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Abstract

A graph is called Hamiltonian extendable if there exists a Hamiltonian
path between any two nonadjacent vertices. In this paper, we give an explicit
formula of the minimum number of edges for Hamiltonian extendable graphs
and we also characterize the degree sequence for Hamiltonian extendable
graphs with minimum number of edges. Besides, we completely characterize
the pairs of forbidden subgraphs for 2-connected graphs to be Hamiltonian
extendable.
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1. Introduction

All graphs considered here are finite, undirected and simple. For notation or
terminology not defined, see [3]. We denote by V (G), E(G), ∆(G), δ(G), α(G),
κ(G), the vertex set, the edge set, the maximum degree, the minimum degree,
independence number, vertex connectivity of a graph G, respectively. We denote
by NG(v) (N(v) for short) and dG(v) (d(v) for short) the neighborhood and the
degree of a vertex v in G, respectively. For v ∈ V (G), set NG[v] = NG(v) ∪ {v},
and for S ⊆ V (G), let NG(S) =

(⋃
v∈S NG(v)

)
\S. Let S ⊆ V (G) and S′ ⊆ E(G).

The induced subgraph of G by S and S′ is denoted by G[S] and G[S′], respectively.
We use G−S and G−S′ to denote the subgraph G[V (G)−S] and G[E(G)−S′],
respectively. If the number of components of G − S is greater than the number
of components of G, then S is a vertex cut of G, and we call S an |S|-vertex cut
of G. We call the vertex in S a cut-vertex of G if |S| = 1. If E(G[S]) = ∅, then
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S is an independent set of G. A path with end-vertices u and v of G is denoted
by PG(u, v).

A graph is traceable if it has a Hamiltonian path, i.e., a path containing all
vertices of the graph. A graph is Hamiltonian if it has a Hamiltonian cycle, i.e.,
a cycle containing all vertices of the graph. A graph is Hamiltonian connected
if any pair of vertices are connected by a Hamiltonian path. We denote by Kn

and Km,n the complete graph with order n and the complete bipartite graph with
partite sets of cardinalities m and n, respectively. A clique is a complete subgraph
of a graph. We use Pn and Cn to denote the path and the cycle with order n,
respectively.

Matching extension has been studied by many authors, see [10, 13]. In [6],
the authors introduce a different kind of matching extendability. A graph G is
matching extendable if for any two nonadjacent vertices x, y ∈ V (G), there exists
an (almost) perfect matching in G−{x, y}. Since a perfect matching is a 1-factor,
it is natural to consider the similar problem of 2-factor. In [7] the authors study
2-factor extendable graphs. In general, one may study the similar problem for
k-factors. We concentrate on the case of Hamiltonian cycle.

We say that two nonadjacent vertices x, y ∈ V (G) can be extended to a
Hamiltonian cycle (or k-factor) if G + xy has a Hamiltonian cycle (or k-factor)
containing xy. A graph is Hamiltonian (or k-factor) extendable if each pair of
nonadjacent vertices can be extended to a Hamiltonian cycle (or k-factor). A
Hamiltonian (or k-factor) extendable graph with minimum number of edges is
a minimum Hamiltonian (or k-factor) extendable graph. The size of a minimum
Hamiltonian (or k-factor) extendable graph of order n is denoted by Exph(n) (or
Expk(n)). In [6] and [7] the authors gave the explicit formulas for Exp1(n) and
Exp2(n) for all n.

Theorem 1 (Costa, de Werra and Picouleau).

(1) [6] If n ≥ 8 and n is even, then Exp1(n) = 3n
2 − 1; if n ≥ 9 and n is odd,

then Exp1(n) = n− 1.

(2) [7] If n ≥ 10, then Exp2(n) =
⌈
11n
8

⌉
.

In [11] Moon has proved that each Hamiltonian connected graph with order
at least 4 has at least 3n

2 edges and the bound is sharp. We determine Exph(n)
for any integer n ≥ 3. In fact, Costa, de Werra, Picouleau [8] and we obtained
the following result (Theorem 2) independently.

Theorem 2. It holds that

(1) Exph(3) = 2, Exph(4) = 4, Exph(5) = 6,

(2) Exph(n) =
⌈
3n
2

⌉
, for n ≥ 6.

We would like to characterize the Hamiltonian extendable graphs G of order
n with |E(G)| = Exph(n) =

⌈
3n
2

⌉
, for n ≥ 6. Although we could not completely
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characterize them, we may give some properties of those graphs. By KnxKm

we denote the graph G with V (G) = V (Kn) ∪ {x} ∪ V (Km), E(G) = E(Kn) ∪
E(Km)∪{xu : u ∈ V (Kn)∪V (Km)}, while V (Kn) and V (Km) are supposed to be
disjoint (even if n = m) and x /∈ V (Kn)∪V (Km). Let V (G) = {v1, v2, . . . , vn} be
the vertex set of G, d(v1) ≤ d(v2) ≤ · · · ≤ d(vn−1) ≤ d(vn). Then the sequence
(d(v1), d(v2), . . . , d(vn)) is called a degree sequence of G. The following is our
second main result.

Theorem 3. Let G be a Hamiltonian extendable graph of order n ≥ 6 and
|E(G)| =

⌈
3n
2

⌉
. Then the following statements hold.

(1) If there is no vertex of degree 2, and if n is even, then G is 3-regular; if n is
odd, then the degree sequence of G is (3, 3, . . . , 3, 4).

(2) If n ≥ 7, then ∆(G) ≤ 4; if n = 6, then either G ∼= K3wK2 or ∆(G) ≤ 4.

(3) If there exists a vertex of degree 2 that has two neighbors of degree exactly 4
in G, then the degree sequence of G is (2, 3, 3, . . . , 3, 4, 4).

(4) If there exists a vertex of degree 2 that has one neighbor of degree 3 and the
other neighbor of degree 4, then either G ∼= F4 or else G ∼= F5, where F4, F5

are depicted in Figure 1.
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Figure 1. Five Hamiltonian extendable graphs.

Let H be a set of connected graphs. A graph G is said to be H-free if G does
not contain H as an induced subgraph for all H in H. We call each graph H in
H a forbidden subgraph. If H = {H}, then G is H-free. If |H| = 2, then we call
H a forbidden pair. For two sets H1, H2, we write H1 � H2 if for each graph
H ′′ in H2, there exists a graph H ′ in H1 such that H ′ is an induced subgraph of
H ′′. By the definition of the relation“�”, if H1 � H2, then every H1-free graph
is also H2-free.

