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Abstract
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1. Introduction

In 1973 Biggs [3] initiated the study of perfect codes and in particular perfect
1-codes in graphs which are nowadays more commonly referred to as efficient
dominating sets (see Section 2 for the definition). Even though he was mainly
interested in the existence of perfect codes in distance-transitive graphs, numerous
papers investigating the existence of efficient dominating sets in graphs in general
have been published since, especially in the last two decades (see for instance
[5, 16] and the references therein).

Since the general problem of determining whether a graph has an efficient
dominating set is an NP-complete problem (see [2]), researchers have focused on
various restricted classes of graphs. Among them vertex-transitive graphs have
received a considerable amount of attention (see for instance [6, 8–10, 13, 15, 17–
19,21,24,26]). One might think that the assumption on vertex-transitivity could
be strong enough to make the question of whether such graphs admit efficient
dominating sets much easier. However, no general result in this direction has
been obtained thus far which probably makes the problem, proposed in [17], of
characterizing the vertex-transitive graphs admitting an efficient dominating set
way too difficult to solve in general. In fact, even for the nicest possible situation
in which the graph in question admits a regular action of a cyclic group (such
graphs are called circulants) only a few partial results have been obtained thus
far (see [6, 9, 10, 13, 18, 21]). To better understand the situation, it is reasonable
to study particular classes of vertex-transitive graphs.

One possible direction to take is of course to restrict the valence of the graphs
in question. This approach was taken in [17] where the authors focused on the
cubic vertex-transitive graphs. Nevertheless, even with this strong restriction
they were only able to characterize vertex-transitive graphs of order a power of
2 admitting an efficient dominating set. Another possibility is to consider only
the Cayley graphs (see Section 2 for the definition) which are the most natural
vertex-transitive graphs. But as mentioned, even for the Cayley graphs of cyclic
groups, only a handful of partial results have been obtained. It thus makes sense
to combine the two restrictions and focus on Cayley graphs of small valence.
In [6] the cubic and quartic Cayley graphs of abelian groups admitting efficient
dominating sets have been classified. One of the most natural next families of
groups to consider are the generalized dihedral groups (see Section 2 for a defi-
nition). That this class of (cubic) Cayley graphs is indeed worth investigating is
indicated by the number of such graphs among all (small) cubic vertex-transitive
graphs. In the following table we list the number of all connected cubic vertex-
transitive graphs of order n (#VT) for each 4 ≤ n ≤ 160 divisible by 4 (so as to be
potential candidates for graphs admitting an efficient dominating set) and state
how many of them are Cayley graphs (#Cay) and how many of these are Cayley
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graphs of a generalized dihedral group (#GD). These numbers were obtained by
using the computer software Magma [4] and the census of all connected cubic
vertex-transitive graphs, constructed in 2013 by Potočnik, Spiga and Verret [23].

n 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80

#VT 1 2 4 4 7 11 6 10 12 12 7 32 10 16 38 26 12 37 11 33
#Cay 1 2 4 4 5 11 5 10 12 10 7 32 9 13 30 26 11 36 11 29
#GD 1 2 3 4 4 7 5 8 8 9 7 14 8 12 14 14 10 19 11 19

n 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160

#VT 30 17 13 90 25 22 42 38 18 105 17 83 35 28 35 124 22 27 46 104
#Cay 27 16 13 90 23 20 41 35 17 100 17 82 35 26 34 123 21 26 45 94
#GD 18 16 13 27 17 19 22 24 16 33 17 26 26 23 26 39 20 26 30 37

There is another reason why the investigation of cubic Cayley graphs of
generalized dihedral groups is of interest. As was proved in [1] it turns out that
this class of graphs contains all so-called honeycomb toroidal graphs (see Section 2
for the definition) which turn out to be useful in the theory of interconnection
networks (see [1, 7, 11,12,20,22,25] and the references therein).

The main result of this paper is a complete classification of connected cubic
Cayley graphs of generalized dihedral groups admitting an efficient dominating
set. It turns out that some of these graphs are also Cayley graphs of abelian
groups, and so the results of [6] can be applied. The remaining cubic Cay-
ley graphs of generalized dihedral groups are the above mentioned honeycomb
toroidal graphs, which are considered in Section 5.

2. Preliminaries

Throughout the paper all graphs are assumed to be simple, finite and connected,
unless otherwise specified.

Let φΓ be a graph with vertex set V . For a vertex v ∈ V we let N(v) denote
the neighborhood of v in φΓ which consists of all the vertices at distance 1 from
v. Similarly, N [v] = N(v) ∪ {v} denotes the closed neighborhood of v in φΓ. A
subset D ⊂ V is an efficient dominating set for φΓ if the sets N [v], where v ∈ D,
partition the vertex-set V . In other words, D is an efficient dominating set for
φΓ if for each vertex v of φΓ it holds that either v ∈ D and v is not adjacent to
any vertex of D, or v is not in D but is adjacent to precisely one vertex of D.
Following [5] we abbreviate “efficient dominating set” to e.d.s. throughout the
paper.

Observe that a necessary (but not sufficient) condition for a k-regular graph
of order n to admit an e.d.s. is that k + 1 divides n. Therefore, a cubic graph
can only admit an e.d.s. if its order is divisible by 4, which explains why we have
restricted to orders divisible by 4 in the table from the previous section.
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Let G be a group and S ⊂ G an inverse closed subset not containing the
identity of G. Then the Cayley graph Cay(G;S) of G with respect to S is the
graph with vertex set G in which each g ∈ G is adjacent to all vertices of the
form gs, where s ∈ S. In this paper we will mainly be concerned with Cayley
graphs of the class of groups we now define.

A group G is a generalized dihedral group if it has an index 2 abelian subgroup
A and an involution t ∈ G \ A such that tat = a−1 holds for all a ∈ A. In other
words, G is the semidirect productAo〈t〉, whereA is abelian and t is an involution
inverting each a ∈ A by conjugation. Observe that the only abelian generalized
dihedral groups are the elementary abelian 2-groups.

