1, f2, . . . , fd} on

G with d = dtR(G), each function fi is a γtR(G)-function and
∑d

i=1 fi(v) = 2 for

all v ∈ V .

Using Theorem 50 and the facts γtR(G) ≥
⌈

2n
∆

⌉

(see [2]) and γR(Pn) =
γR(Cn) =

⌈

2n
3

⌉

for n ≥ 3 the next results are easy to prove.

Corollary 51 [5]. For any graph G of order n ≥ 2 and maximum degree ∆,

dtR(G) ≤ ∆.

Corollary 52 [5]. For paths and cycles, dtR(Cn) = 2 when n ≥ 3, and dtR(Pn) =
2 when n ≥ 6.

The following upper bound on the sum of total Roman domination and total
Roman domatic numbers was obtained in [5].

Theorem 53 [5]. If G is a connected graph of order n ≥ 5, then γtR(G) +
dtR(G) ≤ n+ 2.

All graphs attaining the bound in Theorem 53 were characterized in [5].



The Roman Domatic Problem in Graphs and Digraphs: a Survey 873

1.8. Signed (total) Roman domatic number

A signed (total) Roman dominating function (SRDF, STRDF) on a graph G is
defined in [1] ( [40]) as a function f : V (G) −→ {−1, 1, 2, } such that

∑

x∈N [v] f(x)

≥ 1
(
∑

x∈N(v) f(x) ≥ 1
)

for each v ∈ V (G), and such that every vertex u ∈ V (G)
with f(u) = −1 is adjacent to at least one vertex w for which f(w) = 2. The
signed (total) Roman domination number γsR(G) (γstR(G)) equals the minimum
weight of an SRDF (STRDF) on G, and a signed (total) Roman dominating
function of G with weight γsR(G) (γstR(G)) is called a γsR(G)-function (γstR(G)-
function).

A set {f1, f2, . . . , fd} of distinct signed (total) Roman dominating functions
on G with the property that

∑d
i=1 fi(v) ≤ 1 for each v ∈ V (G), is called in

[32] ([41]) a signed (total) Roman dominating family (of functions) on G. The
maximum number of functions in a signed (total) Roman dominating family
(SRD family, STRD family) on G is the signed (total) Roman domatic number of
G, denoted by dsR(G) (dstR(G)). The signed (total) Roman domatic number is
well-defined and dsR(G) ≥ 1 for all graphs G (dsrR(G) ≥ 1 for all graphs G with
δ(G) ≥ 1), since the set consisting of any SDRF (STRDF) forms an SRD (STRD)
family on G. We start with some basic properties of dsR(G) and dstR(G).

Theorem 54 [32, 41]. (i) If G is a graph of order n, then γsR(G) · dsR(G) ≤ n.
Moreover, if γsR(G) · dsR(G) = n, then for each SRD family {f1, f2, . . . , fd} on

G with d = dsR(G), each function fi is a γsR(G)-function and
∑d

i=1 fi(v) = 1
for all v ∈ V (G).

(ii) If G is a graph of order n with δ(G) ≥ 1, then γstR(G) · dstR(G) ≤ n.
Moreover, if γstR(G) ·dstR(G) = n, then for each STRD family {f1, f2, . . . , fd} on

G with d = dstR(G), each function fi is a γstR(G)-function and
∑d

i=1 fi(v) = 1
for all v ∈ V (G).

Theorem 55 [32,41]. (i) For every graph G, we have dsR(G) ≤ δ(G)+1. More-

over, if dsR(G) = δ(G) + 1, then for each SRD family {f1, f2, . . . , fd} on G with

d = dsR(G) and each vertex v of minimum degree,
∑

x∈N [v] fi(x) = 1 for each

function fi and
∑d

i=1 fi(x) = 1 for all x ∈ N [v].

(ii) For every graph G with δ(G) ≥ 1, we have dstR(G) ≤ δ(G). More-

over, if dstR(G) = δ(G), then for each STRD family {f1, f2, . . . , fd} on G with

d = dstR(G) and each vertex v of minimum degree,
∑

x∈N(v) fi(x) = 1 for each

function fi and
∑d

i=1 fi(x) = 1 for all x ∈ N(v).

As applications of Theorems 54 and 55, we obtain dsR(K1,n) = 1 for n ≥ 2,
dsR(Cn) = dsR(Pn) = 1 for n ≥ 3, dsR(Kn) = n, unless n = 3 in which case
dsR(K3) = 1, dstR(Kp,p) = p for p ≥ 4 and dstR(K9k+6) = 3k+2 for each integer
k ≥ 0. The next results are also consequences of Theorems 54 and 55.
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Theorem 56 [41]. Let G be a graph of order n ≥ 3 with δ(G) ≥ 1. Then

dstR(G) ≤ n− 2, with equality if and only if G is isomorphic to K3, P3 or C4.

If G is a δ-regular graph of order n with δ ≥ 1, then γstR(G) ≥ ⌈n/δ⌉ ≥ 2
(see [40]) and thus Theorem 54 leads to the improvement dstR(G) ≤ n/2 of
Theorem 56 in this special case.

Theorem 57 [32]. If G is a graph of order n, then dsR(G) + γsR(G) ≤ n + 1,
with equality if and only if n 6= 3 and G = Kn or G = Kn.

Theorem 58 [41]. Let G be a graph of order n with δ(G) ≥ 1. Then dstR(G) +
γstR(G) ≤ n+ 1, with equality if and only if the components of G are K2,K3, P3

or C6.

If δ(G) ≥ 5, then we even have dstR(G) + γstR(G) ≤ n − 2, unless n = 6, in
which case G = K6 with dstR(G) + γstR(G) = 5 = n− 1.

Theorem 59 [32]. If G is a graph of order n, then dsR(G) + dsR(G) ≤ n + 1,
with equality if and only if n 6= 3 and G = Kn or G = Kn.