Every Hamiltonian connected graph is Hamiltonian extendable. However,
the converse is not true in general. In [2, 4, 9, 15], the authors have partially
characterized pairs of forbidden subgraphs for a 3-connected graph to be Hamilto-
nian connected. Note that the 3-connected condition is necessary for Hamiltonian
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connected graphs while not necessary for Hamiltonian extendable graphs. In this
paper, we completely characterize a set of forbidden subgraphs with |H| ≤ 2 to
force a 2-connected graph to be Hamiltonian extendable.

By Ni,j,k we denote the graph obtained by attaching three vertex disjoint
paths of lengths i, j and k to a triangle. For i, j > 0, Ni,j,0 is denoted by Bi,j

and Ni,0,0 by Zi. By the definition of Hamiltonian extendable graphs, the two
vertices of any 2-vertex cut of a Hamiltonian extendable graph are adjacent.

Theorem 4. Let A be a connected graph and G be a 2-connected A-free graph
such that the two vertices of any 2-vertex cut of G are adjacent. Then G is
Hamiltonian extendable if and only if A is an induced subgraph of P3.

Theorem 5. Let R, S be two connected graphs other than an induced subgraph
of P3 and let G be a 2-connected {R,S}-free graph of order at least 7 such that
the two vertices of any 2-vertex cut of G are adjacent. Then G is Hamiltonian
extendable if and only if {R,S} � {K1,3, B1,1} or {R,S} � {K1,3, Z2}.

2. Properties of Hamiltonian Extendable Graphs — Proofs of
Theorems 2 and 3

We shall give some basic properties of Hamiltonian extendable graphs. We define
V2(G) = {v ∈ V (G) : dG(v) = 2}, V≥i(G) = {v ∈ V (G) : dG(v) ≥ i} and
E(X,Y ) = {uv ∈ E(G)|u ∈ X, v ∈ Y }, for X,Y ⊆ V (G) with X ∩ Y = ∅.

Property 6. If G is a Hamiltonian extendable graph, then the following state-
ments hold.

(1) G is connected.

(2) Every vertex of degree 2 in G lies in a triangle for |V (G)| > 3.

(3) G has a cut-vertex x if and only if G ∼= KsxKt. Furthermore, G has no
cut-edge unless G ∼= Kn−2xK1.

(4) Two vertices with degree 2 are adjacent if and only if G ∼= Kn−3wK2.

Proof. The proof is left to the reader.

Lemma 7. Let G be a Hamiltonian extendable graph of order n ≥ 6 and δ(G)=2.

(1) If there exist two vertices in V2(G) such that they have at least one common
neighbor, then either |E(G)| >

⌈
3n
2

⌉
or G ∼= K3wK2 and |E(G)| =

⌈
3n
2

⌉
.

(2) If any two vertices in V2(G) have no common neighbor in G, then each vertex
in V2(G) has at least one neighbor of degree at least 4 in G.
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Proof. (1) Assume that there exist two vertices u, v ∈ V2(G) such that N(u) ∩
N(v) 6= ∅. If uv ∈ E(G), by Property 6(4), G ∼= Kn−3wK2, where w is the
common neighbor of u, v. Thus, if n ≥ 7, then |E(G)| >

⌈
3n
2

⌉
; if n = 6, then

|E(G)| =
⌈
3n
2

⌉
and G ∼= K3wK2. Now we suppose that any two vertices of degree

2 in G are nonadjacent.

First we suppose that |N(u)∩N(v)| = 2. By Property 6(2), the two vertices in
N(u)∩N(v) are adjacent. Then G−{u, v} is a clique, otherwise, the nonadjacent
vertices in G − {u, v} cannot be extended, contradicting that G is Hamiltonian
extendable. Then |E(G)| = C(n− 2, 2) + 4. Since n ≥ 6, |E(G)| >

⌈
3n
2

⌉
.

Next we suppose that |N(u) ∩ N(v)| = 1. Let N(u) ∩ N(v) = {w} and
x ∈ N(u) \ {w}, y ∈ N(v) \ {w}. By Property 6(2), {wx,wy} ⊂ E(G). Then
yx ∈ E(G). Otherwise, y and x should be the two end-vertices of a Hamiltonian
path of G by definition, and hence xu, uw, wv, vy, yx are in a Hamiltonian cycle
of G + yx, which is impossible. We claim that d(w) = n − 1. Otherwise, we
suppose that there exists a vertex z ∈ V (G) \ {u, v, x, y} such that wz /∈ E(G).
Since G is Hamiltonian extendable, w and z should be the two end-vertices of a
Hamiltonian path of G and hence wu, wv and wz are in a Hamiltonian cycle of
G+wz, a contradiction. Then E({x, y}, V (G) \ {x, y, u, v, w}) 6= ∅, otherwise, w
is a cut-vertex of G, contradicting Property 6(3).

We show that |V2(G)| ≤ 3. Suppose, for the contrary, that |V2(G)| ≥ 4. Let
{u, v, a, b} ⊆ V2(G). Since d(w) = n−1, {aw, bw} ⊆ E(G). Suppose that V (G) =
{u, v, x, y, w, a, b}. Recall that E({x, y}, V (G) \ {x, y, u, v, w}) 6= ∅. Without loss
of generality, we suppose that xa ∈ E(G). Since d(b) = 2, either bx ∈ E(G) or
by ∈ E(G). However, if bx ∈ E(G), then the nonadjacent vertices a, v cannot be
extended; if by ∈ E(G), then the nonadjacent vertices a, u cannot be extended,
contradicting that G is Hamiltonian extendable. Thus V (G)\{u, v, x, y, w, a, b} 6=
∅. Let s ∈ V (G) \ {u, v, x, y, w, a, b}. Since d(v) = 2 and vs /∈ E(G), v and s
should be the two end-vertices of a Hamiltonian path of G and hence wu, wa and
wb are in a Hamiltonian cycle of G+ vs, which is impossible.

If |V2(G)| = 2, then 2|E(G)| =
∑

r∈V (G) d(r) ≥ 2 ∗ 2 + (n − 1) + 3 + 4 +

3(n− 5). Then |E(G)| >
⌈
3n
2

⌉
, since n ≥ 6. If |V2(G)| = 3, let V2(G) = {u, v, a}.