We now introduce a particular family of cubic graphs that will play one of
the central roles in this paper. The graphs in question are known in the literature
under various different names such as brick products, generalized honeycomb tori
and honeycomb toroidal graphs (see for instance [1, 7, 11, 12, 20, 22, 25]). In this
paper we stick to the name honeycomb toroidal graphs.

Following [1] we first define the honeycomb toroidal graphs as follows. For
each m ≥ 1, n ≥ 2 and 1 ≤ s ≤ 2n−1, where m+s is even, let HTG(m, 2n, s) be
the graph of order 2mn with vertex set V = {(i, j) : 0 ≤ i ≤ m−1, 0 ≤ j ≤ 2n−1}
in which each vertex (i, j) is adjacent to (i, j + 1) and in addition each vertex
(i, j), where i 6= m− 1 and i and j are of different parity, is adjacent to (i+ 1, j),
while the vertices (m − 1, j) for j of different parity than m − 1 are adjacent to
(0, j+s). In all of the above computations, operations on the first coordinate are
carried out modulo m while on the second modulo 2n.

For our purposes it will be more convenient to describe the adjacencies in the
HTG graphs in a slightly different way. To distinguish between the two equivalent
definitions we slightly change the notation of these graphs. For each m ≥ 1, n ≥ 2
and 1 ≤ k ≤ 2n− 1, where k is odd, let Htg(m, 2n, k) be the graph of order 2mn
with vertex set V = {(i, j) : 0 ≤ i ≤ m − 1, 0 ≤ j ≤ 2n − 1} and the following
adjacencies:

(i, j) ∼ (i, j + 1); 0 ≤ i ≤ m− 1, 0 ≤ j ≤ 2n− 1

and

(i, j) ∼

{
(i+ 1, j + 1); 0 ≤ i < m− 1, 0 ≤ j ≤ 2n− 1, j even,

(0, j + k); i = m− 1, 0 ≤ j ≤ 2n− 1, j even.

Again, the computations on the first coordinate are performed modulo m and
on the second modulo 2n. It is straightforward to check that the map ψ from
HTG(m, 2n, s) to Htg(m, 2n, s+1−m) mapping each vertex (i, j) to (i, i+ j+1)
is an isomorphism of graphs, which shows that HTG(m, 2n, s) is isomorphic to
Htg(m, 2n, s + 1 − m) (where s + 1 − m is computed modulo 2n). The two
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different presentations of the graph HTG(5, 6, 1) ∼= Htg(5, 6, 3) are given in Figure
1. Note that k being odd implies that Htg(m, 2n, k) is a cubic graph. For each
0 ≤ i ≤ m− 1 we let Li = {(i, j) : 0 ≤ j ≤ 2n− 1} ⊆ V (Htg(m, 2n, k)) and call it
the i-th layer of Htg(m, 2n, k). The following result, which is just a restatement
of [1, Thorem 3.4] using the graphs Htg instead of HTG, will be important in
Section 5.

Figure 1. The graph HTG(5, 6, 1) ∼= Htg(5, 6, 3) in its two presentations.

Proposition 1 [1]. Let m ≥ 1, n ≥ 2 and 1 ≤ k ≤ 2n − 1, where k is odd,
and let G =

〈
t, x, y | t2, xn, ym = xm+(k−1)/2, xy = yx, txt = x−1, tyt = y−1

〉
be

the corresponding generalized dihedral group of order 2mn. Then the honeycomb
toroidal graph Htg(m, 2n, k) is isomorphic to the Cayley graph Cay(G;S) of the
generalized dihedral group G with respect to S = {t, tx, ty}.

It is not difficult to verify that one of the possible isomorphisms ϕ from
Htg(m, 2n, k) to Cay(G;S) from the above proposition is the one where for each
0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1 we set

(1) ϕ((i, 2j)) = txi−jy−i and ϕ((i, 2j + 1)) = xj−i+1yi.

We end this section by recalling the notion of an LCF notation of a cubic
graph possessing a Hamilton cycle (a cycle passing through all vertices of the
graph) which is due to Lederberg, Coxeter and Frucht (see [14] for details). Let
φΓ be a cubic graph of order 2` and suppose (v0, v1, . . . , v2`−1) is a Hamilton
cycle of φΓ. Then each vertex vi has exactly one additional neighbor vf(i) other
than vi−1 and vi+1 in φΓ (where the indices are computed modulo 2`). The
LCF notation of the graph φΓ (with respect to this Hamilton cycle) is then the
sequence [d0, d1, . . . , d2`−1], where di is the unique integer from −` < di ≤ `
such that f(i) − i ≡ di (mod 2`). In the case that the sequence is periodic,
say for some divisor `′ of ` with ` = q`′ we have di = di+`′ for all i, then this
sequence is shortened to the exponential notation [d0, d1, . . . , d`′−1]

q. Since an
LCF notation, say [d0, d1, . . . , d2`−1], of a cubic graph possessing a Hamilon cycle
uniquely determines the graph in question we denote the corresponding graph
having vertex-set Z2` by LCF([d0, d1, . . . , d2`−1]).
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3. Cubic Cayley Graphs of Generalized Dihedral Groups

Throughout this section let G = A o 〈t〉 be a generalized dihedral group where
A is abelian and t ∈ G \ A is an involution such that tat = a−1 holds for all
a ∈ A. Observe that each element of the coset tA = At is an involution. We
now investigate the possible connected cubic Cayley graphs of G. For the rest of
this section we thus make the assumption that φΓ = Cay(G;S) for some inverse
closed subset S ⊂ G with |S| = 3 and 〈S〉 = G. The trivial case where A = Z2

results in the complete graph K4 which clearly admits an e.d.s. For the rest of
this section we thus assume that |A| > 2. Since φΓ is connected, S contains at
least one element from tA, and so there are exactly three essentially different
possibilities for S depending on the size of the intersection |S ∩ tA|. We analyze
each of them separately.