Theorem 60 [41]. If G is a graph of order n with δ(G), δ(G) ≥ 1, then dstR(G)+
dstR(G) ≤ n− 1, with equality if and only if G = C4 or G = C4.

1.9. Signed (total) Roman k-domatic number

Let k ≥ 1 be an integer. A signed (total) Roman k-dominating function (SRkDF,
STRkDF) on a graph G is defined by Henning and Volkmann in [23] (Volk-
mann [46]) as a function f : V (G) −→ {−1, 1, 2, } such that

∑

x∈N [v] f(x) ≥ k
(
∑

x∈N(v) f(x) ≥ k) for each v ∈ V (G), and such that every vertex u ∈ V (G)
with f(u) = −1 is adjacent to at least one vertex w for which f(w) = 2.
The signed (total) Roman k-domination number γksR(G) (γkstR(G)) equals the
minimum weight of an SRkDF (STRkDF) on G, and a signed (total) Roman
k-dominating function of G with weight γksR(G) (γkstR(G)) is called a γksR(G)-
function (γkstR(G)-function).

A set {f1, f2, . . . , fd} of distinct signed (total) Roman k-dominating functions
on G with the property that

∑d
i=1 fi(v) ≤ k for each v ∈ V (G), is called in [39]

( [45]) a signed (total) Roman k-dominating family (of functions) on G. The max-
imum number of functions in a signed (total) Roman k-dominating family (SRkD
family, STRkD family) on G is the signed (total) Roman k-domatic number of
G, denoted by dksR(G) (dkstR(G)). The signed (total) Roman k-domatic number
is well-defined and dksR(G) ≥ 1 (dkstR(G) ≥ 1) for all graphs G with δ(G) ≥ k − 1
(δ(G) ≥ k). Analogous to Theorems 54 and 55, we have the following results.

Theorem 61 [39]. If G is a graph of order n with δ(G) ≥ k − 1, then γksR(G) ·
dksR(G) ≤ kn.
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Theorem 62 [45]. If G is a graph of order n with δ(G) ≥ k, then γkstR(G) ·
dkstR(G) ≤ kn.

Theorem 63 [39]. If G is a graph with δ(G) ≥ k − 1, then dksR(G) ≤ δ(G) + 1.

Theorem 64 [45]. If G is a graph with δ(G) ≥ k, then dkstR(G) ≤ δ(G).

Using Theorem 63, we obtain the signed Roman k-domatic number of the
complete graph for k ≥ 2.

Proposition 65 [39]. If Kn is the complete graph of order n ≥ k ≥ 2, then

dksR(Kn) = n, unless n = k = 2 in which case d2sR(K2) = 1.

Since γksR(Kn) = k for n ≥ k ≥ 2 (see [23]), Proposition 65 demonstrates that
Theorems 61 and 63 are both sharp. Using Theorem 64, we obtain dkstR(Kk,k) = k
for k ≥ 3 and dkstR(Kp,p) = p for integers p ≥ k + 1 ≥ 2, with exception of the
case k = 1 and p = 3, in which case d1stR(K3,3) = 1. These examples demonstrate
that Theorem 64 is sharp.

As an extension of the bounds in Theorems 57 and 58, we have the following
results.

Theorem 66 [39,45]. If G is a graph of order n with δ(G) ≥ k−1, then dksR(G)+
γksR(G) ≤ n + k. If G is a graph of order n with δ(G) ≥ k, then dkstR(G) +
γktsR(G) ≤ n+ k.

Theorem 67 [39]. If G is a graph of order n such that δ(G), δ(G) ≥ k− 1, then
dksR(G) + dksR(G) ≤ n + 1. Furthermore, if dksR(G) + dksR(G) = n + 1, then G is

regular.

For k = 2, the following improvement of Theorem 67 was given in [39].

Theorem 68 [39]. If G is a graph of order n such that δ(G), δ(G) ≥ 1, then

d2sR(G) + d2sR(G) ≤ n.

Theorem 69 [39]. Let k ≥ 3 be an integer. Then there is only a finite number

of graphs G with δ(G), δ(G) ≥ k − 1 such that dksR(G) + dksR(G) = n(G) + 1.

In connection with Theorems 68 and 69, we have the following conjecture.

Conjecture 70 [39]. Let k ≥ 3 be an integer. If G is a graph of order n such

that δ(G), δ(G) ≥ k − 1, then dksR(G) + dksR(G) ≤ n.

If k ≥ 4 is an even integer, then dksR(Kk,k) = k (see [39]) and dksR(Kk) = k (see
Proposition 65 and so dksR(Kk,k) + dksR(Kk,k) = 2k = n(Kk,k). Thus Conjecture
70 would be tight, at least for k ≥ 4 even.
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Theorem 71 [45]. If G is a graph of order n such that δ(G), δ(G) ≥ k, then

dkstR(G) + dkstR(G) ≤ n − 1. Furthermore, if dkstR(G) + dkstR(G) = n − 1, then G
is regular.

As a supplement to Theorem 60, we have the following Nordhaus-Gaddum
type result.

Theorem 72 [45]. Let k ≥ 2 be an integer. Then there are only finitely many

graphs G with δ(G), δ(G) ≥ k such that dkstR(G) + dkstR(G) = n(G)− 1.

We finish this section with the following conjecture.

Conjecture 73 [45]. Let k ≥ 2 be an integer. If G is a graph of order n such

that δ(G), δ(G) ≥ k, then dkstR(G) + dkstR(G) ≤ n− 2.

If n ≥ 5 is an integer, then dn−2
stR (Kn,n) = n (see above) and dn−2

stR (Kn,n) =
n − 2 (see [45]) and so dn−2

stR (Kn,n) + dn−2
stR (Kn,n) = 2n − 2 = n(Kn,n) − 2. Thus

Conjecture 73 would be tight, at least for k ≥ 3.