Then G[V (G) \ {u, v, w, a}] is a clique, otherwise, the nonadjacent vertices in
G[V (G) \ {u, v, w, a}] cannot be extendable (otherwise, wu,wv,wa should be in
a Hamiltonian cycle containing the nonadjacent vertices, which is impossible),
a contradiction. Since d(w) = n − 1, G − {u, v, a} is a clique and |E(G)| ≥
C(n−3, 2)+2∗3. If n = 6 and |E(G)| = 9, then by symmetry, ay ∈ E(G). Then
u and y cannot be extendable (otherwise, yu, ya, yv should be in a Hamiltonian
cycle containing the nonadjacent vertices, which is impossible), a contradiction.
If n ≥ 7, then |E(G)| >

⌈
3n
2

⌉
.

(2) Assume to the contrary that there exists a vertex u0 ∈ V2(G) such that u0
has two neighbors x, y with d(x) ≤ 3 and d(y) ≤ 3. By Property 6(2), xy ∈ E(G).
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Since any two vertices in V2(G) have no common neighbor in G, d(x) = d(y) = 3.
Take x1 ∈ N(x) \ {u0, y} and y1 ∈ N(y) \ {u0, x}. Then x1 6= y1, otherwise,
x1 = y1 is a cut-vertex of G, contradicting Property 6(3). Then x1 and y cannot
be extended (otherwise, yu0, u0x, xx1, x1y should be in a Hamiltonian cycle of
G+ x1y, which is impossible), a contradiction. This proves Lemma 7.

Proof of Theorem 2. (1) Trivially P3 is the minimum Hamiltonian extendable
graph with order 3. Then Z1 is the minimum Hamiltonian extendable graph
with order 4. Otherwise, if G is a minimum Hamiltonian extendable graph of
order 4 and |E(G)| < 4, by Property 6(1), G is a tree. Then G is either P4

or K1,3. However, none of them is Hamiltonian extendable. Note that K2wK2

is the unique graph of a minimum Hamiltonian extendable graph with order
5. Otherwise, if G is a minimum Hamiltonian extendable graph of order 5 and
|E(G)| ≤ 5, then by Property 6(3), δ(G) ≥ 2. Then G is C5, which is not
Hamiltonian extendable.

(2) Let G be a Hamiltonian extendable graph with n ≥ 6. Firstly, we prove
|E(G)| ≥

⌈
3n
2

⌉
. By Property 6(1), G is connected. If δ(G) = 1, then by Property

6(3), G ∼= Kn−2xK1 and |E(G)| >
⌈
3n
2

⌉
, since n ≥ 6. If δ(G) ≥ 3, then |E(G)| ≥⌈

3n
2

⌉
. Hence we may suppose that δ(G) = 2.
If there exist two vertices in V2(G) satisfying that they have at least one

common neighbor in G, then by Lemma 7(1), |E(G)| ≥
⌈
3n
2

⌉
. Now we suppose

that any two vertices in V2(G) have no common neighbor in G. Then by Lemma
7(2), each vertex in V2(G) has at least one neighbor of degree at least 4 in G.

For each vertex u in V2(G), choose exactly one vertex v4(u) of degree at least
4 in N(u) and set V 2

4 (G) = {v4(u) ∈ N(u) : d(v4(u)) ≥ 4, u ∈ V2(G)}. Then
V (G) = V2(G) ∪ V 2

4 (G) ∪ (V≥3(G) \ V 2
4 (G)) and |V2(G)| ≤ |V 2

4 (G)|. Therefore,
2|E(G)| =

∑
r∈V (G) d(r) ≥ 2|V2(G)|+ 4|V 2

4 (G)|+ 3(n− |V2(G)| − |V 2
4 (G)|) = 3n.

This proves |E(G)| ≥
⌈
3n
2

⌉
.

To conclude the proof of Theorem 2 it remains to construct a Hamiltonian
extendable graph of order n, with |E(G)| =

⌈
3n
2

⌉
, for arbitrary n ≥ 6. Start

with two paths P1 = v1v2 · · · vk and P2 = u1u2 · · ·uk. Then add the edges
uivi for each i ∈ {1, 2, . . . , k}. If n = 2k + 1, then add a vertex a such that
{av1, avk, au1, auk} ⊂ E(G). If n = 2k + 2, then add two vertices s, t such that
{sv1, su1, tvk, tuk, st} ⊂ E(G). These two graphs are denoted by F1, F2 in Figure
1. In [11], Moon has proved that these two graphs are Hamiltonian connected,
hence Hamiltonian extendable. This proves Theorem 2.

Proof of Theorem 3. Let G be a Hamiltonian extendable graph with order
n ≥ 6 and |E(G)| =

⌈
3n
2

⌉
. If δ(G) = 1, then by Property 6(3), |E(G)| >

⌈
3n
2

⌉
, a

contradiction. Thus, δ(G) ≥ 2.
(1) Since |E(G)| =

⌈
3n
2

⌉
and V2(G) = ∅, we have δ(G) ≥ 3 and therefore G is

3-regular if n is even, or its degree sequence is equal to (3, 3, . . . , 3, 4) if n is odd.
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(2) By (1), it clearly holds for δ(G) ≥ 3. Hence it suffices to consider the case
that δ(G) = 2. If there exists a pair of vertices in V2(G) such that they have at
least one common neighbor, then by Lemma 7(1), G ∼= K3wK2. In the following,
we suppose that each pair of vertices in V2(G) have no common neighbor. By
Lemma 7(2), V (G) = V2(G)∪V 2

4 (G)∪(V≥3(G)\V 2
4 (G)), where V 2

4 (G) has defined
in the proof of Theorem 2.

By Lemma 7(1), if n = 6 and ∆(G) ≥ 5, then G ∼= K3wK2. Now we show
that if n ≥ 7, then ∆(G) ≤ 4. For a contradiction, suppose that there exists
a vertex s ∈ V (G) such that d(s) ≥ 5. Then there exists a vertex in N(s)
of degree 2, otherwise, by Lemma 7(2) and δ(G) = 2, |V2(G)| ≤ |V 2

4 (G)|, and
hence 2|E(G)| =

∑
v∈V (G) d(v) ≥ 5 + 3 ∗ 5 + 2|V2(G)| + 4|V 2

4 (G)| + 3(n − 6 −
|V2(G)| − |V 2

4 (G)|) ≥ 3n + 2, a contradiction. Then 2|E(G)| =
∑

v∈V (G) d(v) ≥
5 + 2 + 3 ∗ 4 + 2(|V2(G)| − 1) + 3(n− 6− (|V2(G)| − 1)) = 3n+ 2− |V2(G)|. Since
|E(G)| =

⌈
3n
2

⌉
, we have

∑
v∈V (G)

d(v) =

{
3n+ 1 if n is odd,
n if n is even.

