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Abstract

Given a graph G, a coloring c : V (G) −→ {1, . . . , k} such that c(u) =
c(v) = i implies that vertices u and v are at distance greater than i, is
called a packing coloring of G. The minimum number of colors in a packing
coloring of G is called the packing chromatic number of G, and is denoted by
χρ(G). In this paper, we propose the study of χρ-critical graphs, which are
the graphs G such that for any proper subgraph H of G, χρ(H) < χρ(G).
We characterize χρ-critical graphs with diameter 2, and χρ-critical block
graphs with diameter 3. Furthermore, we characterize χρ-critical graphs
with small packing chromatic number, and we also consider χρ-critical trees.
In addition, we prove that for any graph G and every edge e ∈ E(G), we have
(χρ(G)+1)/2 ≤ χρ(G−e) ≤ χρ(G), and provide a corresponding realization
result, which shows that χρ(G− e) can achieve any of the integers between
these bounds.
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1. Introduction

The packing chromatic number was introduced by Goddard et al. [10] in 2008
under the name broadcast chromatic number, and has been investigated by a
number of authors. The wide interest given to this problem is reflected in the
(probably non-exhaustive) list of papers on this problem that were published
only in the last two years [1–4, 6, 9, 11–14, 16]. A lot of attention was given to
the question of boundedness of this invariant in the class of cubic graphs, which
was recently answered in the negative by Balogh, Kostochka and Liu [1], see also
an explicit construction [4]. Several other classes of (finite and infinite) graphs
were studied for their packing chromatic number [7, 17–20], among which the
largest attention was probably given to the infinite square grid; the last paper
in a series due to Martin et al. [15] limits the packing chromatic number of the
infinite square grid to be in the set {13, 14, 15}. The decision version of the pack-
ing chromatic number is NP-complete, and it remains NP-complete, somewhat
surprisingly, even in trees, as proven by Fiala and Golovach [8] (see also a more
recent investigation on the complexity of the packing coloring problem [11]).

It is clear that the invariant is hereditary in the sense that a graph cannot
have smaller packing chromatic number than its subgraphs. The behaviour of
the invariant under some local operations, such as edge-contraction, vertex- and
edge-deletion, and edge subdivision was studied in [5]. In particular, it was shown
that the difference between χρ(G) and χρ(G− e), where e is an edge in G, can be
arbitrarily large, and the same also holds for vertex-deleted subgraphs. Recently,
Klavžar and Rall [12] investigated the class of graphs G for which χρ(G − v) <
χρ(G) for every vertex v ∈ V (G), called packing chromatic vertex-critical graphs.
Among other results, they characterized packing chromatic vertex-critical graphs
G with small values of χρ(G), and also presented several properties of trees, which
are packing chromatic vertex-critical.

In this paper, we study another (basic) version of critical graphs for the
packing chromatic number, where it is required that χρ(H) < χρ(G) for each
proper subgraph H of a graph G. Note that in graphs G with no isolated vertices
this is equivalent to the statement that χρ(G− e) < χρ(G) for every edge e of G.
(We remark that the authors in [12] suggested to study χρ-edge-critical graphs,
meaning of which should be clear.) Critical graphs for the standard chromatic
number present a classical notion in graph theory, see e.g. [21]. It turns out
(as seen in this paper) that there are not many similarities between (χ-)critical
graphs and χρ-critical graphs. On the other hand, in studying χρ-critical graphs,
several results about χρ-vertex critical graphs can be used (see Section 3).

The paper is organized as follows. In the next section, we establish the
notation and define the concepts used throughout the paper. Then, we prove a
lower bound for the packing chromatic number of the edge-deleted graph, which
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reads as χρ(G − e) ≥ χρ(G)+1
2 . Not only that the bound is sharp, we also prove

that for any integer n ∈ [k+1
2 , k], there exists a graph G with an edge e such

that χρ(G) = k and χρ(G − e) = n. In Section 3, we use some results from [12]
concerning χρ-vertex-critical graphs, and establish characterizations of χρ-critical
graphs G when χρ(G) ∈ {2, 3}. We also give some partial results when χρ(G) = 4,
and prove that χρ-critical and χρ-vertex-critical trees coincide. In Section 4,
we characterize the packing chromatic critical graphs with diameter 2 as the
graphs in which, for every edge e ∈ E(G), one of the two properties hold: the
independence number of G− e is bigger than that of G, or diam(G− e) > 2 and
there is a maximum independent set of G that avoids two vertices at distance at
least 3 in G − e (one of which is an endvertex of e and the other a neighbor of
an endvertex of e). Finally, in Section 5 we give a structural characterization of
χρ-critical block graphs with diameter 3, which divides these graphs into three
different types. The proof of this result is quite involved, which indicates the
difficulty of the study of χρ-critical graphs. We end the paper with some remarks
and open questions.

