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Abstract

A packing of a graph G is a subset P of the vertex set of G such that the
closed neighborhoods of any two distinct vertices of P do not intersect. We
study graphs with a unique packing of the maximum cardinality. We present
several general properties for such graphs. These properties are used to char-
acterize the trees with a unique maximum packing. Two characterizations
are presented where one of them is inductive based on five operations.
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1. Introduction

The packing number of a graph G denoted by ρ(G) is the maximum cardinality
of closed neighborhoods that can be packed into a graph such that they have
pairwise empty intersection. All vertices that are in the centers of mentioned
neighborhoods form a packing set. Packing number has been studied as a natural
lower bound for the domination number γ(G). One of the first results of that
type is from Meir and Moon [15], where it was shown that ρ(T ) = γ(T ) for every
tree T (in a different notation). It is easy to see that while the numbers are the
same, the sets that yield both ρ(T ) and γ(T ) are often different.

The class of graphs with ρ(G) = γ(G), where closed neighborhoods form
a partition of V (G), is called efficient closed dominated graphs. In such a case
we call a minimum dominating set a 1-perfect code. The study of perfect codes
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in graphs was initiated by Biggs [1]. Later it was intensively studied and we
recommend [14] for further information and references.

In the last decade the packing number became more interesting for itself not
only in connection with the domination number. The relationship between the
packing number and the maximal packing of minimum cardinality, also known as
the lower packing number, is investigated in [17]. In [16] a connection between
the packing number and the double domination in the form of an upper bound is
presented. Graphs for which their packing number equals to the packing number
of their complement are described in [4]. In [9] it was shown that the domination
number can be also bounded from above by the packing number multiplied by
the maximum degree of a graph. The inequality for the packing number of Vizing
conjecture type was proven in [13].

A generalization of packing presented in [6] is the k-limited packing where
every vertex can have at most k neighbors in a k-limited packing set S. A prob-
abilistic approach to k-limited packings can be found in [5]. A further general-
ization, that is, the generalized limited packing of the k-limited packing, see [3],
brings a dynamic approach with respect to the vertices of G, where v ∈ V (G)
can have a different number of neighbors kv for every vertex v in a generalized
limited packing. The problem of generalized limited packing is NP-complete, but
solvable in polynomial time for P4-tidy graphs as shown in [3].

In this work we study the graphs with a unique maximum packing. In gen-
eral one can have many maximum packings as shown in [12] where an asymptotic
bounds for the maximum and the minimum number of packings in a graphs of
fixed order are established. We present properties of graphs with a unique max-
imum packing. One can find sets with several different properties for which this
(uniqueness of a set with minimum or maximum cardinality) was considered in
the literature. For example, see [10] for graphs with a unique maximum inde-
pendent set, [7] for graphs with a unique minimum dominating set and [8] for
trees with a unique minimum total dominating set. In [2] graphs with a unique
maximum open neighborhood packing are considered. In particular, it was shown
that the classes of graphs with a unique maximum open packing, with a unique
maximum packing and with a unique maximum independent set are polynomially
equivalent from the recognition point of view. Another approach could also be to
count the number of maximum/minimum cardinality sets of a certain type as in
[11] for the number of maximum independent sets.

Throughout this work we consider finite undirected simple graphs. Given a
vertex v of a graph G, N(v) represents the open neighborhood of v, i.e., the set
of all neighbors of v in G and the degree of v is deg(v) = |N(v)|. The closed

neighborhood of v ∈ V (G) is N [v] = N(v) ∪ {v}. For any two vertices u and v,
the distance d(u, v) between u and v is the minimum number of edges on a path
between u and v. Given a subset of vertices S of G, we use G− S to denote the
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graph obtained from G by removing all the vertices from S and the edges incident
with them. If S = {v} for some vertex v, then we simply write G− v. Also, the
subgraph of G induced by D ⊂ V (G) will be denoted by G[D].

A set P ⊂ V (G) is a packing of G if d(u, v) > 2 for every pair of distinct
vertices u and v from P . The packing number of G is the maximum cardinality of
any packing of G and is denoted by ρ(G). A ρ(G)-set is a packing of cardinality
ρ(G). If there exists only one maximum packing P of a graph G, then G is a
graph with a unique ρ(G)-set.

Let G be a graph. A leaf of G is a vertex of degree one. A support vertex

of G is a vertex of degree at least two adjacent to a leaf. A strong support vertex

of G is a support vertex of G that is adjacent to at least two leaves. Let T be a
tree, v an arbitrary vertex of degree k and v1, . . . , vk neighbors of v. We denote
by T v

1 , . . . , T
v
k the trees in T − v such that vi ∈ T v

i for every i ∈ {1, . . . , k}. A root

of a tree T is a special designated vertex of T . Let u and v be adjacent in T such
that d(u, r) > d(v, r) for a root r. In such a case we call u a down-neighbor of v
and v is the up-neighbor of u.

2. Basic Properties and the Structure of Graphs with Unique

ρ(G)-set

We start with several basic properties of graphs with a unique ρ(G)-set, that will
be important later.

Lemma 1. If a graph G has a unique ρ(G)-set P , then every leaf of G belongs

to P .