Case 1. |S ∩ tA| = 1. In this case S consists of two elements from A and one
from tA. Then either A = 〈a〉 is cyclic (in which case G is the dihedral group of
order 2|A|) and with no loss of generality S = {a, a−1, t} or A ∼= Z2×Z2 = 〈a, b〉
(in which case G is the elementary abelian 2-group of order 8) and with no loss
of generality S = {a, b, t}. In both possibilities φΓ is isomorphic to a prism, and
so is a Cayley graph of an abelian group. By [6, Proposition 3.2], φΓ admits an
e.d.s. if and only if |A| is divisible by 4.

Case 2. |S ∩ tA| = 2. In this case S ∩A consists of a single involution, say a,
implying that A is of even order, say 2n, and that, with no loss of generality, we
can assume S = {a, t, tb} for some b ∈ A. Of course, connectedness of φΓ implies
A = 〈a, b〉. Now, if 〈b〉 = A then a = bn, and so φΓ ∼= Cay(Z4n; {±1, 2n}) is a
Möbius ladder. By [6, Proposition 3.2], φΓ admits an e.d.s. if and only if n is
odd, that is, if |A| ≡ 2 (mod 4). If however 〈b〉 is an index 2 subgroup of A (so
that A ∼= Zn×Z2) then φΓ is again isomorphic to a prism, and so [6, Proposition
3.2] implies that φΓ admits an e.d.s. if and only if n is even, that is if |A| is
divisible by 4.

Case 3. S ⊂ tA. Without loss of generality we can assume that S = {t, ta, tb}
for some a, b ∈ A. Observe that in this case φΓ is a bipartite graph. As mentioned
in Section 2, φΓ can only admit an e.d.s. if its order is a multiple of 4. However,
since each vertex from A dominates three vertices from the coset tA and only
one from A while each vertex from tA dominates three vertices from the coset
A and only one from tA, it is clear that for each e.d.s. D of φΓ we must have
|D∩A| = |D∩tA|. Since |D| = |G|/4 = |A|/2 it thus follows that |D∩A| = |A|/4,
implying that the order of A must be divisible by 4.

In the rest of the paper we thoroughly investigate the graphs arising from the
above Case 3 with |A| divisible by 4. Note that we have two essentially different
possibilities depending on whether at least one of a, b and ba−1 generates A (in
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which case G is a dihedral group) or not. We deal with each of the two possibilities
in separate sections.

4. The Case 〈a〉 = A

In this section we investigate the existence of an e.d.s. in a Cayley graph φΓ =
Cay(G; {t, ta, tb}), where G = 〈t, a, b〉 is a (generalized) dihedral group with
A = 〈a, b〉 an abelian group of order divisible by 4 such that a 6= b, tat = a−1,
tbt = b−1 and that one of a, b and ba−1 generates A. Observe that the latter
assumption implies that G is in fact a dihedral group and that one of the sub-
graphs Cay(G; {t, ta}),Cay(G; {t, tb}) and Cay(G; {ta, tb}) of φΓ corresponds to
a Hamilton cycle of φΓ. With no loss of generality we assume that A = 〈a〉, so
that the edges corresponding to t and ta give rise to a Hamilton cycle of φΓ.

Denote the order of A (and thus of a) by n and let 1 < k ≤ n − 1 be such
that b = ak. Then tb = tak = (tat)k−1ta. Thus, if 2k − 1 < n it is not difficult
to see that φΓ ∼= LCF([2k − 1,−(2k − 1)]n). Similarly, if n < 2k − 1 < 2n − 1
then φΓ ∼= LCF([2k′ − 1,−(2k′ − 1)]n) where k′ = n − k + 1 (an example with
n = 8 and k = 6 is shown in Figure 2). It thus suffices to determine which of the
graphs LCF([2k − 1,−(2k − 1)]n), where n is divisible by 4 and 1 < 2k − 1 < n,
admit an e.d.s.

1

a

t

a2
ta -1

ta-2

1

a

a2

t

ta -1

ta-2

a -1 ta

ta

a-1

Figure 2. The graph Cay(〈t, a | a8, t2, tat = a−1〉; {t, ta, ta6}) ∼= LCF([5,−5]8).

Proposition 2. Let n be any positive integer divisible by 4 and let k be an integer
such that 1 < k ≤ n/2. Write n = 2r`, where r ≥ 2 and ` is an odd integer.
Then the graph φΓ = LCF([2k − 1,−(2k − 1)]n) does not admit an e.d.s. if and
only if 2k − 1 ≡ ±1 (mod 2r+1).

Proof. Observe first that the order of φΓ is 2n = 2r+1` and recall that we assume
the vertex-set of φΓ is Z2n. We first show that in the case when 2k − 1 ≡ ±1
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(mod 2r+1) the graph φΓ does not admit an e.d.s. We first deal with the case
2k − 1 ≡ 1 (mod 2r+1) and leave the analogous case of 2k − 1 ≡ −1 (mod 2r+1)
to the reader.

By way of contradiction suppose that 2k − 1 ≡ 1 (mod 2r+1) and that D is
an e.d.s. of φΓ. For each 0 ≤ i < 2r+1 let Vi =

{
j ∈ Z2n : j ≡ i (mod 2r+1)

}
and set Di = D ∩ Vi and di = |Di|. To simplify the notation we write D−i and
d−i instead of D2r+1−i and d2r+1−i, respectively. Recall that each vertex j of φΓ
is adjacent to j − 1, j + 1 and to j + 2k − 1 in the case that j is even, and is
adjacent to j − 1, j + 1 and to j − 2k + 1 in the case that j is odd. Since D is
an e.d.s., the ` vertices of V0 are thus dominated in such a way that d0 of them
are themselves in D0, while 2d1 of them are dominated by vertices from D1 and
d−1 by vertices from D−1. Similarly the ` vertices of V1 are dominated in such
a way that d1 of them are themselves in D1, while d2 of them are dominated by
vertices of D2 and 2d0 by vertcies of D0. We therefore find that

` = d−1 + d0 + 2d1 = 2d0 + d1 + d2.