2. Notation and Preliminaries

In this paper, we consider only finite, simple graphs. Let G be a graph and v
an arbitrary vertex of G. The (open) neighborhood of v, denoted by NG(v), is
the set of all vertices adjacent to v. The degree of v, degG(v), is |NG(v)|. If
degG(v) = 1, then v is a leaf. A vertex u ∈ V (G) adjacent to at least one leaf
is a support vertex and its leaf neighbor is a leaf adjacent to u. Next, if NG(v)
induces a complete graph, then v is called a simplicial vertex. The minimum
degree of vertices in a graph G is denoted by δ(G). We will also use the notation
NG[v], which presents the closed neighborhood of v, where NG[v] = NG(v) ∪ {v}.
The distance, dG(u, v) (sometimes abbreviated to d(u, v)), between two vertices
u and v of a graph G is the length of a shortest u-v-path in G. The eccentricity

of a vertex v, denoted by ǫG(v), is the maximum distance between v and any
other vertex of G: ǫG(v) = maxu∈V (G){d(v, u)}. The subscript in the above
notations may be omitted if the graph G is clear from the context. The radius of
G, rad(G), and the diameter of G, diam(G), are the minimum and the maximum
eccentricity, respectively. The center of G, C(G), is the set of vertices with
minimum eccentricity, that is C(G) = {u ∈ V (G) | ǫG(u) = rad(G)}.

Given a graph G and a positive integer i, an i-packing in G is a subset W
of the vertex set of G such that the distance between any two distinct vertices
from W is greater than i. Note that 1-packing is equivalent to the concept of
independent set. The packing chromatic number of G, denoted by χρ(G), is the
smallest integer k such that the vertex set of G can be partitioned into sets
V1, . . . , Vk, where Vi is an i-packing for each i ∈ {1, . . . , k}. The corresponding
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mapping c : V (G) −→ [k] having the property that c(u) = c(v) = i implies
d(u, v) > i, is a k-packing coloring. When k = χρ(G), we say that the k-packing
coloring is optimal.

A graph G is a packing chromatic critical graph, or shorter χρ-critical graph,
if for every proper subgraph H of G, χρ(H) < χρ(G). In the case when G is
χρ-critical and χρ(G) = k we also say that G is k-χρ-critical. If for a given
graph G and for each x ∈ V (G) we have χρ(G − x) < χρ(G), then G is called
χρ-vertex-critical graph, and we also say G is k-χρ-vertex-critical if χρ(G) = k.

The hereditary behaviour of the packing chromatic number (notably, χρ(H) ≤
χρ(G) for any subgraph H of a graph G) implies that χρ(G− e) ≤ χρ(G) for any
edge e of G. It was shown in [5] that for every positive integer r there exists a
graph G with an edge e such that χρ(G)− χρ(G− e) ≥ r. Nevertheless, one can
bound χρ(G− e) from below by a fraction of χρ(G). More precisely, the packing
chromatic number cannot be divided by more than 2 when an edge is deleted.

Theorem 1. Let G be a graph and e an arbitrary edge of G. Then χρ(G− e) ≥
χρ(G)+1

2 and the bound is sharp.

Proof. Let G be a graph, e = uv an edge of G and c′ any optimal packing
coloring of G − e. In order to form a packing coloring c of G which uses at
most 2 · χρ(G − e) − 1 colors, we first let c(w) = c′(w) for all w ∈ V (G). Since
dG(x, y) ≤ dG−e(x, y) for any x, y ∈ V (G), coloring cmay not be a proper packing
coloring of G. If it is, then χρ(G) ≤ χρ(G−e) ≤ 2 ·χρ(G−e)−1 and we are done.
Otherwise, we need to “correct” the coloring c by changing the colors of some
vertices. The problematic vertices for a given color k, k ∈ {1, 2, . . . , χρ(G−e)}, are
those to which c assigns the same color k and that are at distance at most k in G.
We observe that if c(x) = c(y) = k and dG(x, y) ≤ k for some x, y ∈ V (G), then
every shortest x-y-path in G goes through the edge e, since dG(x, y) < dG−e(x, y).