Therefore, if n is even, then |V2(G)| = 2; if n is odd, then |V2(G)| = 1.
However, if n is even and |V2(G)| = 2, then by Lemma 7(2),

∑
v∈V (G) d(v) ≥

5 + 2 + 3 ∗ 4 + 2 + 4 + 3(n− 6− 2) = 3n+ 1, a contradiction. This implies that
n is odd and |V2(G)| = 1. Since

∑
v∈V (G) d(v) = 3n + 1, the degree sequence of

G is (2, 3, 3, . . . , 3, 5).

In the following, we show that G with degree sequence (2, 3, 3, . . . , 3, 5) is not
Hamiltonian extendable. Let N(s) = {v1, v2, v3, v4, v5} and d(v1) = 2, then the
remaining vertices in G have degree exactly 3. By Property 6(2), without loss
of generality we may suppose that v1v2 ∈ E(G). Then v2 is adjacent to one of
{v3, v4, v5}, otherwise, there exists a vertex v0 ∈ N(v2) \ N [s], then v0s cannot
be extended (otherwise, sv1, v1v2, v2v0, v0s should be in a Hamiltonian cycle of
G + v0s, which is impossible), contradicting that G is Hamiltonian extendable.
Without loss of generality, let v2v3 ∈ E(G).

Now we prove that v3v4 /∈ E(G). By contradiction, suppose that v3v4 ∈
E(G). Then v4v5 /∈ E(G), otherwise, v5 is a cut-vertex of G, contradicting
Property 6(3). Therefore, there exists a vertex v′4 ∈ N(v4) \ N [s]. Then v′4s
cannot be extended (otherwise, sv1, v1v2, v2v3, v3v4, v4v

′
4, v

′
4s should be in

a Hamiltonian cycle of G + v′4s, which is impossible), contradicting that G is
Hamiltonian extendable. This implies that v3v4 /∈ E(G). By symmetry, v3v5 /∈
E(G).

Therefore, there is a vertex t ∈ N(v3) \ N [s]. Then ts cannot be extended
(otherwise, sv1, v1v2, v2v3, v3t and ts should be in a Hamiltonian cycle of G+ ts,
which is impossible), a contradiction. This implies that G with degree sequence
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(2, 3, 3, . . . , 3, 5) is not Hamiltonian extendable, contradicting the assumption that
G is Hamiltonian extendable. This proves (2).

(3) By (2), V (G) = V2(G) ∪ V 2
4 (G) ∪ (V≥3(G) \ V 2

4 (G)). Since each pair of
vertices in V2(G) have no common neighbor, 2|E(G)| =

∑
v∈V (G) d(v) ≥ 2 + 2 ∗

4 + 2(|V2(G)| − 1) + 3(n− 3− (|V2(G)| − 1)) = 3n+ 2− |V2(G)|. Therefore, if n is
even, then |V2(G)| = 2; if n is odd, then |V2(G)| = 1. However, if n is even and
|V2(G)| = 2, then by Lemma 7(2), 2|E(G)| =

∑
v∈V (G) d(v) ≥ 2 + 2 ∗ 4 + 2 + 4 +

3(n − 5) = 3n + 1, a contradiction. Then n is odd and |V2(G)| = 1. Therefore,
the degree sequence of G is (2, 3, 3, . . . , 3, 4, 4). This proves (3).

(4) Let v ∈ V2(G) and NG(v) = {x, y} with dG(x) = 3 and dG(y) = 4. By
Property 6(2), xy ∈ E(G). Let w ∈ N(x)\{v, y}. Then wy ∈ E(G), otherwise, w
and y should be the two end-vertices of a Hamiltonian path of G and hence wy,
yv, vx and xw should be in a Hamiltonian cycle of G+ wy, which is impossible.
Let y1 ∈ N(y) \ {v, x, w}. Then y1w ∈ E(G). Otherwise, y1 and w should be the
two end-vertices of a Hamiltonian path of G and hence wx, xv, vy, yy1, y1w should
be in a Hamiltonian cycle of G+y1w, which is impossible. Then d(w) ≥ 3. Since
any pair of vertices in V2(G) have no common neighbor and y ∈ N(y1)∩N(v), we
have d(y1) ≥ 3. By (2), d(w) ≤ 4 and d(y1) ≤ 4. Therefore, d(w), d(y1) ∈ {3, 4}.
Then d(w) = 4, otherwise, y1 is a cut-vertex, contradicting Property 6(3). Let
w1 ∈ N(w) \ {x, y, y1}. Then y1w1 ∈ E(G). Otherwise, w1 and y1 should be the
two end-vertices of a Hamiltonian path of G and hence w1w,wx, xv, vy, yy1, y1w1

should be in a Hamiltonian cycle of G+ y1w1, which is impossible.
If d(y1) = 3, then V (G) = {x, y, v, w,w1, y1}, otherwise, w1 is a cut-vertex of

G, contradicting Property 6(3). Thus, G ∼= F4, where F4 is depicted in Figure 1.
Now we suppose that d(y1) = 4. Then d(w1) ≥ 3, otherwise, y1 is a cut-vertex of
G, contradicting Property 6(3). By (2), d(w1) = 3 or 4. If d(w1) = 4, then y1 is
not adjacent to a vertex of degree 2, otherwise, the vertex of degree 2 should be
adjacent to w1 and w1 is a cut-vertex of G, contradicting Property 6(3). Then
by Lemma 7(2), 2|E(G)| =

∑
v∈V (G) d(v) ≥ 2 + 3 + 4 + 4 + 4 + 2(|V2(G)| − 1) +

4(|V2(G)| − 1) + 3(n− 5− 2(|V2(G)| − 1)) = 3n+ 2, a contradiction. This implies
that d(w1) = 3. Let w2 ∈ N(w1) \ {w, y1}. Then w2y1 ∈ E(G). Otherwise,
w2 and y1 should be the two end-vertices of a Hamiltonian path of G and then
y1y, yv, vx, xw,ww1, w1w2, w2y1 should be in a Hamiltonian cycle of G + w2y1,
which is impossible. Then d(w2) = 2, otherwise, w2 is a cut-vertex, contradicting
Property 6(3). This implies that G ∼= F5, where F5 is depicted in Figure 1. This
proves (4).

Remark 8. The degree sequences in Theorem 3(1) and (3) are best possible in
a sense. We may construct Hamiltonian extendable graphs having the degree
sequences in Theorem 3(1) and (3). F1 and F2 depicted in Figure 1 are Hamil-
tonian extendable graphs with degree sequence (3, 3, . . . , 3, 3) and (3, 3, . . . , 3, 4),
respectively. Now we construct a graph F3 from F2 in Figure 1 by replacing the
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vertex a of F2 with a triangle bstb such that {sv1, su1, tvk, tuk} ⊂ E(F3). Then
F3 is a Hamiltonian extendable graph with degree sequence (2, 3, 3, . . . , 3, 4, 4).