2. Roman Domatic Number and Its Variants in Digraphs

2.1. Introduction

Let D be a finite digraph with neither loops nor multiple arcs (but pairs of
opposite arcs are allowed) with vertex set V (D) = V and arc set A(D) = A.
The integers n = n(D) = |V (D)| and m = m(D) = |A(D)| are the order and
the size of the digraph D, respectively. For two different vertices u and v, we
use uv to denote the arc with tail u and head v, and we also call v an out-

neighbor of u and u an in-neighbor of v. For v ∈ V (D), the out-neighborhood

and in-neighborhood of v, denoted by N+
D (v) = N+(v) and N−

D (v) = N−(v),
are the sets of out-neighbors and in-neighbors of v, respectively. The closed

out-neighborhood and closed in-neighborhood of a vertex v ∈ V (D) are the sets
N+

D [v] = N+[v] = N+(v) ∪ {v} and N−

D [v] = N−[v] = N−(v) ∪ {v}, respectively.
The out-degree and in-degree of a vertex v are defined by d+D(v) = d+(v) =
|N+(v)| and d−D(v) = d−(v) = |N−(v)|. The maximum out-degree, maximum in-

degree, minimum out-degree and minimum in-degree of a digraph D are denoted
by ∆+(D) = ∆+, ∆−(D) = ∆−, δ+(D) = δ+ and δ−(D) = δ−, respectively.
A digraph D is r-out-regular when ∆+(D) = δ+(D) = r and r-in-regular when
∆−(D) = δ−(D) = r. If D is r-out-regular and r-in-regular, then D is called r-
regular. The complement D of a digraph D is the digraph with vertex set V (D)
such that for any two distinct vertices u, v the arc uv belongs to D if and only if
uv does not belong to D. The underlying graph G(D) of a digraph D is the graph
obtained from D by replacing each arc uv or symmetric pairs uv, vu of arcs by
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the edge uv. A digraph D is connected if its underlying graph is connected. If
X is a nonempty subset of the vertex set V (D) of a digraph D, then D[X] is the
subdigraph of D induced by X. A digraph D is bipartite if its underlying graph
is bipartite. Let K∗

n be the complete digraph of order n and K∗

p,q be the complete
bipartite digraph with partite sets X and Y , where |X| = p and |Y | = q. The
associated digraph D(G) of a graph G is the digraph obtained from G when each
edge e of G is replaced by two oppositely oriented arcs with the same ends as
e. Since N−

D(G)[v] = NG[v] for each vertex v ∈ V (G) = V (D(G)), the following
useful observation is valid.

Observation 74. Let D(G) be the associated digraph of the graph G. If µ(G) is a
graph parameter and µ(D(G)) the corresponding digraph parameter, then mostly

µ(D(G)) = µ(G).

Similar to Section 1, the next subsections will be devoted to presenting the
Roman domatic number and its variants in digraphs, some of which have recently
been introduced.

2.2. Roman domatic number

Kamaraj and Jakkamal [25] defined a Roman dominating function (RDF) on a
digraph D as a function f : V (D) −→ {0, 1, 2} satisfying the condition that every
vertex u with f(u) = 0 has an in-neighbor v with f(v) = 2. The weight of an RDF
f on a digraph D is defined by ω(f) =

∑

v∈V (D) f(v). The Roman domination

number of a digraph D, denoted γR(D), is the minimum weight of an RDF on
D. An RDF of weight γR(D) is called a γR(D)-function. Roman domination on
digraphs has been studied by several authors, as for example [20, 31].

A set {f1, f2, . . . , fd} of distinct Roman dominating functions on D such that
∑d

i=1 fi(v) ≤ 2 for each v ∈ V (G), is called by Xie, Hao and Wei [54] a Roman

dominating family (of functions) on D. The maximum number of functions in a
Roman dominating family (RD family) onD is the Roman domatic number ofD,
denoted by dR(D). The Roman domatic number is well-defined and dR(D) ≥ 1
for all digraphs D, since the set consisting of any RDF forms an RD family on D.
The first result that we present characterizes the digraphs D with γR(D) = 1.

Theorem 75 [54]. If D is a digraph, then dR(D) = 1 if and only if D has no

directed cycle of even length.

An analogue to Theorem 1 also holds.

Theorem 76 [54]. If D is a digraph of order n, then γR(D) · dR(D) ≤ 2n.
Moreover, if γR(D) · dR(D) = 2n, then for each RD family {f1, f2, . . . , fd} on D
with d = dR(D), each function fi is a γR(D)-function and

∑d
i=1 fi(v) = 2 for all

v ∈ V (D).
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As an application of Theorem 76, we obtain the following result.

Theorem 77 [54]. If D is a digraph of order n ≥ 2, then dR(D) ≤ n, with

equality if and only if D = K∗

n.

Using the statement γR(D) < n if and only if ∆+(D) ≥ 2 (see [31]), and
Theorems 75, 76, and 77, the next sharp bound on the sum γR(D) + dR(D) is
obtained.

Theorem 78 [54]. Let D be a digraph of order n ≥ 2. Then γR(D) + dR(D) ≤
n + 2, with equality if and only if D = K∗

n or ∆+(D) = 1 and D has a directed

cycle of even length.

If Cn is a directed cycle of length n, then γR(Cn) = n (see [31]). Using
this observation as well as Theorems 75 and 76 the authors of [54] derived that
dR(Cn) = 1 if n is odd and dR(Cn) = 2 if n is even. The next bounds are
corresponding results to Theorems 6 and 8.

Theorem 79 [54]. If D is a digraph, then dR(D) ≤ δ−(D) + 2.

The reader can find an example in [54] that illustrates the sharpness of The-
orem 79.