Let k be a color used by c. We claim that for at least one vertex from
{u, v}, say u, there exists at most one problematic vertex y for the color k, which
satisfies the property dG(y, u) ≤ dG(y, v). Suppose to the contrary that there
exist vertices x1, x2, y1, y2 ∈ V (G) that receive the same color k by c and satisfy
the following properties: dG(xi, u) ≤ dG(xi, v) and dG(yi, v) ≤ dG(yi, u) for each
i ∈ {1, 2}. These two properties imply that there exist a shortest x1-x2-path
which does not contain the vertex v (and thus does not contain the edge e),
and a shortest y1-y2-path, which does not contain the vertex u (and the edge e).
Hence, dG(x1, x2) ≥ k + 1 and dG(y1, y2) ≥ k + 1. Without loss of generality we
may assume that dG(x1, u) = a ≥ dG(x2, u) = b, dG(y1, v) = c ≥ dG(y2, v) = d
and a ≥ c. Therefore, a ≥ k+1

2 and c ≥ k+1
2 . If dG(x1, y1) ≤ k, then each of the

shortest x1-y1-paths contains the edge e and thus dG(x1, y1) = a+1+ c ≥ k+2,
a contradiction. If dG(x1, y2) ≥ k + 1, we are done (since x1 is then not a
problematic vertex for the color k), thus suppose that dG(x1, y2) ≤ k. Then, any
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shortest x1-y2-path contains the edge e and we infer dG(x1, y2) = a + 1 + d ≥
a+ 1 + (k + 1− c) ≥ k + 2, which yields the claimed assertion.

Therefore, when dealing with the problematic vertices for color k with respect
to coloring c, we only need to consider the case when there are vertices x1, . . . , xm,
m ≥ 1, and a vertex x such that c(xi) = c(x) = k, dG(xi, x) ≤ k for i ∈ [m],
while dG(xi, xj) ≥ k + 1 for all 1 ≤ i < j ≤ m. Then, by replacing the color
c(x) with the color χρ(G− e) + k, we provide a coloring in which all the vertices
of G colored with color k are pairwise at distance at least k + 1 in G (note that
the vertex x is the only vertex of G, which receives color χρ(G − e) + k by c).
Using the same subsitution for each color k ∈ {1, 2, . . . , χρ(G− e)}, we infer that
at most χρ(G− e) additional colors are used, and so c becomes a proper packing
coloring of G. Hence, χρ(G) ≤ 2 · χρ(G− e).

To prove the assertion stated in the theorem, we note that the only possibility
for two vertices of G receiving color 1 by c and being at distance 1 in G is that
c(u) = c(v) = 1. However, in this case c cannot give color 2 to two vertices,
which are at distance at most 2 in G. Indeed, any shortest path between such
two vertices should contain e = uv which makes the distance between them in G
greater than 2. In either case, we need at most χρ(G − e) − 1 additional colors
(since either for color 1 or color 2, the coloring c does not need a substitution of

colors), hence χρ(G− e) ≥ χρ(G)+1
2 .

To see that the bound is sharp, consider the family of graphs Gn, n ≥ 2,
defined as follows. Let A and B be two copies of the graph Kn, n ≥ 2, and let
a ∈ V (A), b ∈ V (B). The graph Gn is obtained from the disjoint union of A
and B by adding an edge connecting the vertices a and b, and attaching 2n − 2
leaves to each vertex in (V (A) ∪ V (B)) \ {a, b} (see Figure 1 depicting graph
G4). First we claim that χρ(Gn) = 2n − 1 for any n ≥ 2. Let c be any packing
coloring of Gn and suppose that it uses at most 2n − 2 colors. If c(a′) = 1 for
some a′ ∈ V (A) \ {a}, then all leaves adjacent to a′ receive different colors from
{2, 3, . . . , 2n − 1}, a contradiction. Thus, c(a′) 6= 1 for all a′ ∈ V (A) \ {a} and
analogously we derive that c(b′) 6= 1 for all b′ ∈ V (B) \ {b}. Hence, c can assign
color 1 only to one vertex from V (A) ∪ V (B), namely only to a or only to b.
Since A and B are isomorphic to Kn, only two vertices from V (A) ∪ V (B) can
be colored by color 2. Thus, using the facts that |V (A) ∪ V (B)| = 2n, and that
any color greater than 2 can appear only on one vertex from V (A) ∪ V (B), we
infer that χρ(Gn) ≥ 2n − 1. By letting c(a) = 1, c(l) = 1 for all leaves l of Gn,
c(a′) = c(b′) = 2 for some a′ ∈ V (A) \ {a}, b′ ∈ V (B) \ {b}, and by assigning
2n− 3 different colors from {3, 4, . . . , 2n− 1} to other 2n− 3 vertices of Gn, we
infer that c is a packing coloring of Gn using 2n − 1 colors, which implies that
χρ(Gn) = 2n − 1 holds for any n ≥ 2. Next, let e = ab. Note that Gn − e
consists of two connected components A′ and B′, which are isomorphic. Clearly,
χρ(A

