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Abstract

A total coloring of a graph is an assignment of colors to both its vertices
and edges so that adjacent or incident elements acquire distinct colors. Let
∆(G) be the maximum degree of G. Vizing conjectured that every graph
has a total (∆ + 2)-coloring. This Total Coloring Conjecture remains open
even for planar graphs, for which the only open case is ∆ = 6. Claw-free
planar graphs have ∆ ≤ 6. In this paper, we prove that the Total Coloring
Conjecture holds for claw-free planar graphs.
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1. Introduction

All graphs considered here are finite, simple and nonempty. Let G = (V,E)
be a graph with vertex set V and edge set E. The number of vertices of G is
called the order of G. For a vertex v ∈ V , the open neighborhood N(v) of v is
defined as the set of vertices adjacent to v, i.e., N(v) = {u | uv ∈ E}. The closed

neighborhood of v is N [v] = N(v) ∪ {v}. Every vertex in N(v) is also called a
neighbor of v. The degree of v is equal to |N(v)|, denoted by dG(v) or simply d(v).
By δ(G) and ∆(G), we denote the minimum degree and the maximum degree of
the graph G, respectively. For a subset S ⊆ V , the closed neighborhood of S is
N [S] =

⋃
v∈S N [v] and the closed 2-neighborhood of S is N2[S] = N [N [S]]. For

a subset X ⊆ V , the subgraph induced by X is denoted by G[X]. The set of
edges between X and Y in E is denoted by E(X,Y ) for X,Y ⊆ V . As usual,
Km,n denotes a complete bipartite graph with classes of cardinality m and n, and
Kn and Cn denote the complete graph and cycle of order n. The graph K1,3 is
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also called a claw, and K3 a triangle. Given a graph F , a graph G is F -free if it
does not contain F as an induced subgraph. In particular, a K1,3-free graph is
claw-free. For a family {F1, . . . , Fk} of graphs, we say that G is (F1, . . . , Fk)-free
if it is Fi-free for all i. By starting with a disjoint union of two graphs G and H
and adding edges joining every vertex of G to every vertex of H, one obtains the
join of G and H, denoted by G ∨H. The n-wheel is the graph Cn ∨K1 and the
double n-wheel is the graph Cn ∨K2 (n ≥ 4).

Given a graph G, an element of G is a member of V (G) ∪ E(G). Let two
elements of a graph G be adjacent if they are either adjacent or incident in the
traditional sense. Given a graph G, a total k-coloring of G is a function that
takes each element to {1, 2, . . . , k} such that adjacent distinct elements receive
distinct colors. In 1968, Vizing [17] (see also [2]) made the following conjecture,
known as the Total Coloring Conjecture.

Conjecture. Every graph has a total (∆ + 2)-coloring.

This conjecture is trivial for △ ≤ 2. Rosenfeld [13] and Vijayaditya [16]
proved it for ∆ = 3. Kostochka proved the ∆ = 4 [9] and ∆ = 5 [11] cases. The
conjecture remains open even for planar graphs, but more is known. Borodin [4]
proved it for planar graphs with ∆ ≥ 9. The ∆ = 8 case was proved for planar
graphs by Yap [21] and Andersen [1]. The ∆ = 7 case was proved for planar
graphs by Sanders and Zhao [14]. Thus the only open case for planar graphs is
the ∆ = 6 case. An extensive study on total coloring is done in [3, 5–8, 10, 18–20]
and elsewhere. Claw-free planar graphs have maximum degree at most 6 [12].
In this paper, we prove that the Total Coloring Conjecture holds for claw-free
planar graphs.

2. Total Coloring on the Claw-Free Planar Graphs

First we introduce some notation and lemmas which are useful for the total
coloring of claw-free planar graphs. Let a k-vertex be a vertex of degree k. Let
an at most k-vertex, or simply a k−-vertex, be a vertex of degree at most k. Given
a graph and integers j1, j2, . . . , ji, let a (j−

1
, j−

2
, . . . , j−i )-vertex be an i-vertex v

of G such that, for each 1 ≤ m ≤ i, there is a j−m-vertex ym of G and the vertices
y1, y2, . . . , yi are distinct neighbors of v.

Lemma 1 [15]. If G is a (claw, K4)-free planar graph, then ∆(G) ≤ 5 and for

every vertex v of degree 5 in G, G[N [v]] is a 5-wheel.