Theorem 80 [54]. If D is a k-out-regular digraph of order n, where n = p(k +
1) + r with integers p ≥ 1 and 0 ≤ r ≤ k, then dR(D) ≤ k + ǫ with ǫ = 1 when

k = 0 or r = 0 or 2r = k + 1 and ǫ = 0 otherwise.

Using Theorems 79 and 80, the following Nordhaus-Gaddum type result is
obtained.

Theorem 81 [54]. If D is a digraph of order n ≥ 2, then dR(D)+dR(D) ≤ n+ǫ,
where ǫ = 1 when D is out-regular, ǫ = 2 when D is not in-regular and ǫ = 3
otherwise.

The following extension of Theorem 79 can be found in a note of Volkmann
and Meierling [53].

Theorem 82 [53]. If D is a digraph, then dR(D) ≤ δ−(D) + 2. Moreover, if

dR(D) = δ−(D)+2, then the set of vertices of minimum in-degree is an indepen-

dent set.

Theorem 82 leads to the following improvement of Theorem 81.

Theorem 83 [53]. If D is a digraph of order n ≥ 2, then dR(D)+dR(D) ≤ n+1.

If D is isomorphic to the complete digraph K∗

n, then dR(D) = n and dR(D) =
1 and therefore dR(D)+dR(D) = n+1. This example demonstrates that Theorem
83 is sharp. Using Observation 74 and Theorems 76, 78 or 79 we obtain Theorems
1, 5 or 6, respectively. Combining Observation 74 and Theorem 83, we arrive at
the following improvement of Theorems 9 and 10.
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Corollary 84 [53]. If G is a graph of order n ≥ 2, then dR(G)+ dR(G) ≤ n+1.

2.3. Italian domatic number in digraphs

Volkmann [51] defined the following variant of Roman dominating functions in
digraphs. An Italian dominating function (IDF) (or Roman {2}-dominating func-

tion) on a digraph D is a function f : V (D) −→ {0, 1, 2} such that every vertex
v ∈ V (D) with f(v) = 0 has at least two in-neighbors assigned 1 under f or one
in-neighbor w with f(w) = 2. The Italian domination number γI(D) (or Roman

{2}-domination number) equals the minimum weight of an Italian dominating
function on D, and an Italian dominating function of D with weight γI(D) is
called a γI(D)-function.

Following Volkmann [49], a set {f1, f2, . . . , fd} of distinct Italian dominating
functions on D with the property that

∑d
i=1 fi(v) ≤ 2 for each v ∈ V (D), is

called an Italian dominating family (of functions) on D. The maximum number
of functions in an Italian dominating family (ID family) on D is the Italian

domatic number of D, denoted by dI(D). The Italian domatic number is well-
defined and dI(D) ≥ 1 for all digraphs D, since the set consisting of any IDF
forms an Italian dominating family on D. We note that γI(D) ≤ γR(D) and
dI(D) ≥ dR(D). Therefore, every lower bound of dR(D) is also a lower bound of
dI(D). The following upper bounds are valid.

Theorem 85 [49]. If D is a digraph of order n, then γI(D) · dI(D) ≤ 2n. More-

over, if γI(D)·dI(D) = 2n, then for each Italian dominating family {f1, f2, . . . , fd}
on D with d = dI(D), each function fi is a γI(D)-function and

∑d
i=1 fi(v) = 2

for all v ∈ V (D).

Since γI(D) ≥ 2 for each digraph D of order n ≥ 2, Theorem 85 immediately
implies that dR(D) ≤ dI(D) ≤ n. In addition, it is shown in [49] that dI(D) = n
if and only if D = K∗

n. The next result is an analogue to Theorem 75.

Theorem 86 [49]. If D is a digraph, then dI(D) = 1 if and only if ∆−(D) ≤ 1
and D has no directed cycle of even length.

If D is a directed path Pn or a directed cycle Cn of order n, then γI(D) = n
(see [51]). Using this observation and Theorems 85 and 86, we easily see that
dI(Pn) = 1 and dI(Cn) = 1 if n is odd and dI(Cn) = 2 if n is even.

The upper bound on the product γI(D) · dI(D) leads to an upper bound on
the sum of these terms.

Theorem 87 [49]. If D is a digraph of order n ≥ 2, then γI(D)+dI(D) ≤ n+2.
Moreover, equality holds if and only if ∆+(D) = ∆−(D) = 1 and D has a directed

cycle of even length or D = K∗

n.

Theorem 88 [49]. If D is a digraph, then dI(D) ≤ δ−(D) + 2.
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Since dR(D) ≤ dI(D), Theorem 88 yields dR(D) ≤ δ−(D) + 2 (see Theorem
79). Theorem 88 easily leads to the following Nordhaus-Gaddum type result.

Theorem 89 [49]. If D is a digraph of order n, then dI(D) + dI(D) ≤ n+ 3. If

dI(D) + dI(D) = n+ 3, then D is in-regular.

We can improve Theorem 88 as well as Theorem 89 for many regular digraphs.

Theorem 90 [49]. Let D be a δ-regular digraph of order n with δ ≥ 1, and let

n = p(δ + 2) + r with integers p ≥ 0 and 0 ≤ r ≤ δ + 1. If 1 ≤ r < (δ + 2)/2 or

(δ + 2)/2 < r ≤ δ + 1, then dI(D) ≤ δ + 1.

Theorem 91 [49]. If D is a δ-regular digraph of order n, then dI(D) + dI(D) ≤
n+ 2, except when D is 4-regular of order 9, 7-regular of order 18 or 16-regular
of order 45.

We conclude this section by mentioning some conjectures suggested by the
presented research.

Conjecture 92 [49]. If D is a δ-regular digraph, then dI(D) ≤ δ + 1.