Proof. Let P be a unique ρ(G)-set. To prove the lemma assume there exists a
leaf ℓ 6∈ P . If the support vertex x of ℓ belongs to P , then P ′ = (P − {x}) ∪ {ℓ}
is a ρ(G)-set of G that is different from P , which is a contradiction with the
assumption. So x 6∈ P . If some neighbor of x, say y, is in P , then P ′′ =
(P −{y})∪{ℓ} is a ρ(G)-set of G that is different from P , the same contradiction
again. Thus N [x]∩P = ∅. This yields a contradiction with maximum cardinality
of P because P ∪ {ℓ} is a packing of bigger cardinality than P . Hence, all leaves
must be in P .

Lemma 2. If G is a graph with a unique ρ(G)-set P , then G has no strong support

vertex.

Proof. Suppose that G has a strong support vertex v. That means v has at least
two leaves ℓ1 and ℓ2 as its neighbors. Because all leaves of G belong to P by
Lemma 1, we have ℓ1, ℓ2 ∈ P , such that d(ℓ1, ℓ2) = 2. This is a contradiction with
the definition of a packing P .



782 D. Božović and I. Peterin

By the definition, every pair of different vertices of a packing must be at
distance that is at least three. However, vertices at distance three are obligatory
in the case of a unique ρ(G)-set as it can be seen from the following lemma.

Lemma 3. Let G be a graph on at least two vertices. If G has a unique ρ(G)-set
P , then for every vertex v ∈ P and its neighbor v′ there exists a vertex u ∈ P
such that d(v, u) = 3 and v′ is on a shortest path between v and u.

Proof. Suppose there exists a vertex v ∈ P and its neighbor v′ such that for
every vertex u ∈ P − {v} either d(v, u) > 3 or d(v, u) = 3 and d(v′, u) > 2. The
set (P−{v})∪{v′} is also a ρ(G)-set which is a contradiction with the assumption
that P is a unique ρ(G)-set.

Notice that in the above lemma two or more neighbors of v ∈ P can be on a
shortest path to the same vertex u ∈ P with d(v, u) = 3. A small example for this
is presented by a graph G defined on the six-cycle u1u2u3u4u5u6u1 together with
edges u2u5 and u3u6, where P = {u1, u4} is the unique ρ(G)-set. This cannot
happen in the case of trees, because there is a unique shortest path between every
pair of vertices.

Corollary 4. Let T be a tree on at least two vertices. If T has a unique ρ(T )-set
P , then for every vertex v ∈ P of degree k there exist different vertices u1, . . . , uk ∈
P , such that d(v, ui) = 3 and ui ∈ V (T v

i ) for every i ∈ {1, . . . , k}.

The above corollary guarantees that in a tree with a unique ρ(T )-set P , for
any v ∈ P there exists a vertex in P at distance three from v in the direction of
each of its neighbors. This is a key point in the first characterization of trees with
a unique ρ(T )-set, see Theorem 6.

Next we present the structure of a graph G with a unique ρ(G)-set P (white
squared vertices in Figure 1). The set V (G) − P can be partitioned into sets Q
(white vertices in Figure 1) and R (black vertices in Figure 1), where Q is the set
of all neighbors of vertices from P , and R = V (G)− (P ∪Q). Clearly, the set R
may be empty, and Q is empty if and only if G =

⋃
K1. From the definition of a

unique ρ(G)-set we infer the following properties:

• P is an independent set;

• for every vertex v ∈ P there exists a vertex u ∈ P with d(v, u) = 3 unless G
has no edges (by Lemma 3);

• every vertex from Q has exactly one neighbor in P ;

• for every vertex v′ ∈ Q there exists a vertex v ∈ P with d(v, v′) = 2 (by
Lemma 3);

• there are no edges between vertices from P and vertices from R;
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• every vertex u in R has at least two neighbors in Q (otherwise, if w is the only
neighbor of u from Q, where v ∈ P is a neighbor of w, then (P − {v}) ∪ {u}
is also a ρ(G)-set, a contradiction);

• G[Q] and G[R] are arbitrary, where G[Q] has no isolated vertices (the latest
follows by Lemma 3).

P

Q

R

. . .

. . .

. . .

Figure 1. A partition of vertices of a graph G with a unique ρ(G)-set P .

We continue with a lemma that describes what must be going on around a
vertex from R in a graph with a unique maximum packing.

Lemma 5. Let G be a graph which has a unique ρ(G)-set P . If G contains a

vertex v ∈ R, then there exist paths xyzu and x′y′z′u′ such that x, x′, u, u′ ∈ P ,

y, y′, z, z′ ∈ Q and vy, vy′ ∈ E(G) (see Figure 2). Moreover, x 6= x′ and y 6= y′.
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Figure 2. Possible subgraphs of a graph containing a vertex v ∈ R.