Continuing this way we get the following system of 2r+1 equations:

(2)

` = d−1 + d0 + 2d1
` = 2d0 + d1 + d2
` = d1 + d2 + 2d3
` = 2d2 + d3 + d4

...
` = d−5 + d−4 + 2d−3
` = 2d−4 + d−3 + d−2
` = d−3 + d−2 + 2d−1
` = 2d−2 + d−1 + d0.

From 2d0+d1+d2 = ` = d1+d2+2d3 we get 2d0 = 2d3 and consequently d0 = d3.
Combining every other pair of the above system of equations, we thus find that
for each even i, 0 ≤ i ≤ 2r+1−4, we can replace the equation ` = 2di+di+1+di+2

by 0 = di − di+3 in (2) to obtain the following system of 2r+1 equations:

(3)

` = d−1 + d0 + 2d1
0 = d0 − d3
` = d1 + d2 + 2d3
0 = d2 − d5

...
` = d−5 + d−4 + 2d−3
0 = d−4 − d−1
` = d−3 + d−2 + 2d−1
` = 2d−2 + d−1 + d0.
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Let us denote the right-hand sides of these 2r+1 equations by c0, c1, . . . , c2r+1−1 in
this order. We now evaluate the expression (recall that r ≥ 2, and so 2r+1−2 ≡ 2
(mod 4))

(4)
c0 − c1 − 2c2 + 2c3 + 3c4 − 3c5 − 4c6 + 4c7

± · · ·+ (2r − 1)c2r+1−4 − (2r − 1)c2r+1−3 − 2rc2r+1−2.

On one hand, (3) implies that (4) evaluates to

`(1− 2 + 3− 4 + 5± · · ·+ 2r − 1− 2r) = −`2r−1.

To evaluate (4) in a different way observe first that d0 only appears in c0 and
c1, and d1 only in c0 and c2. Thus, d0 and d1 both have coefficient 0 in the
evaluations of (4). Next, observe that for an even i with 2 ≤ i ≤ 2r+1 − 4, the
term di appears only in ci and ci+1, and so the coefficient of di in the evaluation
of (4) is ±((i+ 2)/2− (i+ 2)/2) = 0. For odd i with 3 ≤ i ≤ 2r+1 − 3, the term
di appears in ci−2, ci−1 and ci+1, and so the coefficient of di in the evaluation of
(4) is

± (−(i− 1)/2 + 2(i+ 1)/2− (i+ 3)/2) = 0.

The coefficient of d−2 in the evaluation of (4) is clearly −2r while the coefficient
of d−1 is 1 + 2r − 1 − 2 · 2r = −2r. Therefore, (4) evaluates to −2rd−2 − 2rd−1,
and so

−`2r−1 = −2r(d−2 + d−1),

contradicting the fact that ` is odd. This finally proves that in the case when
2k + 1 ≡ 1 (mod 2r+1) the graph φΓ does not admit an e.d.s.

To complete the proof we now show that in all of the remaining cases we
can indeed find an e.d.s. for the graph φΓ. Suppose then that 2k − 1 6≡ ±1
(mod 2r+1). Since r ≥ 2 there thus exists the smallest integer r0 with 2 ≤ r0 ≤ r
such that 2k − 1 6≡ ±1 (mod 2r0+1). Note that the order of φΓ is a multiple
of 2r0+1. Now, if r0 = 2, then 2k − 1 ≡ ±3 (mod 8), and so we can assume
(otherwise take −2k+ 1 instead of 2k− 1) that 2k− 1 ≡ 3 (mod 8). In this case
simply take D = {8i : 0 ≤ i ≤ 2r−2 − 1} ∪ {5 + 8i : 0 ≤ i ≤ 2r−2 − 1}. It is easy
to verify that in this case D is an e.d.s. for φΓ.

We are thus left with the possibility r0 > 2. By assumption, 2k − 1 ≡ ±1
(mod 2r0). With no loss of generality assume 2k − 1 ≡ −1 (mod 2r0). Since
2k − 1 6≡ −1 (mod 2r0+1), it thus follows that 2k − 1 ≡ 2r0 − 1 (mod 2r0+1). In
this case let

D′ =
{

0, 4, 8, . . . , 2r0 − 4, 2r0 + 1, 2r0 + 5, 2r0 + 9, . . . , 2r0+1 − 3
}

and then set
D =

{
j + 2r0+1i : 0 ≤ i < 2r−r0`, j ∈ D′

}
.
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We now indicate how one can verify that D is an e.d.s. for φΓ. To this end take
any vertex of φΓ, say v′ = j′ + 2r0+1i′ where 0 ≤ j′ < 2r0+1 and 0 ≤ i′ < 2r−r0`.
We deal with the case that j′ ≡ 0 (mod 4) and leave the remaining three cases
to the reader. Observe first that if j′ < 2r0 then j′ ∈ D′, implying that v′ ∈ D.
On the other hand, if 2r0 ≤ j′ < 2r0+1 then j′ /∈ D′, and so v′ /∈ D, but in this
case v′ is dominated by v′ + 1 ∈ D. We now only need to show that v′ is not
dominated by some other vertex from D. Of course, since v′ is even, the only
other vertex of φΓ that could possibly dominate v′ is its neighbor v = v′+2k−1.
But as 2k − 1 ≡ 2r0 − 1 (mod 2r0+1) we see that v ≡ 2r0 + j′ − 1 (mod 2r0+1),
and so v /∈ D as 2r0 + j′ − 1 ≡ 3 (mod 4).