The next conjecture would be a consequence of Conjecture 92.

Conjecture 93 [49]. If D is a δ-regular digraph of order n, then dI(D)+dI(D) ≤
n+ 1.

Conjecture 93 is true for δ = 0 and for δ = 1. If n = p1(δ + 2) + r1 with
r1 6= 0, (δ + 2)/2 and n = p2(δ + 2) + r2 with r2 6= 0, (δ + 2)/2, then Theorem
90 shows that Conjecture 93 is also true. We even think that the bound in
Conjecture 93 holds for all digraphs.

Conjecture 94 [49]. If D is a digraph of order n, then dI(D) + dI(D) ≤ n+ 1.

2.4. Double Roman domatic number in digraphs

Inspired by an idea in [9], Hao, Chen and Volkmann [19] defined the double Roman

dominating function (DRD function) on a digraph D as a function f : V (D) −→
{0, 1, 2, 3} having the property that if f(v) = 0, then the vertex v must have at
least two in-neighbors assigned 2 under f or one in-neighbor w with f(w) = 3,
and if f(v) = 1, then the vertex v must have at least one in-neighbor u with
f(u) ≥ 2. The double Roman domination number γdR(D) equals the minimum
weight of a DRD function on D, and a DRD function of D with weight γdR(D)
is called a γdR(D)-function.

In [52], a set {f1, f2, . . . , fd} of distinct double Roman dominating functions
on D with the property that

∑d
i=1 fi(v) ≤ 3 for each v ∈ V (D), is called a

double Roman dominating family (of functions) on D. The maximum number



The Roman Domatic Problem in Graphs and Digraphs: a Survey 881

of functions in a double Roman dominating family (DRD family) on D is the
double Roman domatic number of D, denoted by ddR(D). The double Roman
domatic number is well-defined and ddR(D) ≥ 1 for all digraphs D, since the set
consisting of any DRD function forms a DRD family on D. We start with the
following basic properties.

Theorem 95 [52]. If D is a digraph of order n, then γdR(D) · ddR(D) ≤ 3n.

Theorem 96 [52]. If D is a digraph, then γdR(D) ≤ δ−(D) + 1.

Examples in [52] show that Theorems 95 and 96 are sharp. As a consequence
of the last theorem we see that ddR(D) ≤ n. Following an idea of Zelinka [56],
it easy to see that ddR(D) ≥ ⌊n/(n − δ−(D))⌋. Using this and Theorem 96, it
is shown in [52] that ddR(D) = n if and only if D is isomorphic to the complete
digraph. In addition, it is not hard to verify that ddR(D) ≥ 2 for each bipartite
digraphD with δ−(D) ≥ 1. Consequently, ddR(Cn) = 2 for each oriented cycle Cn

of even length. Next we present an upper bound on the double Roman domatic
number number in terms of the maximum out-degree.

Theorem 97 [52]. Let D be a digraph of order n ≥ 2, and let k be an integer

with 2 ≤ k ≤ n. If ∆+(D) ≤ (n− k)/(k − 1), then ddR(D) ≤ n/k.

Using Theorem 97 for k = (n + 1)/2, we deduce that ddR(Cn) = 1 for each
oriented cycle Cn of odd length. As an application of Theorems 96 and 97, we
arrive at the following Nordhaus-Gaddum type bounds.

Theorem 98 [52]. Let D be a digraph of order n ≥ 3. Then ddR(D)+ddR(D) ≤
n + 1. If ddR(D) + ddR(D) = n + 1, then D is in-regular. If ∆+(D) ≤ n − 2
and ∆+(D) ≤ n− 2, then ddR(D) + ddR(D) ≤ n, and if n is odd, then ddR(D) +
ddR(D) ≤ n− 1.

Finally, we present upper and lower bounds on the sum γdR(D) + ddR(D).
Using the bound γdR(D) ≤ 2n − 2 for each connected digraph of order n ≥ 4
(see [19]) and Theorem 95, we obtain the following upper bound.

Theorem 99 [52]. If D is a connected digraph of order n ≥ 5, then γdR(D) +
ddR(D) ≤ 2n− 1.

Since γdR(C4)+ ddR(C4) = 8, γdR(C3)+ ddR(C3) = 6 and γdR(C2)+ ddR(C2)
= 5, we observe that Theorem 99 does not hold for 2 ≤ n ≤ 4. In addition,
let H be the digraph of order n ≥ 5 with vertex set {v1, v2, . . . , vn} and arc
set {v2v1, v3v1, . . . , vnv1}. Then γdR(H) = 2(n − 1) and ddR(H) = 1 and thus
γdR(H)+ddR(H) = 2n−1. This example shows that Theorem 99 is sharp. In [19],
it is shown that γdR(D) = 3 if and only if ∆+(D) = n− 1. As an application of
this observation one can prove a sharp lower bound on γdR(D) + ddR(D).
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Theorem 100 [52]. If D is a digraph of order n ≥ 2, then γdR(D) + ddR(D)
≥ 4, with equality if and only if D contains a vertex v with d+D(v) = n − 1 and

d−D(v) = 0.

2.5. Signed (total) Roman domatic number in digraphs

A signed (total) Roman dominating function (SRDF, STRDF) on a digraph
D is defined in [33] ([44]) as a function f : V (D) −→ {−1, 1, 2, } such that
∑

x∈N−[v] f(x) ≥ 1 (
∑

x∈N−(v) f(x) ≥ 1) for each v ∈ V (D), and such that every
vertex u ∈ V (D) with f(u) = −1 has an in-neighbor w for which f(w) = 2.
The signed (total) Roman domination number γsR(D) (γstR(D)) equals the mini-
mum weight of an SRDF (STRDF) on D, and a signed (total) Roman dominating
function of D with weight γsR(D) (γstR(D)) is called a γsR(D)-function (γstR(D)-
function).