Proof. Let v be a vertex from the set R. If there is no vertex from P at distance
2 from v, then we have a contradiction with the maximality of P since P ∪ {v} is
a packing. Let x ∈ P be at distance two from v, and let y be a common neighbor
of x and v. Clearly, deg(y) > 2 by the comment in the fourth item of before
mentioned properties. Because P is the unique ρ(G)-set, (P −{x})∪{y} is not a
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packing. This implies that there exists a vertex u ∈ P at distance two from y. Let
the common neighbor of u and y be z. Clearly, z ∈ Q and therefore different from
v. If x is the only vertex from P at distance 2 from v, then (P −{x})∪{v} is also
a ρ(G)-set, a contradiction with the uniqueness of P again. Therefore there exists
x′ ∈ P so that d(v, x′) = 2 and x 6= x′. Let y′ be a common neighbor of v and x′.
Clearly, y′ ∈ Q and y 6= y′ because otherwise d(x, x′) ≤ 2 which is not possible.
Assume that there exist no z′ ∈ Q and u′ ∈ P such that d(v, z′) = 2 = d(x′, z′)
and d(v, u′) = 3 = d(x′, u′). In this case (P − {x′}) ∪ {y′} is a ρ(G)-set which is
a contradiction with the uniqueness of P again.

The possibilities of Lemma 5 are presented in Figure 2. The four graphs are
possible subgraphs of a graph with a unique maximum packing P . While the
first three graphs are themselves graphs with a unique ρ(G)-set P , the last one
is not such. The minimum example of a graph that has a unique ρ(G)-set P and
contains the rightmost graph of Figure 2 as a subgraph can be obtained if we
add four additional vertices t, t′, s, s′ together with edges zt, tt′, z′s, and ss′, see
Figure 3.

v

x = u′

y

z

u = x′

z′

y′

tt′

s s′

Figure 3. The minimum example of a graph that has a unique ρ(G)-set P and contains
the rightmost graph of Figure 2 as a subgraph.

3. Trees with a Unique ρ(T )-set

In this section we limit ourselves to trees. We present two characterizations of
trees with a unique ρ(T )-set. First describes the properties of a unique ρ(T )-set.
For this, lemmas from the previous sections come in handy. In particular, the
only possible outcome of Lemma 5 in the case of trees, is the leftmost tree of
Figure 2.

Recall that P denotes a ρ(T )-set, set Q contains all neighboring vertices of
P and R = V (T )− (P ∪Q).

Theorem 6. Let T be a tree and let P be a ρ(T )-set. A set P is a unique ρ(T )-set
if and only if P satisfies the following conditions.
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(i) Every leaf is in P .

(ii) For every v ∈ P there exists at least one vertex from P at distance 3 from v
in each T v

i , 1 ≤ i ≤ deg(v).

(iii) For every v ∈ R there exist vertex-disjoint paths xyzu and x′y′z′u′ such that

x, x′, u, u′ ∈ P , y, y′, z, z′ ∈ Q and vy, vy′ ∈ E(T ) (see the leftmost graph of

Figure 3).

Proof. If a tree T has a unique ρ(T )-set P , then (i) follows from Lemma 1, (ii)
follows from Corollary 4 and (iii) from Lemma 5.

To prove the converse suppose that (i), (ii) and (iii) hold for a ρ(T )-set P .
We proceed by induction on the number of vertices n of T . If n = 1, then
T ∼= K1 which is the smallest tree with a unique ρ(T )-set and the base of the
induction is clear. Similar holds when T ∼= P4 where P contains both leaves. We
will denote by T ′ a tree obtained from T by deleting some vertices and by P ′

its ρ(T ′)-set. Assume on the way to a contradiction that there exists a ρ(T )-set
P1 6= P together with Q1 and R1 as usual. Let r ∈ V (T ) be a root of T . Choose
a vertex t ∈ (P − P1) ∪ (P1 − P ) at the maximum distance from r.

Suppose first that t ∈ P1 − P . By (i) t is not a leaf and there exists a down-
neighbor v of t. By the choice of t the sets P ∩ V (T t

v) and P1 ∩ V (T t
v) must be

the same. If v ∈ Q, then v has a down-neighbor w in P and by the choice of t
also w ∈ P1. Since d(w, t) = 2 we have a contradiction with w, t ∈ P1. So v ∈ R.

Let first t ∈ Q. Every vertex from Q has a neighbor, say u, in P . If u is a
down-neighbor of t, then u ∈ P ∩ P1 by the choice of t. This is a contradiction
because we have adjacent vertices t and u in a ρ(T )-set P1. Therefore u is the
up-neighbor of t. By property (ii) there exists a vertex z ∈ P such that d(u, z) = 3
and d(t, z) = 2. Clearly, z is a descendant of t and is in P1 by the choice of t.
Again a contradiction with P1 being a ρ(T )-set as t, z ∈ P1.

Let now t ∈ R. By property (iii) there exist two paths P4 and at least one
of them is connected to t over a down-neighbor. Let this path be xyzu where
x, u ∈ P and y is a down-neighbor of t. By the choice of t, we have x ∈ P1, which
yields the same contradiction again with t, x ∈ P1 and d(t, x) = 2.

Hence there is no vertex in P1 − P at the maximum distance from r, which
means that t ∈ P − P1.

Case 1. t is not a leaf. If t is not a leaf there exists a down-neighbor v of t.
By the choice of t the sets P ∩ V (T t

v) and P1 ∩ V (T t
v) must be the same.