The above proposition provides the first part of the classification of cubic
Cayley graphs of generalized dihedral groups admitting an e.d.s.

Corollary 3. Let n ≥ 3 be an integer, let G =
〈
t, a | t2, an, tat = a−1

〉
be the

dihedral group of order 2n and let b = ak for some 1 < k ≤ n−1. Write n = 2r`,
where ` is odd. Then the Cayley graph Cay(G; {t, ta, tb}) admits an e.d.s. if and
only if r ≥ 2 and 2k − 1 6≡ ±1 (mod 2r+1).

Proof. Denote Cay(G; {t, ta, tb}) by φΓ. The necessity of r ≥ 2 was established
in Section 3. Now, if 2k−1 < n then φΓ ∼= LCF([2k−1,−(2k−1)]n), while in the
case that n < 2k−1 we have that φΓ ∼= LCF([2(n−k+1)−1,−(2(n−k+1)−1)]n.
However, as 2r+1 divides 2n, the condition 2k− 1 ≡ ±1 (mod 2r+1) is equivalent
to 2(n− k + 1)− 1 ≡ ±1 (mod 2r+1), and so Proposition 2 applies.

To illustrate the above result we consider all cubic Cayley graphs of the
dihedral group G =

〈
t, a | t2, a12, tat = a−1

〉
of order 24 with connection set

of the form S =
{
t, ta, tak

}
, where 2 ≤ k ≤ 6 (note that by the above re-

marks we only need to consider k up to 6 since S′ =
{
t, ta, tan−k+1

}
and S

gives rise to isomorphic graphs). It is not difficult to see (but one can also use
Magma [4]) that the five different possibilities for 2 ≤ k ≤ 6 give rise to pairwise
nonisomorphic graphs. By Corollary 3 the Cayley graphs Cay(G; {t, ta, ta2}),
Cay(G; {t, ta, ta3}) and Cay(G; {t, ta, ta6}) all admit an e.d.s., while none of the
Cayley graphs Cay(G; {t, ta, ta4}) and Cay(G; {t, ta, ta5}) admits an e.d.s. We
remark that the graph Cay(G; {t, ta, ta2}) is in fact isomorphic to the prism of
order 24.

5. The Honeycomb Toroidal Graphs

In view of the results from the previous section it remains to investigate the
existence of an e.d.s. in a Cayley graph φΓ = Cay(G; {t, ta, tb}), where G =
〈t, a, b〉 is a generalized dihedral group with A = 〈a, b〉 an abelian group of order
divisible by 4 such that a 6= b, tat = a−1, tbt = b−1 and none of a, b and ba−1
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generates A. By Proposition 1, the graph φΓ is isomorphic to a honeycomb
toroidal graph. In fact, if n is the order of a and m is the smallest nonnegative
integer such that bm ∈ 〈a〉, say bm = am+k′ for an appropriate 0 ≤ k′ ≤ n−1, then
φΓ ∼= Htg(m, 2n, 2k′+ 1). Observe that, since a does not generate A, m ≥ 2. We
thus only need to classify the honeycomb toroidal graphs Htg(m, 2n, k) admitting
an e.d.s., subject to the conditions that m ≥ 2 and mn is divisible by 4.

We first state two results giving isomorphisms between the Honeycomb toro-
idal graphs that will be important in the remainder of this section. The straight-
forward verification that the map given in the statement of the first of these is
indeed a graph isomorphism is left to the reader.

Lemma 4. Let m ≥ 2, n ≥ 2 and 1 ≤ k < 2n be integers with k odd. Let k′ be
the unique integer such that 1 ≤ k′ < 2n and k′ ≡ 2− k − 2m (mod 2n), and let
φΓ1 = Htg(m, 2n, k) and φΓ2 = Htg(m, 2n, k′). Then the mapping ϕ : V (φΓ1)→
V (φΓ2), defined by the rule ϕ((i, j)) = (i, 2i− j), 0 ≤ i < m, 0 ≤ j < 2n, where
2i− j is computed modulo 2n, is an isomorphism of graphs.

Lemma 5. Let m ≥ 2, n ≥ 2 and 1 ≤ k < 2n be integers with k odd. Set
m′ = gcd(n, (k− 1)/2) and m′′ = gcd(n,m+ (k− 1)/2) and then let n′ = mn/m′

and n′′ = mn/m′′. Then there exist odd integers k′ and k′′ with 1 ≤ k′ < 2n′ and
1 ≤ k′′ < 2n′′ such that Htg(m, 2n, k) ∼= Htg(m′, 2n′, k′) ∼= Htg(m′′, 2n′′, k′′).

Proof. By Proposition 1, the graph Htg(m, 2n, k) is isomorphic to the Cayley
graph φΓ = Cay(G; {t, ta, tb}) of the generalized dihedral group G = 〈t, a, b |
t2, an, bm = am+(k−1)/2, ab = ba, tat = a−1, tbt = b−1〉. In fact, the isomorphism
ϕ from (1) maps the layer L0 of Htg(m, 2n, k) to the set of all vertices from 〈t, a〉
of φΓ, showing that the parameter n from Htg(m, 2n, k) does indeed correspond
to the order of a. Exchanging the roles of a and b in the definition of G the
same reasoning (again using ϕ from (1)) shows that φΓ must also be isomorphic
to a honeycomb toroidal graph Htg(m̃, 2ñ, k̃) in which the layer L̃0 corresponds
to the set of vertices from 〈t, b〉 of φΓ. This implies that ñ coincides with the
order of b while (in order to get a graph of the same order) m̃ñ = mn must
hold. Since bm = am+(k−1)/2 while bi /∈ 〈a〉 for 1 ≤ i < m, it is thus clear that
ñ = mn/ gcd(n,m+ (k − 1)/2) = n′′ and consequently m̃ = m′′.