A set {f1, f2, . . . , fd} of distinct signed (total) Roman dominating functions
on D with the property that

∑d
i=1 fi(v) ≤ 1 for each v ∈ V (D), is called in

[34] ([3]) a signed (total) Roman dominating family (of functions) on D. The
maximum number of functions in a signed (total) Roman dominating family
(SRD (STRD) family) on D is the signed (total) Roman domatic number of D,
denoted by dsR(D) (dstR(D)). The signed (total) Roman domatic number is well-
defined and dsR(D) ≥ 1 (dstR(D) ≥ 1) for all digraphs D (with δ−(D) ≥ 1), since
the set consisting of the SDRF (DTRDF) with constant value 1 forms an SRD
(STRDF) family on D. Using Observation 74 and the fact that dsR(K3) = 1 and
dsR(Kn) = n (n 6= 3), (see Subsection 1.8), we deduce that dsR(K

∗

3 ) = 1 and
dsR(K

∗

n) = n for n 6= 3.

We start with some basic properties.

Theorem 101 [3,34]. (i) If D is a digraph of order n, then γsR(D) ·dsR(D) ≤ n.
Moreover, if γsR(D) · dsR(D) = n, then for each SRD family {f1, f2, . . . , fd} on

D with d = dsR(D), each function fi is a γsR(D)-function and
∑d

i=1 fi(v) = 1
for all v ∈ V (D).

(ii) If D is a digraph of order n, then γstR(D) · dstR(D) ≤ n. Moreover, if

γstR(D) · dstR(D) = n, then for each STRD family {f1, f2, . . . , fd} on D with

d = dstR(D), each function fi is a γstR(D)-function and
∑d

i=1 fi(v) = 1 for all

v ∈ V (D).

Theorem 102 [3, 34]. (i) For every digraph D, we have dsR(D) ≤ δ−(D) + 1.
Moreover, if dsR(D) = δ−(D) + 1, then for each SRD family {f1, f2, . . . , fd} on

D with d = dsR(D) and each vertex v of minimum in-degree,
∑d

x∈N−[v] fi(x) = 1

for each function fi and
∑d

i=1 fi(x) = 1 for all x ∈ N−[v].

(ii) For every digraph D with δ−(D) ≥ 1, dstR(D) ≤ δ−(D). Moreover, if

equality holds, then for each STRD family {f1, f2, . . . , fd} on D with d = dstR(D)
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and each vertex v of minimum in-degree,
∑

u∈N−(v) fi(u) = 1 for each function

fi and
∑d

i=1 fi(u) = 1 for all u ∈ N−(v).

As applications of these results, we obtain dsR(K
∗

1,n) = 1 (dsR(K
∗

1,n) = 1)
for n ≥ 2, dsR(Pn) = 1 for an oriented path Pn, dsR(Cn) = 1 for an oriented
cycle Cn of odd length and dsR(Cn) = 2 for an oriented cycle Cn of even length.
In addition, if p ≥ 4 is an even integer, then dsR(K

∗

p,p) =
p
2 when p 6= 6. Since

γsR(K
∗

p,p) = 4 for p ≥ 3 (see [33]), the complete bipartite digraph K∗

p,p shows
for even p 6= 6 that Theorem 101 (i) is sharp. The next two results are also
consequences of Theorems 101 and 102.

Theorem 103 [3,34]. (i) If D is a digraph of order n, then γsR(D) + dsR(D) ≤
n + 1, with equality if and only if D = K∗

n (n 6= 3) or D consists of the disjoint

union of isolated vertices and oriented triangles.

(ii) If D is a digraph of order n ≥ 1 with δ−(D) ≥ 1, then γstR(D)+dstR(D) ≤
n+ 1. Moreover, if δ−(D) ≥ 5, then γstR(D) + dstR(D) ≤ n− 2 unless n = 6, in
which case γstR(D) + dstR(D) = n− 1.

Theorem 104 [3,34]. (i) If D is a digraph of order n, then dsR(D) + dsR(D) ≤
n+ 1. Furthermore, if dsR(D) + dsR(D) = n+ 1, then D is in-regular.

(ii) Let D be a digraph of order n such that δ−(D), δ−(D) ≥ 1. Then

dstR(D) + dstR(D) ≤ n − 1. Furthermore, if dstR(D) + dstR(D) = n − 1, then

D is in-regular.

Using Observation 74, Theorems 101, 102, 103 or 104, we obtain the next
known results (see Subsection 1.8).

Corollary 105 [34]. If G is a graph of order n, then dsR(G) · γsR(G) ≤ n,
dsR(G) ≤ δ(G) + 1, dsR(G) + γsR(G) ≤ n+ 1 and dsR(G) + dsR(G) ≤ n+ 1.

For some out-regular digraphs one can improve the upper bound given in
Theorem 102.

Theorem 106 [34]. Let D be an r-out-regular digraph of order n with r ≥ 1. If

n 6≡ 0 (mod (r + 1)), then dsR(D) ≤ r.

As an application of Theorem 106, we present the following supplement to
Theorem 104 for regular digraphs.

Theorem 107 [34]. Let D be a δ-regular digraph of order n. Then dsR(D) +
dsR(D) = n+ 1 if and only if D = K∗

n or D = K∗

n and n 6= 3.

For tournaments of odd order, the following improvement of Theorem 104
is valid.