Let T ′ = T − V (T t
v) and let P ′ = P ∩ V (T ′). If t is not a leaf of T ′, then

(i) holds for P ′ in T ′ since (i) holds for all the leaves in T . Otherwise t is a leaf
and t ∈ P ′. So (i) holds for P ′. Clearly, (ii) also holds for P ′ in T ′ since it holds
for P in T . Let w be an arbitrary vertex from R′ = R ∩ V (T ′). Notice that
d(t, w) ≥ 2 since t ∈ P . Clearly, (iii) holds for R′, P ′ and Q′ = Q ∩ V (T ′) in T ′

whenever d(t, w) > 2, since it holds for R,P and Q in T . So let d(t, w) = 2 and
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let xyzu and x′y′z′u′ be the paths in T such that x, x′, u, u′ ∈ P , y, y′, z, z′ ∈ Q
and vy, vy′ ∈ E(T ). (Notice that they exist in T by (iii).) Because t ∈ P and
d(t, w) ≥ 2 both mentioned paths must be in T ′ too, and (iii) holds for R′, P ′ and
Q′ in T ′ as well.

By the induction hypothesis T ′ has a unique ρ(T ′)-set P ′. So |P ′| > |P ′

1|,
where P ′

1 = P1 ∩ V (T ′). Because |P ∩ V (T t
v)| = |P1 ∩ V (T t

v)| it follows that
|P | > |P1| which is a contradiction with P1 being a ρ(T )-set.

Case 2. t is a leaf. Denote by v the up-neighbor of t. Clearly, v 6= r by the
choice of t and let w be the up-neighbor of v. By (ii) there exists a vertex x ∈ P
such that d(t, x) = 3 and d(v, x) = 2. Denote by y the common neighbor of x and
v. Notice that one of v, w must be in P1, since otherwise P1 ∪ {t} is a packing of
cardinality greater than P . (Here a down-neighbor of v cannot be in P1 because
this down-neighbor would be in P1 − P at the same distance from r as t, which
is not possible.)

Subcase 2.1. w = y and x is the up-neighbor of w. Let T ′ = T − V (T x
w) and

let P ′ = P ∩V (T ′), see Figure 4. Properties (i), (ii) and (iii) hold for P ′ together
with Q′ = Q ∩ V (T ′) and R′ = R ∩ V (T ′) by the same reasons as in Case 1.
By the induction hypothesis T ′ has a unique ρ(T ′)-set P ′. So |P ′| > |P ′

1|, where
P ′

1 = P1∩V (T ′). There is no other vertex from P1 in T x
w than w or v at the same

distance from r as w or v. There is also no other vertex from P1 −P at the same
distance to r as t by the choice of t. Moreover P and P1 equals for vertices that
are farther away from r as t. Therefore, |P ∩V (T x

w)| ≥ |P1∩V (T x
w)|. All together

we have |P | > |P1| which is a contradiction with P1 being a ρ(T )-set.

t

v

x

w = y

T ′

Figure 4. The case when t is a leaf, w = y and x is the up-neighbor of w.

Subcase 2.2. w = y and x is a down-neighbor of w. In this case let z be
the up-neighbor of w and we set T ′ = T − V (Tw

z ), see Figure 5. Notice that
we did the cut in somewhat reversed order because now r /∈ V (T ′). Again let
P ′ = P ∩ V (T ′), Q′ = Q ∩ V (T ′) and R′ = R ∩ V (T ′). Property (i) holds for
P ′ in T ′ since w has two down-neighbors and is not a leaf in T ′ and since (i)
holds for P in T . Properties (ii) and (iii) hold for P ′, Q′ and R′ by the same
reason as before. By the induction hypothesis T ′ has a unique ρ(T ′)-set P ′. So
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|P ′| > |P ′

1|, where P ′

1 = P1 ∩ V (T ′). Again either v or w is in P1. Hence a vertex
from P1 is closer or at the same distance to z as x ∈ P and with this to Tw

z .
Therefore P1 ∩ V (Tw

z ) cannot have more vertices than |P ∩ V (Tw
z )| and we have

|P ∩ V (Tw
z )| ≥ |P1 ∩ V (Tw

z )|. It follows that |P | > |P1| which is a contradiction
with P1 being a ρ(T )-set.

t

v x

w = y

z

T ′

Figure 5. The case when t is a leaf, w = y and x is a down-neighbor of w.

Subcase 2.3. w 6= y. With this y is a down-neighbor of v and x is a down-
neighbor of y. First, if the up-neighbor z of w is in P , then we rename z to x
and w to y and we obtain Subcase 2.1, see Figure 6(a). Similar holds if w has a
down-neighbor z in P and we obtain Subcase 2.2 by renaming z = x and w = y,
see Figure 6(b). Therefore w must be in R and let z be its up-neighbor. We set
T ′ = T − V (T z

w). Clearly, z /∈ P . If z ∈ Q, then it has a neighbor z′ in P ∩ V (T ′)
and there exists s ∈ P with d(z′, s) = 3 and d(z, s) = 2 by the property (ii),
see Figure 6(c). The common neighbor of s and z together with z′ assures that
z is not a leaf in T ′. If z ∈ R, then it has at least two neighbors in Q ∩ V (T ′)
by property (iii) and z is again not a leaf, see Figure 6(d). Therefore property
(i) holds for T ′. Properties (ii) and (iii) again hold for T by the same reason as
before. By the induction hypothesis T ′ has a unique ρ(T ′)-set P ′ and |P ′| > |P ′

1|
for P ′

1 = P1 ∩ V (T ′). As mentioned either v or w must be in P1 and by the same
reason as in Subcase 2.1 we have |P ∩ V (Tw

z )| ≥ |P1 ∩ V (Tw
z )|. Hence |P | > |P1|

follows, which is the final contradiction with P1 being a ρ(T )-set.