′) ≥ n, since A′ contains a subgraph isomorphic to Kn. By letting c′(a) = 1,
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c′(l) = 1 for all leaves l of A′, and by assigning the colors from {2, . . . , n} to
the other vertices of A′ we infer that χρ(A

′) = n and so χρ(B
′) = n. Since

χρ(Gn − e) = χρ(A
′) = n, we infer that χρ(Gn − e) =

χρ(Gn)+1
2 for any n ≥ 2.

a1

a2

a3

b1

b2

b3

a b

Figure 1. Graph G4 with χρ(G4) = 7 and χρ(G4 − ab) = 4.

Theorem 2. For an arbitrary integer k ≥ 3 and for an arbitrary integer n, where
k+1
2 ≤ n ≤ k, there exists a graph G with an edge e such that χρ(G) = k and

χρ(G− e) = n.

Proof. Let k and n be any integers such that k ≥ 3 and k+1
2 ≤ n ≤ k. For

n = k, let the graph G be obtained by attaching a leaf to one vertex of Kk. It
is easy to see that χρ(G) = k = χρ(G − e), where e is an edge connecting a leaf
and its support vertex.

If n < k, then construct the graph G in a similar way as the graphs Gn from
the proof of Theorem 1. Namely, take one copy of Kn and one copy of Kk+1−n,
join them by a single edge ab, where a ∈ V (Kn) and b ∈ V (Kk+1−n), and attach
k−1 leaves to each vertex from (V (Kn)∪V (Kk+1−n))\{a, b}. Since n ≥ k+1

2 ≥ 2
and k+1−n ≥ 2, an analogous consideration as in the proof of Theorem 1 yields
that χρ(G) = k and χρ(G− ab) = n.

The next lemma will be applied in Section 5 when we will study critical
block graphs of small diameter. Nevertheless, it may be useful in a more general
context when dealing with critical graphs for the packing chromatic number.

Lemma 3. Let e be an edge of G such that diam(G− e) > diam(G) = k and let

u, v be two vertices of G for which dG−e(u, v) > k. If there exists a χρ(G)-packing
coloring c of G such that c(v) > c(u) ≥ k, then χρ(G− e) < χρ(G).

Proof. Let G, e ∈ E(G) and u, v ∈ V (G) satisfy the conditions from the state-
ment. Suppose that c is a χρ(G)-packing coloring of G, which assigns to u
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and v two different colors, both greater than k − 1. In order to prove that
χρ(G− e) < χρ(G) we construct a (χρ(G)− 1)-packing coloring c′ of G− e.

First, let c′(u) = c′(v) = k, which means that |(c′)−1(k)| > |c−1(k)| = 1
(note that diam(G) = k implies |c−1(k)| ≤ 1). Then let c′(a) = c(a) for all a ∈
V (G)\{u, v}. If there exists a vertex x ∈ V (G)\{u, v} for which c′(x) = k (recall
that |c−1(k)| ≤ 1, and thus there is at most one such vertex in V (G) \ {u, v}),
then substitute the color of x with the color c(u). Consequently, the vertices of
G− e that are given color k are pairwise at distance more than k. Also note that
if x was given color c(u), then x is the only vertex of G− e with this color, since
c(u) ≥ k and so u was the only vertex with this color in G. Since the colors of all
other vertices of G (that is, vertices in V (G)\{u, v, x}, respectively V (G)\{u, v})
are unchanged, c′ is a packing coloring of G − e. In addition, c′ uses less than
χρ(G) colors, since |(c′)−1(i)| = |c−1(i)| for all i ∈ {1, 2, . . . , k − 1}, yet the color
c(v) is used by c but not by c′. Thus, χρ(G− e) < χρ(G).

