DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

B. Brešar

Boštjan Brešar

Boštjan Brešar
University of Maribor,
Faculty of Natural Sciences and Mathematics,
Koroška c. 160
2000 Maribor
Slovenia

email: bostjan.bresar@um.si

J. Ferme

Jasmina Ferme

Faculty of Education, University of Maribor, Slovenia

email: jasmina.ferme1@um.si

Title:

Graphs that are critical for the packing chromatic number

PDF

Source:

Discussiones Mathematicae Graph Theory 42(2) (2022) 569-589

Received: 2019-04-23 , Revised: 2019-12-16 , Accepted: 2019-12-16 , Available online: 2020-01-30 , https://doi.org/10.7151/dmgt.2298

Abstract:

Given a graph $G$, a coloring $c:V(G)\longrightarrow \{1,\ldots,k\}$ such that $c(u)=c(v)=i$ implies that vertices $u$ and $v$ are at distance greater than $i$, is called a packing coloring of $G$. The minimum number of colors in a packing coloring of $G$ is called the packing chromatic number of $G$, and is denoted by $\chi_{\rho}(G)$. In this paper, we propose the study of $\chi_{\rho}$-critical graphs, which are the graphs $G$ such that for any proper subgraph $H$ of $G$, $\chi_{\rho}(H)<\chi_{\rho}(G)$. We characterize $\chi_{\rho}$-critical graphs with diameter 2, and $\chi_{\rho}$-critical block graphs with diameter 3. Furthermore, we characterize $\chi_{\rho}$-critical graphs with small packing chromatic number, and we also consider $\chi_{\rho}$-critical trees. In addition, we prove that for any graph $G$ and every edge $e\in E(G)$, we have $(\chi_{\rho}(G)+1)/2\le \chi_{\rho}(G-e)\le \chi_{\rho}(G)$, and provide a corresponding realization result, which shows that $\chi_{\rho}(G-e)$ can achieve any of the integers between these bounds.

Keywords:

packing coloring, critical graph, diameter, block graph, tree

References:

  1. J. Balogh, A. Kostochka and X. Liu, Packing chromatic number of cubic graphs, Discrete Math. 341 (2018) 474–483.
    https://doi.org/10.1016/j.disc.2017.09.014
  2. J. Balogh, A. Kostochka and X. Liu, Packing chromatic number of subdivisions of cubic graphs, Graphs Combin. 35 (2019) 513–537.
    https://doi.org/10.1007/s00373-019-02016-3
  3. B. Brešar and J. Ferme, Packing coloring of Sierpiński-type graphs, Aequationes Math. 92 (2018) 1091–1118.
    https://doi.org/10.1007/s00010-018-0561-8
  4. B. Brešar and J. Ferme, An infinite family of subcubic graphs with unbounded packing chromatic number, Discrete Math. 341 (2018) 2337–2342.
    https://doi.org/10.1016/j.disc.2018.05.004
  5. B. Brešar, S. Klavžar, D.F. Rall and K. Wash, Packing chromatic number under local changes in a graph, Discrete Math. 340 (2017) 1110–1115.
    https://doi.org/10.1016/j.disc.2016.09.030
  6. B. Brešar, S. Klavžar, D.F. Rall and K. Wash, Packing chromatic number versus chromatic and clique number, Aequationes Math. 92 (2018) 497–513.
    https://doi.org/10.1007/s00010-017-0520-9
  7. J. Ekstein, P. Holub and O. Togni, The packing coloring of distance graphs $D(k,t)$, Discrete Appl. Math. 167 (2014) 100–106.
    https://doi.org/10.1016/j.dam.2013.10.036
  8. J. Fiala and P.A. Golovach, Complexity of the packing coloring problem for trees, Discrete Appl. Math. 158 (2010) 771–778.
    https://doi.org/10.1016/j.dam.2008.09.001
  9. N. Gastineau, P. Holub and O. Togni, On the packing chromatic number of subcubic outerplanar graphs, Discrete Appl. Math. 255 (2019) 209–221.
    https://doi.org/10.1016/j.dam.2018.07.034
  10. W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, J.M. Harris and D.F. Rall, Broadcast chromatic numbers of graphs, Ars Combin. 86 (2008) 33–49.
  11. M. Kim, B. Lidický, T.Masařik and F. Pfender, Notes on complexity of packing coloring, Inform. Process. Lett. 137 (2018) 6–10.
    https://doi.org/10.1016/j.ipl.2018.04.012
  12. S. Klavžar and D.F. Rall, Packing chromatic vertex-critical graphs, Discrete Math. Theor. Comput. Sci. 21(3) (2019) #P8.
    https://doi.org/10.23638/DMTCS-21-3-8
  13. D. Korže and A. Vesel, $(d,n)$-packing colorings of infinite lattices, Discrete Appl. Math. 237 (2018) 97–108.
    https://doi.org/10.1016/j.dam.2017.11.036
  14. D. Korže and A. Vesel, Packing coloring of generalized Sierpiński graphs, Discrete Math. Theor. Comput. Sci. 21 (2019) #P7.
    https://doi.org/10.23638/DMTCS-21-3-7
  15. B. Martin, F. Raimondi, T. Chen and J. Martin, The packing chromatic number of the infinite square lattice is between $13$ and $15$, Discrete Appl. Math. 225 (2017) 136–142.
    https://doi.org/10.1016/j.dam.2017.03.013
  16. D. Laïche and É. Sopena, Packing colouring of some classes of cubic graphs, Australas. J. Combin. 72 (2018) 376–404.
  17. D. Laïche, I. Bouchemakh and É. Sopena, Packing coloring of some undirected and oriented coronae graphs, Discuss. Math. Graph Theory 37 (2017) 665–690.
    https://doi.org/10.7151/dmgt.1963
  18. Z. Shao and A. Vesel, Modeling the packing coloring problem of graphs, Appl. Math. Model. 39 (2015) 3588–3595.
    https://doi.org/10.1016/j.apm.2014.11.060
  19. O. Togni, On packing colorings of distance graphs, Discrete Appl. Math. 167 (2014) 280–289.
    https://doi.org/10.1016/j.dam.2013.10.026
  20. P. Torres and M. Valencia-Pabon, The packing chromatic number of hypercubes, Discrete Appl. Math. 190–191 (2015) 127–140.
    https://doi.org/10.1016/j.dam.2015.04.006
  21. D.B. West, Introduction to Graph Theory (Prentice Hall, New York, 2001).

Close