3. Forbidden Subgraphs for Hamiltonian Extendable Graphs —
Proofs of Theorems 4 and 5

We will characterize pairs of forbidden subgraphs for Hamiltonian extendable
graphs in this section. By Property 6(3), a characterization has been given for
Hamiltonian extendable graphs with a cut-vertex. Then we consider 2-connected
Hamiltonian extendable graphs. We shall use some results in [5], [15], [4].

Theorem 9 (Chvátal and Erdős [5]). Let G be a connected graph with α(G) ≤
κ(G) + 1 (or α(G) ≤ κ(G), α(G) ≤ κ(G)− 1, respectively). Then G is traceable
(or Hamiltonian, Hamiltonian connected, respectively).

A graph G is obtained from H by duplication if we can obtain G by expanding
some of the vertices of H to a clique, here expanding a vertex v to a clique C
is the operation consisting of replacing v with C and adding additional edges
between u ∈ V (G) \ {v} and C if uv ∈ E(G).

Theorem 10 (Shepherd [15]). A connected graph G is {K1,3, B1,1}-free if and
only if either α(G) = 2 or G is obtained from a path or cycle by duplication.

Theorem 11 (Broersma, Faudree, Huck, Trommel and Veldman [4]). Let G be
a 3-connected {K1,3, Z3}-free graph. Then G is Hamiltonian connected.

Theorem 12. Let G be a 2-connected graph with α(G) = 2 such that the two
vertices of any 2-vertex cut of G are adjacent. Then G is Hamiltonian extendable.

Proof. For any two nonadjacent vertices u, v ∈ V (G), it suffices to find a span-
ning (u, v)-path of G. Since the two vertices of any 2-vertex cut of G are adjacent,
G− {u, v} is connected and α(G− {u, v}) ≤ 2. By Theorem 9, G− {u, v} has a
Hamiltonian path PG−{u,v}(x, y), for some x, y ∈ V (G) \ {u, v}. Since uv /∈ E(G)
and α(G) = 2, V (G) \ {u, v} = N(u) ∪N(v) = (N(u) ∩N(v)) ∪ (N(u) \N(v)) ∪
(N(v) \N(u)).

Suppose first that x, y lie in three different sets N(u) ∩ N(v), N(u) \ N(v),
N(v) \ N(u), respectively, or x, y are both in N(u) ∩ N(v). Then by adding u
and v to PG−{u,v}(x, y), we obtain a Hamiltonian path of G with end-vertices u,
v. Now we assume that x and y are all in either N(u) \ N(v) or N(v) \ N(u).
By symmetry, we may suppose that {x, y} ⊆ N(u) \N(v). Then G[N(u) \N(v)]
is a clique, otherwise, any two nonadjacent vertices in N(u) \N(v) plus v is an
independent set with cardinality 3, a contradiction. Then PG−{u,v}(x, y) ∪ {xy}
is a Hamiltonian cycle of G−{u, v}. Therefore, PG−{u,v}(x, y)∪ {xy} must have
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an edge whose end-vertices lie in N(u) and N(v), respectively. This produces a
spanning (u, v)-path of G and Theorem 12 is proved.

Theorem 13. Let G be a 2-connected and {K1,3, B1,1}-free graph such that the
two vertices of any 2-vertex cut of G are adjacent. Then G is Hamiltonian ex-
tendable.

Proof. By Theorems 10, 12 and by the assumption of this theorem, it suffices to
consider that G is obtained from a path P = v1v2 · · · vk by duplication. Since G
is 2-connected, each vertex vi ∈ V (P ) \ {v1, vk} is duplicated by a clique Gi with
order at least 2. By the definition of duplication, for each i ∈ {1, 2, . . . , k − 1},
G[V (Gi) ∪ V (Gi+1)] is a clique. Then G is Hamiltonian extendable.

Let F6 be the unique connected graph with degree sequence (2, 2, 2, 4, 4, 4),
i.e., F6 is obtained from a triangle xyzx by subdividing each edge of the tri-
angle with vertices {a, b, c} and adding three new edges {ab, ac, bc}. Note that
F6 is a 2-connected and {K1,3, Z2}-free but it is not Hamiltonian extendable
graph. Therefore, in the following we shall exclude this graph when we consider
2-connected and {K1,3, Z2}-free Hamiltonian extendable graphs. The length of a
shortest path between u and v of G is called the distance between u and v and
denoted by dG(u, v). The diameter of a graph G is the greatest distance between
two vertices of G and denoted by diam(G).

Theorem 14. Let G � F6 be a 2-connected and {K1,3, Z2}-free graph satisfying
that the two vertices of any 2-vertex cut of G are adjacent. Then G is Hamiltonian
extendable.

Proof. Let G � F6 be a 2-connected and {K1,3, Z2}-free graph such that the two
vertices of any 2-vertex cut of G are adjacent. Then diam(G) ≤ 3. Otherwise,
we assume that diam(G) ≥ 4. Choose a shortest path P = x0x1x2 · · ·xt (t ≥
4) such that dG(x0, xt) =diam(G). First we show that x0x1 lies in a triangle.
Otherwise, d(x0) ≥ 3 (because the two vertices of any 2-vertex cut of G are
adjacent). Let {x1, x′, x′′} ⊆ N(x0). Since G is K1,3-free, x′x′′ ∈ E(G). Since
G[{x0, x′, x′′, x1, x2}] � Z2, E(G) ∩ {x2x′, x2x′′} 6= ∅. Without loss of generality,
we suppose that x′x2 ∈ E(G). Since dG(x0, xt) =diam(G), {x′x3, x1x3}∩E(G) =
∅. Then G[{x2, x′, x1, x3}] ∼= K1,3, a contradiction. This implies that x0x1 is in a
triangle vx1x0v (say). Since G[{v, x0, x1, x2, x3}] � Z2 and dG(x0, xt) =diam(G),
vx2 ∈ E(G). Then G[{v, x1, x2, x3, x4}] ∼= Z2, a contradiction.