Lemma 2. Let v be a (6−, 6−, 5−)-vertex, or a (6, 6, 6)-vertex such that G[N [v]]
is not a claw, in a graph G. If G − v has a total 8-coloring, then G is total

8-colorable.
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Proof. Let v be a (6−, 6−, 6−)-vertex of a graph G. Given a total 8-coloring φ
of G − v, we will attempt to extend φ to a total 8-coloring of G. Let N(v) =
{y1, y2, y3}, and for i ∈ {1, 2, 3} let Lvyi be the set of colors that are not used
on yi or its incident edges and so are available for use on the edge vyi. Then
|Lvyi | ≥ 2 for each i, since dG−v(yi) ≤ 5. Clearly, these edges can be properly
colored unless Lvyi is the same set of two colors, say Lvyi = {1, 2}, for each i. This
is impossible if v is a (6−, 6−, 5−)-vertex, so assume that v is a (6, 6, 6)-vertex
such that G[N [v]] is not a claw. Without loss of generality, y2y3 is an edge of G
and φ(y2y3) = 3. Recolor y2y3 with color 1, and then color vy1, vy2 and vy3 with
colors 1, 2 and 3, respectively. Once the edges incident with v are colored, there
are at most six colors that cannot be used on v, and so v can be colored. This
gives a total 8-coloring of G, as required.

Lemma 3. Let v be a (7−, 6−, 5−, 4−)-vertex in a graph G such that G[N [v]]
contains neither a claw nor a K4. If G− v has a total 8-coloring, then G is total

8-colorable.

Proof. Let N(v) = {y1, y2, y3, y4} where d(yi) ≤ 8 − i for each i. Given a total
coloring φ of G − v using a set C of eight colors, let F be the set of colors that
are used on the vertices in N(v), and for i ∈ {1, 2, 3, 4} let Lvyi be the set of
colors that are available for use on the edge vyi, as in the previous proof. Then
|Lvyi | ≥ i for each i, and so the edges vy1, vy2, vy3, vy4 can be properly colored
in this order. If possible, do this so that at least one of these edges has a color
in F . Call the new coloring φ′.

It is now possible to color v unless every color is used on an element adjacent
to v. For this to happen, it must be that |F | = 4 and all the lists Lvyi are subsets
of C \F . In particular, Lvy4 = C \F . Since G[N [v]] contains neither a claw nor a
K4, G must contain an edge yry4 for some r ∈ {1, 2, 3}. Clearly φ(yry4) /∈ Lvy4 ,
and so φ(yry4) ∈ F , while φ′(vyr) ∈ Lvyr ⊆ Lvy4 . Interchange the colors of
vyr and yry4. Since vyr now has a color in F , there are at most seven different
colors that are unavailable for v, and so v can now be colored. This gives a total
8-coloring of G, as required.

Theorem 4. Every claw-free planar graph is total 8-colorable.

Proof. Let G be a claw-free planar graph. We prove the theorem by induction
on the size m = |E(G)|. Suppose that the theorem holds when G has fewer than
m edges. In the following, we will prove the theorem when G has m edges.

If G has a cut vertex v, we can easily see that the theorem holds. So we may
assume that G is 2-connected. In addition, if G has no K4, then ∆(G) ≤ 5 by
Lemma 1, and so the theorem holds since the Total Coloring Conjecture holds
when ∆(G) ≤ 5 [11]. So let K = [x1x2x3x4] be a K4 of G, where x1 is inside
the cycle C = [x2x3x4] in the embedding of G in the plane. Let G

′

be the plane
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graph induced by the vertices inside and on C, and choose K so that G′ has as
fewer vertices as possible. Then K is the only K4 in G′.

Since every claw-free planar graph has maximum degree at most 6, the result
follows from Lemma 2 if G contains a 3−-vertex. Thus we may assume that
δ(G) ≥ 4. Without loss of generality, we may assume that x1 has a neighbor u
inside the triangle T = [x1x2x3] in the embedding of G in the plane. Let Vin(T )
denote the set of vertices inside the triangle T , and let GT = G[Vin(T ) ∪ V (T )],
the plane graph induced by the vertices inside and on T . We will make frequent
use of the following facts.