The second part of the proof is done analogously where this time we relabel
the elements of G such that t′ = ta and then a′ = a−1b and b′ = a−1 (so as
to get {t′, t′a′, t′b′} = {t, ta, tb}). Again using the corresponding isomorphism
ϕ from (1) we now see that φΓ ∼= Htg(m̃, 2ñ, k̃) for some odd integer k̃ with
1 ≤ k̃ < 2ñ, where ñ is the order of a′ = a−1b. It is easy to see that this order is
mn/ gcd(n, (k − 1)/2) = n′, and so the result follows.

We now investigate the structure of a possible e.d.s. of a honeycomb toroidal
graph Htg(m, 2n, k), where m ≥ 2. In some of the arguments we will be using
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the following terminology. Let D be a dominating set for a graph φΓ (that is,
every vertex of φΓ is either an element of D or is adjacent to at least one vertex
from D). In the case that a vertex v of φΓ is either an element of D but is also
adjacent to at least one (other) vertex from D, or v is adjacent to at least two
vertices from D, we say that v is doubly dominated (by D). Observe that if D is
an e.d.s. of φΓ then no vertex of φΓ is doubly dominated by D.

Lemma 6. Let m ≥ 2, n ≥ 3 and 1 ≤ k < 2n be integers with k odd such that
the graph φΓ = Htg(m, 2n, k) admits an e.d.s. D. Then the following hold.

(i) If (i, j) ∈ D for some 0 ≤ i < m and 0 ≤ j < 2n, then none of the vertices
(i, j + j′) where j′ ∈ {−2,−1, 1, 2} is in D.

(ii) For each 0 ≤ i < m and 0 ≤ j < 2n, there exists 0 ≤ j′ ≤ 4 such that
(i, j + j′) ∈ D.

(iii) If (i, j) ∈ D for some 0 ≤ i < m and 0 ≤ j < 2n, then for one of j′ ∈ {3, 4, 5}
the vertex (i, j + j′) is in D.

Proof. (i) Since for any such j′ the vertices (i, j) and (i, j′) are either adjacent
or have a common neighbor some vertex of φΓ would be doubly dominated if
(i, j) and (i, j′) were both in D.

(ii) We provide an argument for the case when 1 ≤ i ≤ m−2. The case when
i ∈ {0,m−1} can be done analogously. Suppose to the contrary that none of the
vertices (i, j + j′), 0 ≤ j′ ≤ 4 is in D. Since φΓ is cubic (i, j + 1) and (i, j + 3)
can only be dominated if either both (i− 1, j) and (i− 1, j + 2) (if j is even) or
both (i+ 1, j+ 2) and (i+ 1, j+ 4) (if j is odd) are in D. But this contradicts (i).

(iii) This follows immediately from (i) and (ii).

Corollary 7. Let m ≥ 2 and k ∈ {1, 3, 5}. Then the graph Htg(m, 6, k) does not
admit an e.d.s.

Proof. Let φΓ = Htg(m, 6, k). Suppose to the contrary that D ⊂ V (φΓ) is an
e.d.s. of φΓ. Since φΓ is cubic, |D| = |V |/4 = 3m/2. In particular, m has to be
even and there exists at least one layer Li such that |Li ∩D| ≤ 1. However, this
contradicts to the item (iii) of Lemma 6.

Lemma 8. Let m ≥ 2, n ≥ 2 and 1 ≤ k < 2n be integers with k odd such that
the graph Htg(m, 2n, k) admits an e.d.s. D. Then the following hold.

(i) If for some 0 ≤ i < m and 0 ≤ j < 2n with j even the vertices (i, j) and
(i, j + 3) are both in D, then (i + 1, j − 1), (i + 1, j + 4) ∈ D if i 6= m − 1,
and (0, j + k − 2), (0, j + k + 3) ∈ D if i = m− 1.

(ii) If for some 0 ≤ i < m and 0 ≤ j < 2n with j odd the vertices (i, j) and
(i, j + 5) are both in D, then (i + 1, j + 1), (i + 1, j + 4) ∈ D if i 6= m − 1,
and (0, j + k), (0, j + k + 3) ∈ D if i = m− 1.



Efficient Domination in Cayley Graphs of ... 835

Proof. We provide an argument for the case when i 6= m − 1 and leave the
analogous case of i = m− 1 to the reader. Suppose first that (i, j), (i, j + 3) ∈ D
for some even j (note that, by Lemma 6 and Corollary 7, this implies that n ≥ 4).
Consider the vertex (i+ 1, j + 3) and observe that it cannot be contained in D,
since otherwise (i, j+2) would be doubly dominated. Therefore, (i+1, j+3) must
be dominated by one of its neighbours. But if (i, j+2) (respectively, (i+1, j+2))
is in D, then (i, j + 3) (respectively, (i + 1, j + 1)) is doubly dominated, and so
(i + 1, j + 4) ∈ D (see Figure 3). Since (i + 1, j + 1) is already dominated by
(i, j), none of (i + 1, j + 1) and (i + 1, j) is in D, and so Lemma 6 implies that
(i+ 1, j − 1) ∈ D.

?

i,j( ) i,j+3)(

Figure 3. The situation from the proof of Lemma 8.

Suppose now that (i, j), (i, j + 5) ∈ D for some odd j. Similarly as above
observe first that in order to dominate the vertex (i, j + 3) and avoid double
domination we must have that (i+ 1, j+ 4) ∈ D. But then (i+ 1, j+ 2) can only
be dominated by (i+1, j+1) ∈ D (otherwise we again get double domination).

We now show that if m and n are both even, one can always find an e.d.s. of
Htg(m, 2n, k).

Lemma 9. Let m ≥ 2, n ≥ 2 and 1 ≤ k < 2n be integers with k odd. If m and
n are both even, then the graph Htg(m, 2n, k) admits an e.d.s.