By Theorem 11, if κ(G) ≥ 3, then G is Hamiltonian connected and hence
G is Hamiltonian extendable. It suffices to consider that κ(G) = 2 and G has
a minimum 2-vertex cut, say, {u, v}. Since the two vertices of any 2-vertex cut
of G are adjacent, uv ∈ E(G). Since G is K1,3-free, G − {u, v} has exactly two
components G1, G2 (say). Let (N(u) \ N(v)) ∩ V (Gi) = Ai, (N(v) \ N(u)) ∩
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V (Gi) = Bi, N(u) ∩N(v) ∩ V (Gi) = Ci and V (Gi) \ (Ai ∪Bi ∪ Ci) = Di, where
i ∈ {1, 2}. Since G is 2-connected and {u, v} is a minimum 2-vertex cut of G,
N(w) ∩ V (Gi) 6= ∅, for any w ∈ {u, v}, i ∈ {1, 2}.

Claim 15. The following statements hold.

(1) G[Ai ∪ Ci] and G[Bi ∪ Ci] are cliques, for i ∈ {1, 2}.
(2) At least one of the sets A1, A2 is empty and at least one of the sets B1, B2

is empty.

(3) At least one of the sets Ai, Bj is empty, for {i, j} = {1, 2}.
(4) If Ci = ∅, then |Ai| ≥ 2 and |Bi| ≥ 2, for i ∈ {1, 2}.
(5) Each b ∈ Bi is adjacent to at least |Ai| − 1 vertices in Ai and each a ∈ Ai is

adjacent to at least |Bi| − 1 vertices in Bi, for i ∈ {1, 2}.
(6) If Ai 6= ∅ and Bi 6= ∅, then |Ai| ≤ 2, |Bi| ≤ 2, for i ∈ {1, 2}.
(7) If Ci 6= ∅ and Ai 6= ∅, then |Ai| = 1; if Ci 6= ∅ and Bi 6= ∅, then |Bi| = 1,

for i ∈ {1, 2}.

Proof. (1) They follow from the assumption that G is K1,3-free. Assume that
there exist two nonadjacent vertices {x, y} ⊆ A1 ∪ C1 (by symmetry), then
G[{u, x, y, z}] ∼= K1,3, where z ∈ N(u) ∩ V (G2), a contradiction.

(2) First we prove that at least one of the sets A1, A2 is empty. Otherwise,
let a1 ∈ A1 and a2 ∈ A2, then G[{u, a1, a2, v}] ∼= K1,3, a contradiction. Similarly,
at least one of the sets B1, B2 is empty.

(3) First we show that at least one of the sets A1, B2 is empty. Otherwise,
let a1 ∈ A1 and b2 ∈ B2. By (2), A2 = ∅ and B1 = ∅. Since {u, v} is a
minimum vertex cut, N(v)∩V (G1) 6= ∅ and N(u)∩V (G2) 6= ∅. Then C1 6= ∅ and
C2 6= ∅. Then G[{a1, c1, u, c2, b2}] ∼= Z2, where ci ∈ Ci, i ∈ {1, 2}, a contradiction.
Similarly, if at least one of the sets A2, B1 is empty.

(4) Analogously we show that if C1 = ∅, then |A1| ≥ 2. Since C1 = ∅,
A1 6= ∅ and B1 6= ∅. By (2), A2 = ∅ and B2 = ∅. Then C2 6= ∅ and let c2 ∈ C2.
Furthermore, D1 = ∅, otherwise, let d1 ∈ D1, then G[{c2, u, v, w, d1}] ∼= Z2, where
w ∈ N(d1)∩(A1∪B1), a contradiction. If |A1| = 1, say A1 = {a1}, then |B1| ≥ 2,
otherwise, since G is 2-connected, dG(a1) = 2, contradicting Property 6(2). Then
by Property 6(2), there is {b1, b′1} ⊆ B1 such that {a1b1, a1b′1} ⊆ E(G). Then
G[{b1, b′1, a1, u, c2}] ∼= Z2, a contradiction.

(5) Analogously we prove that each b ∈ B1 is adjacent to at least |A1| − 1
vertices in A1. Otherwise, assume that there are two vertices a1, a

′
1 ∈ A1 and a

vertex b′1 ∈ B1 such that {b′1a1, b′1a′1}∩E(G) = ∅. Then G[{a1, a′1, u, v, b′1}] ∼= Z2,
a contradiction.

(6) Analogously we prove that |A1| ≤ 2. Otherwise, by (5), for each b1 ∈ B1,
there exist at least two vertices a1, a

′
1 ∈ A1 such that {b1a1, b1a′1} ⊆ E(G). Then

G[{b1, a1, a′1, v, w}] ∼= Z2, where w ∈ N(v) ∩ V (G2), a contradiction.
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(7) Analogously we show that if C1 6= ∅ and A1 6= ∅, then |A1| = 1. Oth-
erwise, let a1, a

′
1 ∈ A1 and c1 ∈ C1. Then G[{c1, a1, a′1, v, w}] ∼= Z2, where

w ∈ N(v) ∩ V (G2), a contradiction. This completes the proof of Claim 15.

If diam(G) = 1, then G is a complete graph and hence Hamiltonian extend-
able. Then we assume that 2 ≤diam(G) ≤ 3. Since diam(G) ≤ 3, at least one of
the sets D1, D2 is empty.

Now we distinguish the following two cases.

Case 1. D1 = ∅ and D2 = ∅. Note that the case when A1 = ∅, B1 6= ∅ and
the case when A1 6= ∅, B1 = ∅ are symmetric; by Claim 15(2), the case when
A1 = ∅, B1 = ∅ and the case when A1 6= ∅, B1 6= ∅ are symmetric.

Therefore, up to symmetry, first we suppose that A1 = ∅ and B1 6= ∅. Then
C1 6= ∅ because G is 2-connected. By Claim 15(2) and (3), B2 = ∅, A2 = ∅. Since
{u, v} is a minimum vertex cut of G, we have C2 6= ∅. Note that G[B1 ∪ C1]
and G[C2] are cliques by Claim 15(1). We can check that G is Hamiltonian
extendable.

