DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

D. Božović

Dragana Božović

University of Maribor, FEECS

email: dragana.bozovic@um.si

I. Peterin

Iztok Peterin

FERI, University of MariborSmetanova ulica 172000 Maribor SLOVENIA

email: iztok.peterin@um.si

Title:

Graphs with unique maximum packing of closed neighborhoods

PDF

Source:

Discussiones Mathematicae Graph Theory 42(3) (2022) 779-797

Received: 2019-03-26 , Revised: 2020-01-20 , Accepted: 2020-01-20 , Available online: 2020-02-17 , https://doi.org/10.7151/dmgt.2304

Abstract:

A packing of a graph $G$ is a subset $P$ of the vertex set of $G$ such that the closed neighborhoods of any two distinct vertices of $P$ do not intersect. We study graphs with a unique packing of the maximum cardinality. We present several general properties for such graphs. These properties are used to characterize the trees with a unique maximum packing. Two characterizations are presented where one of them is inductive based on five operations.

Keywords:

unique maximum packing, closed neighborhoods, trees

References:

  1. N. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B 15 (1973) 289–296.
    https://doi.org/10.1016/0095-8956(73)90042-7
  2. B. Brešar, K. Kuenzel and D. F. Rall, Graphs with a unique maximum open packing (2019).
    arXiv: 1901.09859
  3. M.P. Dobson, E. Hinrichsen and V. Leoni, Generalized limited packings of some graphs with a limited number of $P_4$-partners, Theoret. Comput. Sci. 579 (2015) 1–8.
    https://doi.org/10.1016/j.tcs.2014.11.014
  4. R.D. Dutton, Global domination and packing numbers, Ars Combin. 101 (2011) 489–501.
  5. A. Gagarin and V. Zverovich, The probabilistic approach to limited packings in graphs, Discrete Appl. Math. 184 (2015) 146–153.
    https://doi.org/10.1016/j.dam.2014.11.017
  6. R. Gallant, G. Gunther, B. Hartnell and D.F. Rall, Limited packings in graphs, Discrete Appl. Math. 158 (2010) 1357–1364.
    https://doi.org/10.1016/j.dam.2009.04.014
  7. G. Gunther, B.L. Hartnell, L.R. Markus and D.F. Rall, Graphs with unique minimum dominating sets, Congr. Numer. 101 (1994) 55–63.
  8. T.W. Haynes and M.A. Henning, Trees with unique minimum total dominating sets, Discuss. Math. Graph Theory 22 (2002) 233–246.
    https://doi.org/10.7151/dmgt.1172
  9. M.A. Henning, C. Löwenstein and D. Rautenbach, Dominating sets, packings, and the maximum degree, Discrete Math. 311 (2011) 2031–2036.
    https://doi.org/10.1016/j.disc.2011.04.030
  10. G. Hopkins and W. Staton, Graphs with unique maximum independent sets, Discrete Math. 57 (1985) 245–251.
    https://doi.org/10.1016/0012-365X(85)90177-3
  11. M.-J. Jou and G.J. Chang, The number of maximum independent sets in graphs, Taiwanese J. Math. 4 (2000) 685–695.
    https://doi.org/10.11650/twjm/1500407302
  12. K. Junosza-Szaniawski and P. Rzążewski, On the number of $2$-packings in a connected graph, Discrete Math. 312 (2012) 3444–3450.
    https://doi.org/10.1016/j.disc.2012.02.005
  13. A.P. Kazemi, B. Pahlavsay and R.J. Stones, Cartesian product graphs and $k$-tuple total domination, Filomat 32 (2018) 6713–6731.
    https://doi.org/10.2298/FIL1819713K
  14. S. Klavžar, I. Peterin and I.G. Yero, Graphs that are simultaneously efficient open domination and efficient closed domination graphs, Discrete Appl. Math. 217 (2017) 613–621.
    https://doi.org/10.1016/j.dam.2016.09.027
  15. A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225–233.
    https://doi.org/10.2140/pjm.1975.61.225
  16. D.A. Mojdeh, B. Samadi, A. Khodkar and H.R. Golmohammadi, On the packing numbers in graphs, Australas. J. Combin. 71 (2018) 468–475.
  17. I. Sahul Hamid and S. Saravanakumar, Packing parameters in graphs, Discuss. Math. Graph Theory 35 (2015) 5–16.
    https://doi.org/10.7151/dmgt.1775

Close