The conditions (i), (ii) and (iii) from the last theorem can be checked in
polynomial time for a given set P . This implies that the problem of recognizing
trees with a unique ρ(T )-set is in the class NP . Moreover, by checking all three
possibilities (either r ∈ P or r ∈ Q or r ∈ R) one can find the packing num-
ber of T and also count the number of maximum-sized solutions using dynamic
programming. So, one can decide in polynomial time whether a given tree has a
unique maximum packing.

We continue with an inductive characterization. Let T ′ be a tree with a
unique ρ(T ′)-set P ′. We introduce five operations to construct from T ′ a larger
tree T with a unique ρ(T )-set. We will prove that every tree T with a unique
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x

T ′

(d)

Figure 6. The cases when w 6= y.

ρ(T )-set can be constructed from K1 with these operations. The operations are
illustrated in Figure 7 where we use the notation introduced in Section 2: a vertex
from P ′ (or P ) is white squared, a vertex from Q′ (or Q) is white circled and a
vertex from R′ (or R) is black circled.

(O1) For y ∈ P ′ we obtain T from T ′ by adding a path xuv and an edge xy.

(O2) For x ∈ Q′ we obtain T from T ′ by adding a path uv and an edge ux.

(O3) For a path ℓkjzj′k′ℓ′ and vertices i and i′ together with edges ij and i′j′,
where i, i′, ℓ, ℓ′ ∈ P ′, j, j′, k, k′ ∈ Q′ and z ∈ R′, we obtain T from T ′ by
adding a path vuxy and an edge xz.

(O4) For a path v′u′x′y′, where u′, x′ ∈ Q′ and v′, y′ ∈ P ′, we obtain T from T ′

by adding a vertex z, a path vuxy and edges x′z and zx.

(O5) For a vertex w ∈ R′ we obtain T from T ′ by adding a path vuxzx′u′v′ and
vertices y and y′ together with edges xy, x′y′ and zw.

It is easy to see that no operation O1 −O5 can be replaced by a combination
of other operations, so these five operations are independent. The paths P3k+1

can be obtained from K1 only by k times applying the operation O1, so operation
O1 is needed. The sequence of operations O1, O2 gives us a tree with a unique
maximum packing that cannot be obtained in any other way, see Figure 8(a). Also
the sequence O1, O4 results in the leftmost tree of Figure 2, so operation O4 is
needed. In addition, if to the previous sequence we add either O3 to get O1, O4, O3

or O5 to get O1, O4, O5 we again obtain two trees that cannot be obtained in any
other way, see Figure 8(b) and 8(c). Hence we need all five operation and since
the mentioned sequences are unique, the operations O1 −O5 are independent.

Theorem 7. A tree T has a unique ρ(T )-set P if and only if T can be obtained

from K1 by a sequence of operations O1 −O5.
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T ′O1:
y x u v
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x u v
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y′
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Figure 7. Operations O1 −O5.

(a) (b) (c)

Figure 8. Trees obtained from K1 by applying operations O1 and O2 (a), O1, O4 and O3

(b) and O1, O4 and O5 (c).

Proof. Assume first that T is a tree obtained from K1 by a sequence of operations
O1 − O5. We will show that T is a tree with a unique ρ(T )-set by induction on
the length k of the mentioned sequence. If k = 0, then T ∼= K1 which is a tree
with a unique ρ(T )-set. Let now k > 0 and let T ′ be a tree obtained from K1

by using the same sequence as for T , but without including the last step. By the
induction hypothesis, T ′ is a tree with a unique ρ(T ′)-set P ′. We will use the
notation presented in Figure 7.
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Let T be a tree obtained from T ′ by operation O1. Clearly, P = P ′ ∪ {v}
is a maximum packing of T because P ′ is a maximum packing of T ′. Let P1 be
a packing of T such that either u ∈ P1 or x ∈ P1. We have P1 ∩ V (T ′) 6= P ′,
because y /∈ P1. By the uniqueness of P ′ we have |P1 ∩ V (T ′)| < |P ′|. Therefore
|P1| < |P | and P1 is not a ρ(T )-set. Hence P is the unique ρ(T )-set.

Assume now T is obtained from T ′ by operation O2. We will prove that T
has a unique ρ(T )-set P = P ′∪{v}. Because x ∈ Q there exists y ∈ P ′ which is a
neighbor of x. Let P1 be a packing of T such that u ∈ P1. Clearly, P1∩V (T ′) 6= P ′,
because y /∈ P1. By the uniqueness of P ′ we have |P1 ∩ V (T ′)| < |P ′|. Therefore
|P1| < |P | and P1 is not a ρ(T )-set. Hence P is the unique ρ(T )-set.