(F1) GT is K4-free. This is because K is the only K4 in G′.
(F2) Every vertex of Vin(T ) is adjacent to at most two vertices of T , by (F1).
(F3) Every vertex of Vin(T ) has degree 4 or 5, since δ(G) ≥ 4 and ∆(GT ) ≤ 5

by Lemma 1.
(F4) We may assume that no two 4-vertices in Vin(T ) are adjacent. Indeed,

if they are, then each of them is a (6−, 6−, 5−, 4−)-vertex by (F2) and (F3), and
so the result follows by Lemma 3.

(F5) For i = 1, 2, 3, the neighbors of xi in Vin(T ) induce a complete graph.
Otherwise, there would be a claw centered on xi (including the edge xix4).

(F6) Every vertex of T is adjacent to 0, 1 or 2 adjacent vertices in Vin(T ).
This follows from (F1) and (F5).

(F7) Every 5-vertex in Vin(T ) is adjacent to 0 or 2 vertices of T . Indeed, let
v be a 5-vertex in Vin(T ) that is adjacent to x1 (say). By Lemma 1, G[N [v]] is a
5-wheel. Thus G[N [v]] contains two vertices v1, v2 that are adjacent to both x1
and v but not to each other. At least one of v1, v2 must be in T , by (F5). But
the neighbors x1, v1, v2 of v cannot all be in T , by (F2). Thus v is adjacent to
exactly two vertices of T .

Recall that x1 has a neighbor u ∈ Vin(T ). We consider two cases.

Case 1. d(u) = 5. By (F7), u is adjacent to exactly one of x2 and x3, say x2.
By Lemma 2, G[N [u]] is a 5-wheel. Let x1x2u1u2u3x1 be the 5-cycle of G[N [u]]
(see Figure 1). Then u and u3 are the two vertices of Vin(T ) that are adjacent to
x1, and u and u1 are the two vertices of Vin(T ) that are adjacent to x2.

Case 1.1. d(u1) = 5. Note that u1 is adjacent to x2 but cannot be adjacent
to x1, and so u1 is adjacent to x3 by (F7). So let x2x3wu2ux2 be the 5-cycle of
G[N [u1]] (see Figure 1, left). Each vertex of T is now adjacent to two vertices of
Vin(T ), and so cannot be adjacent to any further vertex of Vin(T ), by (F6). Thus
any further neighbor of u3 cannot be adjacent to x1 and so must be adjacent to
u2, to avoid a claw centered on u3. If d(u2) = 4, then the only possible further
neighbor of u3 is w, and so u2, u3 are adjacent 4-vertices, contrary to (F4). If
however d(u2) = 5, then the additional neighbor q of u2 can be adjacent only to
u2, u3, w of the vertices so far named (since it cannot be adjacent to x1 or x3),
and so q is a 3-vertex by the claw-freeness, which is not permissible, by (F3).
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Figure 1. Cases 1.1 and 1.2 of Theorem 5.

Case 1.2. d(u1) = 4. Then d(u2) = 5, by (F4). Let uu1w1w2u3u be the
5-cycle of G[N [u2]] (see Figure 1, right). Note that x1 and x2 each already have
two neighbors in Vin(T ), and so u2 has no neighbors in T , by (F6) and (F7). Thus
w1 ∈ Vin(T ) and so d(w1) = 5, by (F4), since d(u1) = 4. But it is impossible for
G[N [w1]] to be a 5-wheel since d(u1) = 4 and there is no edge x2w1.

Case 2. d(u) = 4. Let the neighbors of u be x1, u1, u2 and u3. We may
assume that u2, u3 ∈ Vin(T ) and possibly u1 = x2 or u1 = x3, by (F2). Then
d(u2) = 5 and d(u3) = 5, by (F4). If x1 is adjacent to the 5-vertex u2 or u3,
by choosing u2 or u3 instead of u, we are back in Case 1. In addition, if x2 or
x3 is adjacent to the 5-vertex u2 or u3, by choosing x2 or x3 instead of x1, we
are also back in Case 1. Thus we assume that N [{u2, u3}] ⊆ Vin(T ). But since
G[N [u2]] and G[N [u3]] are 5-wheels, u must be adjacent to at least four vertices
of N [{u2, u3}] as well as to x1, and this is impossible since d(u) = 4.

This completes the proof of Theorem 4.

Note that the only open case for the Total Coloring Conjecture in planar
graphs is ∆ = 6. By Theorem 4, immediately, we have the following theorem.

Theorem 5. The Total Coloring Conjecture holds in claw-free planar graphs.
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