Theorem 108 [3, 34]. If T is a tournament of odd order n ≥ 3, then dsR(T ) +
dsR(T ) ≤ n− 1 (dstR(T ) + dstR(T ) ≤ n− 3).
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2.6. Twin signed (total) Roman domatic number in digraphs

If D is a digraph, then let D− be the digraph obtained by reversing all arcs of
D. A signed (total) Roman dominating function f on a digraph D is defined by
Bodaghli, Sheikholeslami and Volkmann in [10] (Amjadi and Soroudi [6]) as a
twin signed Roman dominating function (TSRDF, TSTRDF) if it is also a signed
(total) Roman dominating function of D−1, i.e., f(N+[v]) ≥ 1 (f(N+(v)) ≥ 1)
for each v ∈ V (D) and every vertex u for which f(u) = −1 has an out-neighbor
w with f(w) = 2. The twin signed (total) Roman domination number γ∗sR(D)
(γ∗stR(D)) equals the minimum weight of a TSRDF (TSTRDF) on D, and a twin
signed total Roman dominating function of D with weight γ∗sR(D) (γ∗stR(D)) is
called a γ∗sR(D)-function (γ∗stR(D)-function). Since every TSRDF of D is an
SRDF on both D and D−1, and since the constant function 1 is a TSRDF of D,
we have max{γsR(D), γsR(D

−1)} ≤ γ∗sR(D) ≤ n. Likewise, for any digraph D
with min{δ−(D), δ+(D)} ≥ 1 we have max{γstR(D), γstR(D

−1)} ≤ γ∗stR(D) ≤ n.
A set {f1, f2, . . . , fd} of distinct twin signed total Roman dominating func-

tions on D with the property that
∑d

i=1 fi(v) ≤ 1 for each v ∈ V (D), is called
in [35] ([4]) a twin signed total Roman dominating family (of functions) onD. The
maximum number of functions in a twin signed total Roman dominating family
(TSRD (TSTRD) family) on D is the twin signed total Roman domatic number

of D, denoted by d∗sR(D) (d∗stR(D)). The twin signed total Roman domatic num-
ber is well-defined and d∗sR(D) ≥ 1 (d∗stR(D) ≥ 1) for all digraphs D, since the
set consisting of the TSRDF (TSTRDF) with constant value 1 forms a TSRD
(TSTRD) family on D. Since every TSRD (TSTRD) family of D is an SRD
(STRD) family on both D and D−1, we have d∗sR(D) ≤ min{dsR(D), dsR(D

−1)}
(d∗stR(D) ≤ min{dstR(D), dstR(D

−1)}). Combining this inequality with Theorem
102, we arrive at the following result.

Proposition 109 [6, 35]. (i) If D is a digraph, then d∗sR(D) ≤ min{δ−(D),
δ+(D)}+ 1.

(ii) If D is a digraph with min{δ−(D), δ+(D)} ≥ 1, then d∗stR(D) ≤
min{δ−(D), δ+(D)}.

We observed that d∗sR(D) ≤ dsR(D) and d∗stR(D) ≤ dstR(D). However,
Sheikholeslami and Volkmann [35] gave examples which show that the difference
dsR(D)− d∗sR(D) can be arbitrarily large. Modifying their example, Amjadi and
Soroudi showed that the difference dstR(D) − d∗stR(D) can be arbitrarily large.
Using Observation 74 and the fact that dsR(K3) = 1 and dsR(Kn) = n (n 6= 3)
(see Subsection 1.8), we deduce that d∗sR(K

∗

3 ) = 1 and d∗sR(K
∗

n) = n for n 6= 3.

Theorem 110 [6,35]. (i) If D is a digraph of order n, then γ∗sR(D) ·d∗sR(D) ≤ n.
Moreover, if γ∗sR(D) · d∗sR(D) = n, then for each TSRD family {f1, f2, . . . , fd} on

D with d = d∗sR(D), each function fi is a γ∗sR(D)-function and
∑d

i=1 fi(v) = 1
for all v ∈ V (D).
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(ii) If D is a digraph of order n, then γ∗stR(D) · d∗stR(D) ≤ n. Moreover, if

γ∗stR(D) · d∗stR(D) = n, then for each TSTRD family {f1, f2, . . . , fd} on D with

d = d∗stR(D), each function fi is a γ∗stR(D)-function and
∑d

i=1 fi(v) = 1 for each

v ∈ V (D).

The complete digraph K∗

n with n ≥ 4 and the complete bipartite digraph
K∗

p,p with p ≥ 4 even and p 6= 6 satisfy equality in Theorem 110(i). If Cn is an
oriented cycle, then γ∗sR(Cn) = n/2 when n is even and γ∗sR(Cn) = (n+3)/2 when
n is odd (see [10]). Using this, Proposition 109 and Theorem 110(i), it was shown
in [35] that d∗sR(Cn) = 2 when is even and d∗sR(Cn) = 1 when is odd. Thus the
oriented cycle Cn is another example which fulfill Theorem 110(i) with equality
when n is even. As further applications of Proposition 109 and Theorem 110,
we obtain a sharp bound on the sum γ∗sR(D) + d∗sR(D) and a Nordhaus-Gaddum
type inequality.

Theorem 111 [6,35]. (i) If D is a digraph of order n, then γ∗sR(D) + d∗sR(D) ≤
n+1, with equality if and only if D = K∗

n (n 6= 3) or γ∗sR(D) = n and d∗sR(D) = 1.

(ii) If D is a digraph of order n with min{δ−(D), δ+(D)} ≥ 1, then γ∗stR(D)+
d∗stR(D) ≤ n+ 1.

If H is the disjoint union of oriented triangles, then we see that γ∗sR(H) =
n(H) and d∗sR(H) = 1. Thus γ∗sR(D) = n(D) and d∗sR(D) = 1 is possible in
Theorem 111(i).

Theorem 112 [6, 35]. (i) For every digraph D of order n, we have d∗sR(D) +
d∗sR(D) ≤ n+ 1, with equality if and only if D = K∗

n or D = K∗

n and (n 6= 3).

(ii) Let D be a digraph of order n such that min{δ(D), δ(D)} ≥ 1. Then

d∗stR(D) + d∗stR(D) ≤ n− 1. Furthermore, if d∗stR(D) + d∗stR(D) = n− 1, then D
is in-regular.

