Article in volume
Authors:
Title:
Total coloring of claw-free planar graphs
PDFSource:
Discussiones Mathematicae Graph Theory 42(3) (2022) 771-777
Received: 2019-05-14 , Revised: 2020-01-19 , Accepted: 2020-01-19 , Available online: 2020-02-04 , https://doi.org/10.7151/dmgt.2300
Abstract:
A total coloring of a graph is an assignment of colors to both its vertices
and edges so that adjacent or incident elements acquire distinct colors. Let
$\Delta(G)$ be the maximum degree of $G$. Vizing conjectured that every graph
has a total $(\Delta+2)$-coloring. This Total Coloring Conjecture remains open
even for planar graphs, for which the only open case is $\Delta=6$. Claw-free
planar graphs have $\Delta\leq 6$. In this paper, we prove that the Total
Coloring Conjecture holds for claw-free planar graphs.
Keywords:
total coloring, total coloring conjecture, planar graph, claw
References:
- L. Andersen, Total Colouring of Simple Graphs, Master's Thesis (University of Aalborg, 1993).
- M. Behzad, Graphs and Their Chromatic Numbers, PhD Thesis (Michigan State University, 1965).
- V.A. Bojarshinov, Edge and total coloring of interval graphs, Discrete Appl. Math. 114 (2001) 23–28.
https://doi.org/10.1016/S0166-218X(00)00358-9 - O.V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989) 180–185.
https://doi.org/10.1515/crll.1989.394.180 - O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory Ser. B 71 (1997) 184–204.
https://doi.org/10.1006/jctb.1997.1780 - B.-L. Chen, H.-L. Fu and M.T. Ko, Total chromatic number and chromatic index of split graphs, J. Combin. Math. Combin. Comput. 17 (1995) 137–146.
- C.M.H. de Figueiredo, J. Meidanis and C.P. de Mello, Total-chromatic number and chromatic index of dually chordal graphs, Inform. Process. Lett. 70 (1999) 147–152.
https://doi.org/10.1016/S0020-0190(99)00050-2 - Ł. Kowalik, J.S. Sereni and R. Škrekovski, Total-coloring of plane graphs with maximum degree nine, SIAM J. Discrete Math. 22 (2008) 1462–1479.
https://doi.org/10.1137/070688389 - A.V. Kostochka, The total coloring of a multigraph with maximal degree $4$, Discrete Math. 17 (1977) 161–163.
https://doi.org/10.1016/0012-365X(77)90146-7 - A.V. Kostochka, Exact upper bound for the total chromatic number of a graph, Proc. 24th Int. Wiss. Koll. Tech. Hochsch. Ilmenau (1979) 33–36, in Russian.
- A.V. Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven, Discrete Math. 162 (1996) 199–214.
https://doi.org/10.1016/0012-365X(95)00286-6 - M.D. Plummer, Extending matchings in claw-free graphs, Discrete Math. 125 (1994) 301–307.
https://doi.org/10.1016/0012-365X(94)90171-6 - M. Rosenfeld, On the total coloring of certain graphs, Israel J. Math. 9 (1971) 396–402.
https://doi.org/10.1007/BF02771690 - D.P. Sanders and Y. Zhao, On total $9$-coloring planar graphs of maximum degree seven, J. Graph Theory 31 (1999) 67–73.
https://doi.org/10.1002/(SICI)1097-0118(199905)31:1<67::AID-JGT6>3.0.CO;2-C - E.F. Shan, Z.S. Liang and L.Y. Kang, Clique-transversal sets and clique-coloring in planar graphs, European J. Combin. 36 (2014) 367–376.
https://doi.org/10.1016/j.ejc.2013.08.003 - N. Vijayaditya, On total chromatic number of a graph, J. London Math. Soc. (2) 3 (1971) 405–408.
https://doi.org/10.1112/jlms/s2-3.3.405 - V.G. Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk 23 (1968) 117–134, English translation in Russian Math. Surveys 23 (1968) 125–141, in Russian.
https://doi.org/10.1070/RM1968v023n06ABEH001252 - W.F. Wang, Total chromatic number of planar graphs with maximum degree ten, J. Graph Theory 54 (2007) 91–102.
https://doi.org/10.1002/jgt.20195 - B. Wang and J.-L. Wu, Total colorings of planar graphs with maximum degree seven and without intersecting $3$-cycles, Discrete Math. 311 (2011) 2025–2030.
https://doi.org/10.1016/j.disc.2011.05.038 - P. Wang and J.-L. Wu, A note on total colorings of planar graphs without $4$-cycles, Discuss. Math. Graph Theory 24 (2004) 125–135.
https://doi.org/10.7151/dmgt.1219 - H.-P. Yap, Total Colourings of Graphs, in: Lecture Notes in Math. 1623 (Springer, Berlin, Heidelberg, 1996).
https://doi.org/10.1007/BFb0092895
Close