Proof. Observe that, since n is even, the number of vertices in each layer Li of
φΓ = Htg(m, 2n, k) is a multiple of 4. Since there is an even number of layers, it
is easy to explicitly construct an e.d.s. For each even i, 0 ≤ i < m, set

Di = {(i, 4j) : 0 ≤ j < n/2)},

and, for each odd i, set

Di = {(i, 4j + 3): 0 ≤ j < n/2)}.

It is straightforward to check that the union of all Di, where 0 ≤ i ≤ m − 1, is
an e.d.s. for Htg(m, 2n, k).
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We now show that a partial converse of Lemma 9 holds. In particular, for an
e.d.s. to exist n has to be even.

Lemma 10. Let m ≥ 2, n ≥ 2 and 1 ≤ k < 2n be integers with k odd. If n is
odd, then the graph Htg(m, 2n, k) does not admit an e.d.s.

Proof. Suppose to the contrary that the statement of the lemma does not hold
and let n ≥ 3 be the smallest odd integer such that for somem ≥ 2 and 1 ≤ k < 2n
with k odd the graph φΓ = Htg(m, 2n, k) admits an e.d.s. D. By Corollary 7, it
follows that n ≥ 5. Now, let H = 〈k − 1〉 denote the subgroup of Z2n generated
by k − 1. Throughout this proof we regard the elements of H as integers from
{0, 1, . . . , 2n− 1} but make all computations with them modulo 2n. This should
cause no confusion.

Since |D| = mn/2 and n is odd, the number m of layers of φΓ is even.
Moreover, since 2n is not divisible by 4, Lemma 6 implies that there exists a
vertex (i, j) of φΓ such that (i, j), (i, j + 3) ∈ D. By Lemma 4, we can assume
that j is even (if j is odd then the images ϕ((i, j + 3)) = (i, 2i − j − 3) and
ϕ((i, j)) = (i, 2i− j) are of the desired form as then 2i− j − 3 is even). Without
loss of generality we can also assume that i = 0 and j = 2 (otherwise relabel the
vertices of φΓ accordingly). Lemma 8 then implies that (1, 1), (1, 6) ∈ D. Since
the second coordinate in (1, 1) is odd we can again use Lemma 8 to find that also
(2, 2), (2, 5) ∈ D. We can now continue in this way to establish that for each even
i, 0 ≤ i < m, we have (i, 2), (i, 5) ∈ D, while for each odd i, 0 ≤ i < m, we have
(i, 1), (i, 6) ∈ D (see Figure 4).

Figure 4. The situation from the proof of Lemma 10.

In particular, (m−1, 1), (m−1, 6) ∈ D (recall that m is even). Again applying
Lemma 8 we have that (0, k + 1), (0, k + 4) ∈ D. We can now repeat the whole
argument with (0, k + 1) and (0, k + 4) as the starting pair of vertices. In this
way we get that for each even i we have

(5) D′i = {(i, j) : j ∈ (2 +H) ∪ (5 +H)} ⊆ D,
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while for each odd i we have

(6) D′i = {(i, j) : j ∈ (1 +H) ∪ (6 +H)} ⊆ D.

Observe that the vertices from D′ =
⋃m−1

i=1 D′i dominate precisely all of the ver-
tices (i, j), where 0 ≤ i < m and j ∈ j′ +H for some 0 ≤ j′ ≤ 7. Denote this set
of vertices by V ′.

Let us now determine the possible values for d = gcd(k − 1, 2n). Since n
and k are both odd, it follows that d ≡ 2 (mod 4). Moreover, H = 〈d〉 =
{dj : 0 ≤ j ≤ 2n/d}. If d = 2, then (5) implies that (0, 4) ∈ D which contradicts
Lemma 6 as we already have (0, 2) ∈ D. Similarly, if d = 6, then (6) implies
that (1, 7) ∈ D, which again contradicts Lemma 6 as we already have (1, 6) ∈ D.
Suppose now that d = 10 and consider the vertex (0, 8). By (6) we have that
(1, 11), (m−1, 7−k) ∈ D (since 6−(k−1) = 7−k). These two vertices dominate
(0, 10) and (0, 7), respectively, and so it follows that none of (0, 7), (0, 8), (0, 9)
is in D. The only way to dominate (0, 8) is thus to insist that (1, 9) ∈ D. But
then (1, 10) is doubly dominated, a contradiction. This shows that in fact d ≥ 14
holds.

Let φΓ′ denote the subgraph of φΓ induced on the set V (φΓ)\V ′ and note that
D′′ = D\D′ is an e.d.s. of φΓ′. Moreover, none of the vertices of φΓ′ of valency 2
(that is, vertices of the form (i, j), where 0 ≤ i < m and j ∈ (−1 +H)∪ (8 +H))
is contained in D′′, as otherwise either (i, j + 1) or (i, j − 1) would be doubly
dominated. This shows that D′′ is also an e.d.s. of the graph φΓ′′, obtained from
φΓ′ by adding all of the edges (i, j)(i, j+ 9) where 0 ≤ i < m and j ∈ −1 +H. It
is not difficult to see that the graph φΓ′′ is isomorphic to Htg(m,n′′, k′′), where
n′′ = 2n − 8(2n/d), and k′′ is some odd integer with 1 ≤ k′′ < 2n′′ (in fact, one
can verify that k′′ = (d− 8)(k− 1)/d+ 1). But since 2n ≡ 2 (mod 4) also n′′ ≡ 2
(mod 4), and so by minimality of n the graph φΓ′′ does not admit an e.d.s., a
contradiction.

We are now ready to classify the honeycomb toroidal graphs admitting an
e.d.s.

Theorem 11. Let m ≥ 2, n ≥ 2 and 1 ≤ k < 2n be integers with k odd and let
φΓ = Htg(m, 2n, k). Let m′ = gcd(n, (k − 1)/2) and m′′ = gcd(n,m+ (k − 1)/2)
and then write n = 2r`, m′ = 2r

′
`′ and m′′ = 2r

′′
`′′, where `, `′ and `′′ are all odd.

