DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

C. Caliskan

Cafer Caliskan

Antalya Bilim University, Department of Computer Engineering, 07190, Antalya, Turkey

email: cafer.caliskan@antalya.edu.tr

Š. Miklavič

Štefko Miklavič

University of Primorska

email: stefko.miklavic@upr.si

S. Özkan
P. Šparl

Primoz Šparl

University of Ljubljana, Faculty of Education, Kardeljeva ploscad 16, 1000 Ljubljana

email: primoz.sparl@pef.uni-lj.si

Title:

Efficient domination in Cayley graphs of generalized dihedral groups

PDF

Source:

Discussiones Mathematicae Graph Theory 42(3) (2022) 823-841

Received: 2019-09-27 , Revised: 2020-02-04 , Accepted: 2020-02-06 , Available online: 2020-03-02 , https://doi.org/10.7151/dmgt.2309

Abstract:

An independent subset $D$ of the vertex set $V$ of the graph $Γ$ is an efficient dominating set for $Γ$ if each vertex $v \in V \setminus D$ has precisely one neighbour in $D$. In this article, we classify the connected cubic Cayley graphs on generalized dihedral groups which admit an efficient dominating set.

Keywords:

efficient domination set, Cayley graph, generalized dihedral group

References:

  1. B. Alspach and M. Dean, Honeycomb toroidal graphs are Cayley graphs, Inform. Process. Lett. 109 (2009) 705–708.
    https://doi.org/10.1016/j.ipl.2009.03.009
  2. D.W. Bange, A.E. Barkauskas and P.J. Slater, Efficient dominating sets in graphs, in: Appl. Discrete Math., R.D. Ringeisen and F.S. Roberts (Ed(s)), (Philadelphia, SIAM 1988) 189–199.
  3. N. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B 15 (1973) 289–296.
    https://doi.org/10.1016/0095-8956(73)90042-7
  4. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I. The user language, J. Symbolic Comput. 24 (1997) 235–265.
    https://doi.org/10.1006/jsco.1996.0125
  5. A. Brandstädt, V. Giakoumakis and M. Milanič, Weighted efficient domination for some classes of $H$-free and of $(H_1, H_2)$-free graphs, Discrete Appl. Math. 250 (2018) 130–144.
    https://doi.org/10.1016/j.dam.2018.05.012
  6. C. Caliskan, Š. Miklavič and S. Özkan, Domination and efficient domination in cubic and quartic Cayley graphs on abelian groups, Discrete Appl. Math. 271 (2019) 15–24.
  7. H.-J. Cho and L.-Y. Hsu, Generalized honeycomb torus, Inform. Process. Lett. 86 (2003) 185–190.
    https://doi.org/10.1016/S0020-0190(02)00507-0
  8. I.J. Dejter and O. Serra, Efficient dominating sets in Cayley graphs, Discrete Appl. Math. 129 (2003) 319–328.
    https://doi.org/10.1016/S0166-218X(02)00573-5
  9. Y.-P. Deng, Efficient dominating sets in circulant graphs with domination number prime, Inform. Process. Lett. 114 (2014) 700–702.
    https://doi.org/10.1016/j.ipl.2014.06.008
  10. Y.-P. Deng, Y.-Q. Sun, Q. Liu and H.-C. Wang, Efficient dominating sets in circulant graphs, Discrete Math. 340 (2017) 1503–1507.
    https://doi.org/10.1016/j.disc.2017.02.014
  11. Q. Dong, X. Yang and J. Zhao, Embedding a fault-free Hamiltonian cycle in a class of faulty generalized honeycomb tori, Comput. Electr. Eng. 35 (2009) 942–950.
    https://doi.org/10.1016/j.compeleceng.2008.09.005
  12. Q. Dong, Q. Zhao and Y. An, The Hamiltonicity of generalized honeycomb torus networks, Inform. Process. Lett. 115 (2015) 104–111.
    https://doi.org/10.1016/j.ipl.2014.07.011
  13. R. Feng, H. Huang and S. Zhou, Perfect codes in circulant graphs, Discrete Math. 340 (2017) 1522–1527.
    https://doi.org/10.1016/j.disc.2017.02.007
  14. R. Frucht, A canonical representation of trivalent Hamiltonian graphs, J. Graph Theory 1 (1976) 45–60.
    https://doi.org/10.1002/jgt.3190010111
  15. J. Huang and J.-M. Xu, The bondage numbers and efficient dominations of vertex-transitive graphs, Discrete Math. 308 (2008) 571–582.
    https://doi.org/10.1016/j.disc.2007.03.027
  16. S. Klavžar, I. Peterin and I.G. Yero, Graphs that are simultaneously efficient open domination and efficient closed domination graphs, Discrete Appl. Math. 217 (2017) 613–621.
    https://doi.org/10.1016/j.dam.2016.09.027
  17. M. Knor and P. Potočnik, Efficient domination in cubic vertex-transitive graphs, European J. Combin. 33 (2012) 1755–1764.
    https://doi.org/10.1016/j.ejc.2012.04.007
  18. K.R. Kumar and G. MacGillivray, Efficient domination in circulant graphs, Discrete Math. 313 (2013) 767–771.
    https://doi.org/10.1016/j.disc.2012.12.003
  19. J. Lee, Independent perfect domination sets in Cayley graphs, J. Graph Theory 37 (2001) 213–219.
    https://doi.org/10.1002/jgt.1016
  20. G.M. Megson, X. Liu and X. Yang, Fault-tolerant ring embedding in a honeycomb torus with node failures, Parallel Process. Lett. 9 (1999) 551–561.
    https://doi.org/10.1142/S0129626499000517
  21. N. Obradović, J. Peters and G. Ružić, Efficient domination in circulant graphs with two chord lengths, Inform. Process. Lett. 102 (2007) 253–258.
    https://doi.org/10.1016/j.ipl.2007.02.004
  22. B. Parhami and D.-M. Kwai, A unified formulation of honeycomb and diamond networks, IEEE Trans. Parallel Distrib. Sys. 12 (2001) 74–80.
    https://doi.org/10.1109/71.899940
  23. P. Potočnik, P. Spiga and G. Verret, Cubic vertex-transitive graphs on up to $1280$ vertices, J. Symbolic Comput. 50 (2013) 465–477.
    https://doi.org/10.1016/j.jsc.2012.09.002
  24. T. Tamizh Chelvam and S. Mutharasu, Subgroups as efficient dominating sets in Cayley graphs, Discrete Appl. Math. 161 (2013) 1187–1190.
    https://doi.org/10.1016/j.dam.2012.09.005
  25. X. Yang, D.J. Evans, H.J. Lai and G.M. Megson, Generalized honeycomb torus is Hamiltonian, Inform. Process. Lett. 92 (2004) 31–37.
    https://doi.org/10.1016/j.ipl.2004.05.017
  26. S. Zhou, Total perfect codes in Cayley graphs, Des. Codes Cryptogr. 81 (2016) 489–504.
    https://doi.org/10.1007/s10623-015-0169-0

Close