Now we suppose that A1 = ∅ and B1 = ∅. Then C1 6= ∅. If A2 = ∅
and B2 = ∅, then C2 6= ∅. Note that G[C1] and G[C2] are cliques. Then G is
Hamiltonian extendable. Then we suppose that at least one of the sets A2, B2 is
nonempty. By symmetry, we suppose that B2 6= ∅. Then |C1| = 1, otherwise, we
suppose that {c1, c′1} ⊆ C1, then by Claim 15(1), G[{u, c1, c′1, w, b2}] ∼= Z2, where
w ∈ N(u)∩V (G2), b2 ∈ B2, a contradiction. If A2 = ∅, then C2 6= ∅ because G is
2-connected. Note that G[B2∪C2] is a clique by Claim 15(1). We can check that
G is Hamiltonian extendable. Then we suppose that A2 6= ∅. We shall consider
two cases whether C2 is empty or not. If C2 = ∅, by Claim 15(4) and (6), |A2| = 2
and |B2| = 2. Then G is a graph of order exactly 7, and by Claim 15(1) and (5),
it is Hamiltonian extendable. Then we suppose that C2 6= ∅. By Claim 15(7),
|A2| = 1 and |B2| = 1. Let A2 = {a2} and B2 = {b2}. If |C2| = 1, say, C2 = {c2},
by Claim 15(1), {a2c2, b2c2} ⊆ E(G). Then a2b2 ∈ E(G), otherwise, G ∼= F6,
a contradiction. Then G is a Hamiltonian extendable graph of 6 vertices. Now
we suppose that |C2| ≥ 2. Note that G[V (G2)] ∼= K|V (G2)| or K|V (G2)| − {a2b2}.
Then G is Hamiltonian extendable.

Case 2. D1 = ∅ and D2 6= ∅ or D1 6= ∅ and D2 = ∅. By symmetry, it
suffices to consider the case that D1 = ∅ and D2 6= ∅. Since diam(G) ≤ 3,
D2 = (N(A2 ∪B2 ∪ C2) ∩ V (G2)) \ (A2 ∪B2 ∪ C2).

Claim 16. The following statements hold.

(1) E(D2, A2) = ∅, E(D2, B2) = ∅. Furthermore, E(D2, C2) 6= ∅.
(2) A1 = ∅, B1 = ∅. Furthermore, |C1| = 1.

(3) A2 = ∅, B2 = ∅.
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(4) There exists no pair of vertices in D2 that have common neighbor in C2.
Furthermore, D2 is an independent set.

Proof. (1) By symmetry, we show that E(D2, A2) = ∅. Otherwise, assume
that there are two vertices a2 ∈ A2 and d ∈ D2 such that a2d ∈ E(G). If
C1 = ∅, by Claim 15(4), |A1| ≥ 2. Let {a1, a′1} ⊆ A1. Then G[{a1, a′1, u, a2, d}] ∼=
Z2, a contradiction. If C1 6= ∅, say, c1 ∈ C1, then G[{c1, u, v, a2, d}] ∼= Z2, a
contradiction. Furthermore, since G2 is connected and D2 6= ∅, E(D2, C2) 6= ∅.

(2) By symmetry, we first show that A1 = ∅. Assume to the contrary
that A1 6= ∅. If C1 = ∅, by Claim 15(4), |A1| ≥ 2. Let {a1, a′1} ⊆ A1, then
G[{a1, a′1, u, c2, d}] ∼= Z2, where c2 ∈ C2 and d ∈ D2, a contradiction. If C1 6= ∅,
say, c1 ∈ C1, then G[{a1, c1, u, c2, d}] ∼= Z2, a contradiction. Furthermore, let
{c1, c′1} ⊆ C1. Since c1c

′
1 ∈ E(G) by Claim 15(1), G[{c1, c′1, u, c2, d}] ∼= Z2, a

contradiction.

(3) By symmetry, we show that A2 = ∅. Otherwise, we suppose that a2 ∈ A2.
Note that there exists c2 ∈ C2 by Claim 16(1). Since a2c2 ∈ E(G) by Claim
15(1) and a2d /∈ E(G) by Claim 16(1), G[{c2, a2, v, d}] ∼= K1,3, where d ∈ D2, a
contradiction.

(4) Assume to the contrary that there are {d1, d2} ⊆ D2 and c2 ∈ C2 such
that {d1c2, d2c2} ⊆ E(G). Since G[{d1, d2, c2, u}] � K1,3, d1d2 ∈ E(G). Then
G[{d1, d2, c2, u, w}] ∼= Z2, where w ∈ N(u) ∩ V (G1), a contradiction. If d1d2 ∈
E(G) and d1c2 ∈ E(G), then d2c2 /∈ E(G). Then G[{u, v, c2, d1, d2}] ∼= Z2, a
contradiction. Then D2 is an independent set. This proves Claim 16.

Since G is 2-connected, by Claim 16(4), for each d ∈ D2, |N(d) ∩ C2| ≥ 2.
Since G is K1,3-free and D2 is an independent set by Claim 16(4), for any pair of
vertices d1, d2 ∈ D2, N(d1) ∩N(d2) = ∅. Since G[C2] is a clique by Claim 15(1),
we can check that G is Hamiltonian extendable. This proves Theorem 14.

In order to show the necessity of Theorems 4, 5, we give some graphs which
are not Hamiltonian extendable (see Figure 2) as follows.

• G0 is the graph obtained from K3,3 by replacing one of the vertices with a clique
Kn−5 such that each vertex in V (Kn−5) is adjacent to each vertex in {u, v, w}.
• G1

∼= Km,m, m ≥ 4.

• G2 is the graph obtained from Kn−3 and an independent set {u, v, w}. Take
two vertices {x, y} in Kn−3 such that each vertex in {u, v, w} is adjacent to each
vertex in {x, y}.
• G3 is the graph obtained from Kn−3. Take two vertices {x, y} in Kn−3 and add
three additional vertices u, v, w and the edges uv, ux, vx, vw, vy and wy.

• G4 is the graph with the vertex set {ui, vi : 0 ≤ i ≤ 6k + 3} and the edge set
{uiui+1, vivi+2, uivi : 0 ≤ i ≤ 6k + 3}, indices are taken modulo 6k + 4, k ≥ 1.
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Note that in [1, 14], the authors show that there is no Hamiltonian path from u0
to u2 in G4.

• G5 is the graph obtained from a cycle v1v2v3 · · · v3kv1 (k is even) by adding
vertex set {wi : 0 ≤ i ≤ k − 1} and adding edge set {v3l+1v3l+3 : 0 ≤ l ≤
k− 1}∪

{
v3t+2v3t+2+ 3k

2
: 0 ≤ t ≤ k−2

2

}
∪
{
wiv3i+3, wiv3i+4 : 0 ≤ i ≤ k− 1

}
. Here

indices are taken modulo 3k. Note that there is no Hamiltonian path between
w0 and w1 in G5.
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Figure 2. Seven graphs which are not Hamiltonian extendable graphs.