Then the graph φΓ admits an e.d.s. if and only if one of the following holds.

(i) m and n are both even,

(ii) m is odd and n is even and either

• 1 ≤ r′ < r, or

• r′ = 0 and r′′ < r.
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Proof. Recall that, by Lemma 5, φΓ ∼= Htg(m′, 2n′, k′) ∼= Htg(m′′, 2n′′, k′′) for
some odd 1 ≤ k′ < 2n′ and 1 ≤ k′′ < 2n′′, where n′ = mn/m′ and n′′ = mn/m′′.
Now, if n is odd then Lemma 10 implies that φΓ does not admit an e.d.s.

For the rest of the proof we thus assume that n is even. If m is also even,
then Lemma 9 implies that φΓ admits an e.d.s. It thus remains to investigate
the situation when n is even (and consequently r > 0) and m is odd. We now
distinguish three cases depending on the value of r′ (note that 0 ≤ r′ ≤ r).
If 1 ≤ r′ < r, then m′ and n′ are both even, and so Lemma 9 implies that
Htg(m′, 2n′, k′) (and thus also φΓ) admits an e.d.s. On the other hand, if r′ = r,
then n′ is odd, and so Lemma 10 implies that Htg(m′, 2n′, k′) (and thus also φΓ)
does not admit an e.d.s.

The last case to consider is thus when r′ = 0. Since n is even, the fact that
r′ = 0 implies that (k−1)/2 must be odd. Since m is also odd, it follows that m′′

is even, that is, r′′ > 0. Depending on whether 1 ≤ r′′ < r or r′′ = r, we can thus
apply Lemma 9 or Lemma 10 to Htg(m′′, 2n′′, k′′). Since the above cases cover
all the possibilities for m, n and k, this completes the proof.

We remark that all of the possibilities from the proof of the above theorem are
indeed possible. For instance, to see that the four essentially different possibilities
in the case that n is even and m is odd can indeed occur, consider the four graphs
Htg(3, 48, k) where k ∈ {1, 3, 5, 11}. In all cases r = 3 but for Htg(3, 48, 1) we
get r′ = 3 (and so the graph does not admit an e.d.s.), for Htg(3, 48, 3) we get
r′ = 0 and r′′ = 2 < r (and so the graph admits an e.d.s.), for Htg(3, 48, 5) we get
r′ = 1 (and so the graph admits an e.d.s.), while for Htg(3, 48, 11) we get r′ = 0
and r′′ = 3 = r (and so the graph does not admit an e.d.s.).

It is now also easy to give a classification of the corresponding cubic Cayley
graphs of generalized dihedral groups that admit an e.d.s.

Corollary 12. Let G = 〈t, a, b〉 be a generalized dihedral group of order 2mn for
some integers m,n ≥ 2, where A = 〈a, b〉 is an abelian group of order mn, a is
of order n and tat = a−1 and tbt = b−1. Suppose that none of a, b and ba−1

generates the subgroup A. Then the Cayley graph Cay(G; {t, ta, tb}) admits an
e.d.s. if and only if at least one of a, b and ba−1 generates a subgroup of A which
is of even order and of even index.

Proof. Let φΓ = Cay(G; {t, ta, tb}). Since 〈a〉 is a subgroup of index m in A,
there exists a unique odd integer 1 ≤ k ≤ 2n − 1 such that bm = am+(k−1)/2.
By Proposition 1, the graph φΓ is isomorphic to the honeycomb toroidal graph
Htg(m, 2n, k). Recall that one of the corresponding isomorphisms is the isomor-
phism ϕ from (1). We can now apply Theorem 11. Clearly, n and m are the
order and index of 〈a〉 in A, respectively. Moreover, using the defining relations
for t, a and b in G or inspecting the nature of the action of ϕ it is easy to see
that the order of ba−1 is 2mn/ gcd(2n, k − 1), which is exactly the parameter n′
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from Theorem 11 (and so m′ is the index of 〈ba−1〉 in A). Similarly, the order of
b is 2mn/ gcd(2n, 2m+ k − 1), which is exactly the parameter n′′ from Theorem
11 (and so m′′ is the index of 〈b〉 in A). Since the two items of (ii) in Theorem 11
correspond to the case when n′ and m′ are both even and to the case when n′′

and m′′ are both even (recall from the proof of Theorem 11 that we cannot have
r′ = r′′ = 0), respectively, the result follows.

With the above result in hand let us now examine all of the cubic Cayley
graphs of generalized dihedral groups of order 24. One can check that, up to
isomorphism, the only possibility to obtain a generalized dihedral group 〈t, a, b |
t2, an, bm = am+(k−1)/2, ab = ba, tat = a−1, tbt = b−1〉 of order 24 with m,n ≥ 2
such that none of a, b and ba−1 generates 〈a, b〉 is if m = 2, n = 6 and k = 5. The
corresponding Cayley graph Cay(G; {t, ta, tb}) admits an e.d.s. by Corollary 12
since 〈a〉 is an index 2 subgroup (and thus of even order) of 〈a, b〉. Together
with the results at the end of the previous section this finally shows that out of
the seven pairwise nonisomorphic connected cubic Cayley graphs of generalized
dihedral groups of order 24 four of them admit an e.d.s. while three of them do
not (the two from the previous section and the Möbius ladder of order 24).

Acknowledgements

All authors acknowledge the financial support from the Slovenian Research Age-
ncy and Scientific and Technological Research Council of Turkey (Slovenian —
Turkey bilateral research project).
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some classes of H-free and of (H1, H2)-free graphs, Discrete Appl. Math. 250 (2018)
130–144.
https://doi.org/10.1016/j.dam.2018.05.012
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[16] S. Klavžar, I. Peterin and I.G. Yero, Graphs that are simultaneously efficient open
domination and efficient closed domination graphs, Discrete Appl. Math. 217 (2017)
613–621.
https://doi.org/10.1016/j.dam.2016.09.027
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