2.7. Signed Roman k-domatic number in digraphs

If k ≥ 1 is an integer, then the signed Roman k-dominating function (SRkDF)
on a digraph D is defined in [42] as a function f : V (D) −→ {−1, 1, 2, } such
that

∑

x∈N−[v] f(x) ≥ k for each v ∈ V (D), and such that every vertex u ∈ V (D)
with f(u) = −1 has an in-neighbor w for which f(w) = 2. The signed Roman

k-domination number γksR(D) equals the minimum weight of an SRkDF on D,
and a signed Roman k-dominating function of D with weight γksR(D) is called a
γksR(D)-function. If k = 1, then write γ1sR(D) = γsR(D), as in Subsection 2.5.

A set {f1, f2, . . . , fd} of distinct signed Roman k-dominating functions on D
with the property that

∑d
i=1 fi(v) ≤ k for each v ∈ V (D), is called in [43] a

signed Roman k-dominating family (of functions) on D. The maximum number
of functions in a signed Roman k-dominating family (SRkD family) on D is the
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signed Roman k-domatic number of D, denoted by dksR(D). The special case
k = 1 was introduced and studied in Subsection 2.5.

The signed Roman k-domatic number exists when δ−(D) ≥ k
2 − 1. However,

for investigations of the signed Roman k-domatic number it is reasonable to claim
that δ−(D) ≥ k − 1. Thus we assume throughout this subsection that δ−(D) ≥
k − 1. The signed Roman k-domatic number is well-defined and dksR(D) ≥ 1
for all digraphs D, since the set consisting of the SRkDF with constant value
1 forms an SRkD family on D. Using Observation 74, Proposition 65 and the
corresponding results in Subsection 1.8, we obtain the signed Roman k-domatic
number of the complete digraph.

Corollary 113 [43]. If n ≥ k ≥ 1, then dksR(K
∗

n) = n unless k = 1 and n = 3 in

which case dsR(K
∗

3 ) = 1 and unless n = k = 2 in which case d2sR(K
∗

2 ) = 1.

The following extensions of Theorems 101 and 102 hold.

Theorem 114 [43]. If D is a digraph of order n, then γksR(D) · dksR(D) ≤ kn.
Moreover, if γksR(D) ·dksR(D) = kn, then for each SRkD family {f1, f2, . . . , fd} on

D with d = dksR(D), each function fi is a γksR(D)-function and
∑d

i=1 fi(v) = k
for all v ∈ V (D).

Theorem 115 [43]. For every digraph D, we have dksR(D) ≤ δ−(D) + 1. More-

over, if dksR(D) = δ−(D) + 1, then for each SRkD family {f1, f2, . . . , fd} on D

with d = dksR(D) and each vertex v of minimum in-degree,
∑d

x∈N−[v] fi(x) = k

for each function fi and
∑d

i=1 fi(x) = k for all x ∈ N−[v].

Different examples in [43] show that Theorems 114 and 115 are sharp. Using
Theorem 114, we obtain a sharp upper bound on the sum γksR(D) + dksR(D).

Theorem 116 [43]. If D is a digraph of order n, then γksR(D)+dksR(D) ≤ n+k.
If γksR(D) + dksR(D) = n+ k, then

(a) γksR(D) = k and dksR(D) = n (in this case D = K∗

n unless k = 1 and n = 3
or n = k = 2) or

(b) γksR(D) = n and dksR(D) = k (in this case D is the disjoint union of isolated

vertices and oriented triangles when k = 1, k 6= 2 and k − 1 ≤ δ−(D) ≤ k
when k ≥ 3).

For some out-regular digraphs one can improve the upper bound given in
Theorem 115.

Theorem 117 [43]. Let D be a δ-out-regular digraph of order n with δ ≥ k − 1
such that n = p(δ+1)+r with integers p ≥ 1 and 1 ≤ r ≤ δ and kr = t(δ+1)+s
with integers t ≥ 0 and 1 ≤ s ≤ δ. Then dksR(D) ≤ δ.
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A digraph without directed cycles of length 2 is called an oriented graph. As
an application of Theorems 115 and 117, we obtain the following corollaries.

Corollary 118 [43]. If D is an oriented graph of order n such that δ−(D),
δ−(D−1) ≥ k, then dksR(D) + dksR(D

−1) ≤ n.

Corollary 119 [43]. If T is a δ-regular tournament of order n such that δ−(T )
≥ k, then dksR(T ) + dksR(T

−1) ≤ n.

Theorem 115 easily leads to the following Nordhaus-Gaddum type inequality.

Theorem 120 [43]. If D is a digraph of order n such that δ−(D), δ−(D) ≥ k−1,
then dksR(D) + dksR(D) ≤ n+ 1. Furthermore, if dksR(D) + dksR(D) = n+ 1, then
D is in-regular.

Using Theorems 115 and 117, one can improve Theorem 120 for tournaments
of odd order.

Theorem 121 [43]. If T is a tournament of odd order n ≥ 3 such that δ−(T ),
δ−(T ) ≥ k, then dksR(T ) + dksR(T ) ≤ n− 1.

As a supplement to Theorem 107, we present the next result for k ≥ 2.

Theorem 122 [43]. Let k ≥ 2 be an integer, and let D be a δ-regular digraph

such that δ ≥ k− 1 and δ = δ−1(D) ≥ k− 1. Then there are only a finite number

of digraphs D such that dksR(D) + dksR(D) = n(D) + 1.

In connection with Theorem 122, we state the following conjecture.

Conjecture 123 [43]. Let k ≥ 2 be an integer. If D is a δ-regular digraph of

order n such that δ, δ ≥ k − 1, then dksR(D) + dksR(D) ≤ n.
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