• G6 is the graph obtained from eight disjoint cliques
{
K1

m,K
2
m, . . . ,K

8
m

}
with

m ≥ 6. Let {vi1, vi2, . . . , vi6} ⊆ V (Ki
m), 1 ≤ i ≤ 8. For each i, add three

additional vertices
{
ui12, u

i
34, u

i
56

}
such that

{
ui12vi1, u

i
12vi2, u

i
34vi3, u

i
34vi4, u

i
56vi5,

ui56vi6
}
⊆ E(G6) and

{
ui12u

i+1
34

}
⊆ E(G6), where indices are taken modulo 8, and

add edges ui56u
i+4
56 , for each i ∈ {1, 2, 3, 4}. Note that there is no Hamiltonian

path between u156 and u356 in G6.

Proof of Theorem 4. Let G be a connected P3-free graph. Then G is a complete
graph and hence Hamiltonian extendable. Conversely, all graphs in Figure 2 are
2-connected and are not Hamiltonian extendable graphs satisfying that the two
vertices of any 2-vertex cut of G are adjacent. Then A is an induced subgraph
of them. Since G1, G4 have no common induced cycle, A is a tree. Since G3

is K1,3-free, A is a path. Since the maximal induced path of G1 is P3, A is an
induced subgraph of P3.

Proof of Theorem 5. By Theorems 13 and 14, the sufficiency clearly holds. It
remains to show the necessity. All graphs in Figure 2 are 2-connected and are not
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Hamiltonian extendable graphs satisfying that the two vertices of any 2-vertex
cut of G are adjacent. Then each graph contains at least one of {R,S} as an
induced subgraph. Without loss of generality, we suppose that G1 contains R as
an induced subgraph. Then R is K1,t (t ≥ 3) or contains C4.

First we suppose that R contains C4 or K1,t (t ≥ 5). Since G2, G3, G4, G5,
G6 are {C4,K1,t}-free (t ≥ 5), they contain S as an induced subgraph. Since G4,
G5 have no common induced cycle, S is a tree. Since G5 is K1,3-free, S is a path.
Since the maximal induced path of G2 is P3, S is an induced subgraph of P3, a
contradiction.

Next we suppose that R is K1,4. Since G0, G3, G4, G5, G6 are K1,4-free,
they must contain S as an induced subgraph. Note that G4, G5 have no common
induced cycle. Then S is a tree. Since G3 is K1,3-free, S is a path. Since the
maximal induced path ofG0 is P3, S is an induced subgraph of P3, a contradiction.

Finally we suppose that R is K1,3. Since G3, G5, G6 are K1,3-free, they must
contain S as an induced subgraph. Then S is a path or contains a cycle. Note
that the maximal induced path of G3 is P4. If S is a path, then S is an induced
subgraph of P4. Then {R,S} � {K1,3, P4}. Now we suppose that S contains a
cycle. Since G5 is K4-free, S contains no K4. Note that the maximal common
induced cycle of G3, G5, G6 is K3. Furthermore, the maximal common induced
subgraph of G3, G5, G6 contain exactly one K3. Since the maximal induced
subgraphs containing one K3 of G3, G5, G6 are Z2 and B1,1, S is an induced
subgraph of Z2 or B1,1. Therefore, {R,S} � {K1,3, B1,1} or {R,S} � {K1,3, Z2}.
Note that {K1,3, P4} � {K1,3, B1,1}. This proves the necessity.

4. Concluding Remark

We conclude this paper with the following remarks.

• In Theorem 5, we assume that graphs have the order at least 7. In fact, from
the proof of Theorem 5, we know that even if we consider graphs with sufficiently
large order, Theorem 5 also holds because the order of all graphs in the proof of
Theorem 5 may be infinite.

• Since a Hamiltonian extendable graph does not need to be Hamiltonian, we
hope that some sufficient conditions for a Hamiltonian extendable graph will be
improved. Look at the graph G′0 obtained from a non-complete graph G′ of order
n
2 and additional n

2 vertices which are joining with all vertices inG′. Obviously, G′0
is not Hamiltonian extendable graph with δ(G′0) = n

2 . This shows the condition
δ(G′) ≥ n

2 , which guarantees that a graph of order n ≥ 3 is Hamiltonian, may
not guarantee a graph to be Hamiltonian extendable.

• Now we compare the Hamiltonian connected graphs and Hamiltonian extend-
able graphs. In [12], Ore gave some sufficient conditions for graphs of order n to
be Hamiltonian connected.
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Theorem 17 (Ore, [12]). If G satisfies one of the following statements,

(1) δ(G) ≥ n+1
2 ,

(2) any two nonadjacent vertices x, y satisfy that d(x) + d(y) ≥ n+ 1,

(3) |E(G)| ≥ C(n− 1, 2) + 3,

(4) δ(G) ≥ 3, n 6= 6 and |E(G)| = C(n− 1, 2) + 2,

then G is Hamiltonian connected.

Therefore, if G satisfies one of these conditions, then it is Hamiltonian ex-
tendable. Taking the above examples G′0 into consideration, the conditions (1),
(2) are best possible for Hamiltonian extendability. In fact, combining the con-
ditions (3), (4), every graph with |E(G)| ≥ C(n − 1, 2) + 2 is Hamiltonian ex-
tendable: it suffices to consider the case when |E(G)| = C(n − 1, 2) + 2 and
either δ(G) = 2 or n = 6, δ(G) ≥ 3. In the first case, if G is the graph ob-
tained from Kn−1 by adding a vertex which is adjacent to exactly two vertices in
V (Kn−1), then G is Hamiltonian extendable; in the second case, since δ(G) ≥ 3
and n = 6, G has no cut-vertex. Furthermore, since δ(G) ≥ 3 and |E(G)| = 12,
G has no 2-vertex cut. This implies that G is 3-connected. Let {u, v, w} be
a minimum vertex cut of G and V (G) \ {u, v, w} = {x, y, z}. If G − {u, v, w}
has three components, then G is the graph obtained from K3,3 by adding edges
uv, vw, uw (because |E(G)| = 12). Hence G is Hamiltonian extendable. Now
we suppose that G − {u, v, w} has two components and let yz ∈ E(G). Then
either G[{u, v, w}] ∼= P3 and |E({u, v, w}, {x, y, z})| = 9 or G[{u, v, w}] ∼= K3 and
|E({u, v, w}, {x, y, z})| = 8. Then we can check that G is Hamiltonian extend-
able. Note that the graph obtained from Kn−1 − {xy}, where xy ∈ E(Kn−1),
by adding an additional vertex v such that {vx, vy} ⊂ E(G) is not Hamilto-
nian extendable. This implies that the condition |E(G)| ≥ C(n − 1, 2) + 2 for
Hamiltonian extendable is also best possible.
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