Suppose next that we apply operation O3 on T ′ to get T . If u ∈ P (or x ∈ P ),
then P ′ ∪ {u} (or P ′ ∪ {x}) has |P ′| + 1 elements. But setting P = P ′ ∪ {v, y}
we get a packing of T with |P ′| + 2 elements, so P ′ ∪ {u} (or P ′ ∪ {x}) is not a
ρ(T )-set. Notice also that every packing P1 of T with |P1∩V (T ′)| < |P ′| has fewer
than |P ′|+ 2 elements. Meaning that T has a unique ρ(T )-set P = P ′ ∪ {v, y}.

If operation O4 is applied to get T from T ′, then u and x do not belong to
a ρ(T )-set by the same argument as in the case of O3. Suppose that there exists
a packing P1 of T such that z ∈ P1. Clearly, y, y′ /∈ P1 and |P1 ∩ V (T ′)| < |P ′|
because P ′ is the unique maximum packing of T ′. This implies that |P1| < |P |
for P = P ′ ∪ {v, y}. Therefore, P1 is not a maximum packing of T and P is the
unique ρ(T )-set.

Finally suppose that T is obtained from T ′ by operation O5. If a packing of T ′

contains x (or x′), then P ′∪{x, y′, v′} (or P ′∪{x′, y, v}) has |P ′|+3 elements and
no packing of T that contains x (or x′) contains more elements. Similarly, if u ∈ P
(or u′ ∈ P ), then P ′∪{u, y′, v′} (or P ′∪{u′, y, v}) contains |P ′|+3 elements, which
is again best possible in this case. If z ∈ P , then P ′ ∪ {z, v, v′} has also |P ′| + 3
elements and more is not possible. But setting P = P ′ ∪ {v, y, v′, y′} we get a
packing of T with |P ′|+4 elements, so any packing with |P ′|+3 elements or fewer
is not a ρ(T )-set. Meaning that T has a unique ρ(T )-set P = P ′ ∪ {v, y, v′, y′}.

To prove the converse, let T be a tree with a unique ρ(T )-set P . Let r ∈ V (T )
be a vertex of T and consider T as a rooted tree with the root r. We proceed by
induction on the number of vertices of T . If T ∼= K1, then T is the smallest tree
with a unique ρ(T )-set, hence the base of the induction is clear. Let v be a leaf
of T that is at the maximum distance from r. Obviously v 6= r and let u be the
support vertex of v. Clearly, u 6= r because T has a unique ρ(T )-set. Since v is
a leaf of T that is at the maximum distance from r we know that deg(u) = 2 by
Lemma 2. Let x be the up-neighbor of u. Clearly, x /∈ P because d(x, v) = 2.
Assume x ∈ R. By Lemma 5 we immediately get a contradiction since v is a leaf
at the largest distance from r. Therefore x ∈ Q. Let y be a neighbor of x that
is in P . If T has only four vertices, then T ∼= P4 = vuxy and by deleting v, u
and x we obtain K1 = y. Clearly, we can obtain T from K1 by operation O1
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and we are done. So we may assume that z is the up-neighbor of x and let w be
the up-neighbor of z (if it exists). If x has a neighbor in R, then it must be the
up-neighbor of x by Lemma 5 again. Denote by T ′ a tree obtained from T by
deleting some vertices and by P ′ its ρ(T ′)-set. We distinguish the following cases.

Case 1. z /∈ R.

Subcase 1.1. deg(x) = 2. Notice that in this case z = y. We obtain a tree
T ′ from T by deleting vertices x, u and v, see Figure 9. Assume that T ′ has two
ρ(T ′)-sets P1 and P2. Then P1 ∪ {v} and P2 ∪ {v} are both ρ(T )-sets which is a
contradiction with the uniqueness of the ρ(T )-set. So T ′ has a unique ρ(T ′)-set.
By the induction hypothesis T ′ can be built from K1 by a sequence of operations
O1 −O5. If we add the operation O1 at the end of this sequence, then we obtain
T from K1 by a sequence of operations O1 −O5.

v

u

x

z = yT ′

Figure 9. The case when z /∈ R and deg(x) = 2.

Subcase 1.2. deg(x) ≥ 3. Let z1, . . . , zk be down-neighbors of x (different
from u and different from y in the case that y is a down-neighbor of x). Again
every zi, 1 ≤ i ≤ k, is not in R by Lemma 5 and the choice of v and is therefore
in Q. Notice that every down-neighbor of zi, 1 ≤ i ≤ k, must be a leaf by the
choice of v. By Lemma 2 every zi, 1 ≤ i ≤ k has exactly one down-neighbor wi

which is in P since y ∈ P .
If z = y, then we obtain a tree T ′ from T by deleting a subtree rooted at x,

see Figure 10. If there exist two ρ(T ′)-sets P1 and P2 with |P | − 1− k elements,
then P1 ∪ {v, w1, . . . , wk} and P2 ∪ {v, w1, . . . , wk} are both ρ(T )-sets which is a
contradiction with ρ(T )-set being unique. So T ′ has a unique ρ(T ′)-set. By the
induction hypothesis T ′ can be built from K1 by a sequence of operations O1−O5.
If we add the operation O1 for x, u and v and k times operation O2 for zi and wi,
1 ≤ i ≤ k, at the end of this sequence, then we obtain T from K1 by a sequence
of operations O1 −O5.

