DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

X. Yang

Xiaojing Yang

School of Mathematics and Statistics
Beijing Key Laboratory on MCAACI
Beijing Institute of Technology
Beijing 100081, P.R. of China

email: yangxiaojing89@163.com

L. Xiong

Liming Xiong

School of Mathematics and Statistics
Beijing Key Laboratory on MCAACI
Beijing Institute of Technology
Beijing 100081, P.R. of China

email: lmxiong@bit.edu.cn

0000-0002-3091-3252

Title:

Hamiltonian extendable graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 42(3) (2022) 843-859

Received: 2019-02-14 , Revised: 2020-02-11 , Accepted: 2020-02-11 , Available online: 2020-03-02 , https://doi.org/10.7151/dmgt.2308

Abstract:

A graph is called Hamiltonian extendable if there exists a Hamiltonian path between any two nonadjacent vertices. In this paper, we give an explicit formula of the minimum number of edges for Hamiltonian extendable graphs and we also characterize the degree sequence for Hamiltonian extendable graphs with minimum number of edges. Besides, we completely characterize the pairs of forbidden subgraphs for 2-connected graphs to be Hamiltonian extendable.

Keywords:

Hamiltonian extendable, forbidden subgraph

References:

  1. B. Alspach and J. Liu, On the Hamilton connectivity of generalized Petersen graphs, Discrete Math. 309 (2009) 5461–5473.
    https://doi.org/10.1016/j.disc.2008.12.016
  2. Q. Bian, R.J. Gould, P. Horn, S. Janiszewski, S.L. Fleur and P. Wrayno, $3$-connected $\{K_{1,3}, P_9\}$-free graphs are Hamiltonian-connected, Graphs Combin. 30 (2014) 1099–1122.
    https://doi.org/10.1007/s00373-013-1344-6
  3. J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, Now York, 2008).
  4. H.J. Broersma, R.J. Faudree, A. Huck, H. Trommel and H.J. Veldman, Forbidden subgraphs that imply Hamiltonian-connectedness, J. Graph Theory 40 (2002) 104–119.
    https://doi.org/10.1002/jgt.10034
  5. V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111–113.
    https://doi.org/10.1016/0012-365X(72)90079-9
  6. M.-C. Costa, D. de Werra and C. Picouleau, Minimal graphs for matching extensions, Discrete Appl. Math. 234 (2018) 47–55.
    https://doi.org/10.1016/j.dam.2015.11.007
  7. M.-C. Costa, D. de Werra and C. Picouleau, Minimal graphs for $2$-factor extension, Discrete Appl. Math. 282 (2020) 65–79.
    https://doi.org/10.1016/j.dam.2019.11.022
  8. M.-C. Costa, D. de Werra and C. Picouleau, Extenseurs Hamiltoniens minimaux.
    https://uma.ensta-paris.fr/uma2/publis/show.html?id=1868
  9. R.J. Faudree and R.J. Gould, Characterizing forbidden pairs for Hamiltonian properties, Discrete Math. 173 (1997) 45–60.
    https://doi.org/10.1016/S0012-365X(96)00147-1
  10. G. Liu and Q. Yu, Generalization of matching extensions in graphs, Discrete Math. 231 (2001) 311–320.
    https://doi.org/10.1016/S0012-365X(00)00328-9
  11. J.W. Moon, On a problem of Ore, Math. Gaz. 49 (1965) 40–41.
    https://doi.org/10.2307/3614234
  12. O. Ore, Hamiltonian-connected graphs, J. Math. Pures Appl. 42 (1963) 21–27.
  13. M.D. Plummer, Extending matchings in graphs: A survey, Discrete Math. 127 (1994) 277–292.
    https://doi.org/10.1016/0012-365X(92)00485-A
  14. R.B. Richter, Hamilton paths in generalized Petersen graphs, Discrete Math. 313 (2013) 1338–1341.
    https://doi.org/10.1016/j.disc.2013.02.021
  15. F.B. Shepherd, Hamiltonicity in claw-free graphs, J. Combin. Theory Ser. B 53 (1991) 173–194.
    https://doi.org/10.1016/0095-8956(91)90074-T

Close