If z 6= y (so y is a down-neighbor of x), then z ∈ Q as d(y, z) = 2. So z has
one neighbor t which is in P . Denote with a1, . . . , aℓ down-neighbors of z different
from t (if t is a down-neighbor). Every ai, 1 ≤ i ≤ ℓ, is not in R by Lemma 5
and by the choice of v. Also every ai, 1 ≤ i ≤ ℓ is not in P because d(t, ai) = 2
and must therefore be in Q. Every vertex from Q has exactly one neighbor in
P and let bi be such a neighbor of ai, 1 ≤ i ≤ ℓ. Because z is not in P , bi is
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v

u

x

z = y

z1 zk

w1 wk

· · ·

· · ·

T ′

Figure 10. The case when z /∈ R, deg(x) ≥ 3 and z = y.

a down-neighbor of ai. In addition every ai, 1 ≤ i ≤ ℓ, can have ci,1, . . . , ci,ji
down-neighbors which must be in Q (they cannot be in R by Lemma 5 and are
not in P as d(ci,s, bi) = 2 for 1 ≤ s ≤ ji). Furthermore, every ci,s, 1 ≤ i ≤ ℓ and
1 ≤ s ≤ ji, has exactly one down-neighbor di,s by the choice of v and by Lemma
2 and di,s must be in P by Lemma 1.

If w = t we obtain a tree T ′ from T by deleting a subtree rooted at z, see
Figure 11. If there exist two ρ(T ′)-sets P1 and P2 with |P |−2−k−ℓ−j1−· · ·−jℓ
elements, then for

A = {v, y, w1, . . . , wk, b1, . . . , bℓ, d1,1, . . . , d1,ji , . . . , dℓ,1, . . . , dℓ,jℓ}

sets P1 ∪A and P2 ∪A are both ρ(T )-sets which is a contradiction with ρ(T )-set
being unique. So T ′ has a unique ρ(T ′)-set. By the induction hypothesis T ′ can
be built from K1 by a sequence of operations O1−O5. If we add the operation O1

for z, x and y and operation O2 once for u and v, k times for zi and wi, 1 ≤ i ≤ k,
ℓ times for ai and bi, 1 ≤ i ≤ ℓ, and j1 + · · ·+ jℓ times for ci,q and di,q, 1 ≤ i ≤ ℓ
and 1 ≤ q ≤ ji, at the end of this sequence, then we obtain T from K1 by a
sequence of operations O1 −O5.

v

u

x

z

z1 zk

w1 wk

yb1 bℓ

w = t

a1 aℓ

c1,1 c1,j1 cℓ,1 cℓ,jℓ

d1,1 d1,j1 dℓ,1 dℓ,jℓ

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

T ′

Figure 11. The case when z /∈ R, deg(x) ≥ 3, z 6= y and w = t.

If w 6= t (so t is a down-neighbor of z) we obtain a tree T ′ from T by
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deleting vertices u and v, see Figure 12. Notice that no ρ(T ′)-set contains x since
(P ′ − {x}) ∪ {y, t, w1, . . . , wk} would be a packing of cardinality greater than a
ρ(T ′)-set. If there exist two ρ(T ′)-sets P1 and P2 with |P | − 1 elements, then
P1 ∪ {v} and P2 ∪ {v} are both ρ(T )-sets which is a contradiction with ρ(T )-set
being unique. So T ′ has a unique ρ(T ′)-set. By the induction hypothesis T ′ can
be built from K1 by a sequence of operations O1−O5. If we add the operation O2

for u and v at the end of this sequence, then we obtain T from K1 by a sequence
of operations O1 −O5.

v

u

x

z

z1 zk

w1 wk

yb1 bℓ

w

ta1 aℓ

c1,1 c1,j1 cℓ,1 cℓ,jℓ

d1,1 d1,j1 dℓ,1 dℓ,jℓ

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

T ′

Figure 12. The case when z /∈ R, deg(x) ≥ 3, z 6= y and w 6= t.

Case 2. z ∈ R. In this case there exists y ∈ P that is a down-neighbor
of x otherwise also (P − {v}) ∪ {u} is a ρ(T )-set which is not possible. Denote
by z1, . . . , zk down-neighbors of x (if they exist) different from y and u. Clearly,
every zi, 1 ≤ i ≤ k, is in Q as they cannot be in R by Lemma 5 nor in P because
d(zi, y) = 2. By Lemma 1 every zi, 1 ≤ i ≤ k, has a down-neighbor wi which is in
P . By the choice of v and by Lemma 2 wi is the unique down-neighbor of zi. Let
a1, . . . , aℓ be down-neighbors of z if they exist (see Figure 13 for the case that they
do not exist). Clearly, every ai, 1 ≤ i ≤ ℓ, is in Q because ai cannot be in R by
Lemma 5 and the choice of v and not in P as neighbors of z. Every ai, 1 ≤ i ≤ ℓ,
has exactly one down-neighbor ti which is in P . All the other down-neighbors of
ai are in Q because they are at distance two from ti and therefore not in P and
not in R by the choice of v and by Lemma 5. We denote them by bai,j , 1 ≤ i ≤ ℓ,
1 ≤ j ≤ mi. Every bai,j , 1 ≤ i ≤ ℓ, 1 ≤ j ≤ mi, has exactly one down-neighbor
cai,j ∈ P . By the choice of v and by Lemma 2, cai,j is the unique down-neighbor
of bai,j . Notice that by Lemma 3 for ti and ai we have mi ≥ 1 for every 1 ≤ i ≤ ℓ.
See Figures 14 and 15 for this constellation. We will use the following notation

A = {v, y, w1, . . . , wk, t1, . . . , tℓ, ca1,1, . . . ca1,m1
, . . . , caℓ,1, . . . , caℓ,mℓ

} .

Subcase 2.1. deg(z) = 2. Notice that in this case vertices ai, 1 ≤ i ≤ ℓ, do
not exist whenever z 6= r and if z = r, then ℓ = 1. We obtain a tree T ′ from T
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by deleting a subtree rooted at z, see Figure 13. Suppose T ′ has two ρ(T ′)-sets
P1 and P2. In that case P1 ∪ {v, y, w1, . . . , wk} and P2 ∪ {v, y, w1, . . . , wk} are
both ρ(T )-sets which is a contradiction with the uniqueness of ρ(T )-set. Meaning
that T ′ has a unique ρ(T ′)-set. By the induction hypothesis T ′ can be built from
K1 by a sequence of operations O1 −O5. If we add the operation O4 for vertices
z, y, x, u, v at the end of this sequence and then continue with k times adding
operation O2 for zi and wi, 1 ≤ i ≤ k, then we obtain T from K1 by a sequence
of operations O1 −O5.

v

u

x

z

z1 zk

w1 wk

y

w

· · ·

· · ·

T ′

Figure 13. The case when z ∈ R and deg(z) = 2.

Subcase 2.2. deg(z) ≥ 3 and z does not have any neighbors in R. Clearly,
w ∈ Q, since z does not have any neighbors in R. So w has a neighbor s1 ∈ P
see Figure 14. By Lemma 3 there exists a neighbor s2 ∈ Q of w and a neighbor
s3 ∈ P of s2.

We obtain a tree T ′ from T by deleting a subtree rooted at z. If there exist
two different ρ(T ′)-sets P1 and P2 with |P | − 2− k− ℓ−m1 − · · · −mℓ elements,
then sets P1 ∪ A and P2 ∪ A are both ρ(T )-sets which is a contradiction with
ρ(T )-set being unique. So T ′ has a unique ρ(T ′)-set. By the induction hypothesis
T ′ can be built from K1 by a sequence of operations O1 − O5. If we add the
operation O4 for z, x, y, u, v, ℓ times operation O3 for ai, ti, bai,1, cai,1, 1 ≤ i ≤ ℓ,
m1 + · · · +mℓ − ℓ times operation O2 for bai,r, cai,r, 1 ≤ i ≤ ℓ, 2 ≤ r ≤ mi, and
k times operation O2 for zi, wi, 1 ≤ i ≤ k, at the end of this sequence, then we
obtain T from K1 by a sequence of operations O1 −O5.

Subcase 2.3. deg(z) ≥ 3 and z does have a neighbor in R. By Lemma 5
and the choice of v, vertex w is in the set R, see Figure 15. Tree T ′ is obtained
from T by deleting a subtree rooted at z. By Lemma 5 z has at least one down-
neighbor different from x, which means that ℓ ≥ 1. Suppose T ′ has two different
ρ(T ′)-sets P1 and P2. In that case P1 ∪ A and P2 ∪ A are both ρ(T )-sets which
is a contradiction with the uniqueness of ρ(T )-set. So T ′ has a unique ρ(T ′)-set.
By the induction hypothesis T ′ can be built from K1 by a sequence of operations
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v

u

x

z

z1 zk

w1 wk

yt1 tℓ

w

s1 s2

s3

a1 aℓ

ba1,1 ba1,m1
baℓ,1 baℓ,mℓ

ca1,1 ca1,m1
caℓ,1 caℓ,mℓ

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

T ′

Figure 14. The case when z ∈ R, deg(z) ≥ 3 and z does not have any neighbors in R.

O1 −O5. If we add the operation O5 for z, x, y, u, v, a1, t1, ba1,1, ca1,1, ℓ− 1 times
operation O3 for ai, ti, bai,1, cai,1, 2 ≤ i ≤ ℓ, m1 + · · · + mℓ − ℓ times operation
O2 for bai,r, cai,r, 1 ≤ i ≤ ℓ, 2 ≤ r ≤ mi, and k times operation O2 for zi, wi,
1 ≤ i ≤ k, at the end of this sequence, then we obtain T from K1 by a sequence
of operations O1 −O5.

v

u

x

z

z1 zk

w1 wk

yt1 tℓ

w

a1 aℓ

ba1,1 ba1,m1
baℓ,1 baℓ,mℓ

ca1,1 ca1,m1
caℓ,1 caℓ,mℓ

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

T ′

Figure 15. The case when z ∈ R, deg(z) ≥ 3 and z does have a neighbor in R.
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