Lemma 4. If G is a χρ-critical graph, then G is connected.

Proof. Suppose to the contrary that G is not a connected graph and denote its
connected components by A1, . . . , Ar, r ≥ 2. Since χρ(G) = max1≤i≤r{χρ(Ai)},
there exists j ∈ {1, 2, . . . , r} such that χρ(Aj) = χρ(G). Let x ∈ V (Ak), where
k ∈ {1, 2, . . . , r} \ {j}. Then χρ(G− x) = χρ(Aj) = χρ(G), a contradiction to G
being critical.

We end this preliminary section with the following observation, which relates
χρ-critical graphs with χρ-vertex-critical graphs.

Lemma 5. If G is a χρ-critical graph, then it is also a χρ-vertex-critical graph.

Proof. Since G is χρ-critical, it is connected due to Lemma 4. If G is isomorphic
to K1, then it is clearly χρ-vertex-critical. Otherwise, let x be an arbitrary vertex
of G and let e = xy be an edge of G. Since G − x is a subgraph of G − e and
G is χρ-critical, it follows that χρ(G − x) ≤ χρ(G − e) < χρ(G). Thus, G is
χρ-vertex-critical.

3. Critical Graphs with Small Packing Chromatic Numbers and

Critical Trees

We start this section by characterizing the χρ-critical graphsG with small packing
chromatic number, i.e., χρ(G) ∈ {2, 3}. We will use the result of Goddard et

al. [10, Proposition 3.1] which characterizes connected graphs G with χρ(G) = 2
as the star graphs (G ∼= K1,r, r ≥ 1). We will also use the characterization of
χρ-vertex-critical graphs G with χρ(G) = 3 by Klavžar and Rall [12, Proposition
4.1] stating that these are precisely the graphs G ∈ {C3, P4, C4}.
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Proposition 6.
(i) A graph G is 2-χρ-critical if and only if G ∼= K2.

(ii) A graph G is 3-χρ-critical if and only if G ∈ {C3, P4}.

Proof. (i) Let G be an arbitrary 2-χρ-critical graph. By Lemma 4, G is con-
nected, which implies that G is a star. Clearly, if |V (G)| ≥ 3, then for each
e ∈ E(G), G − e contains K2 as an induced subgraph, which implies that
χρ(G − e) ≥ 2, a contradiction. Therefore, |V (G)| < 3, and clearly K2 is the
only 2-χρ-critical graph.

(ii) By Lemma 5, each χρ-critical graph is also χρ-vertex-critical, which im-
plies by [12] that 3-χρ-critical graphs can only be C3, P4 or C4. It is easy to see
that C3 and P4 are χρ-critical, while C4 is not, since χρ(C4) = χρ(C4− e) = 3.

While we could not find a general characterization of the packing chromatic
critical graphs G with χρ(G) = 4, we give two partial results for these graphs.
The first one considers graphs that contain a cycle Cn, where n ≥ 5 is not divisible
by 4. Note that for such n, we have χρ(Cn) = 4, while χρ(Cn − e) = 3, thus the
cycles themselves are χρ-critical. However, if G has χρ(G) = 4 and G contains as
a proper subgraph a cycle Cn, where n ≥ 5 is not divisible by 4, then G is clearly
not χρ-critical. We summarize this observation as follows.

Proposition 7. If G is a graph containing a cycle Cn, where n ≥ 5 is an integer

not divisible by 4, then G is a 4-χρ-critical graph if and only if G is isomorphic

to Cn.

Let C be the class of graphs that contain exactly one cycle and have an
arbitrary number of leaves attached to each of the vertices of the cycle. The
net graph is obtained by attaching a single leaf to each vertex of C3. In the
characterization of χρ-critical graphs G with χρ(G) = 4 within the graphs from
the class C, we use the result about χρ-vertex-critical graphs within the class C.

Theorem 8 [12]. A graph G ∈ C is 4-χρ-vertex critical if and only if G is one

of the following graphs.

• G ∼= Cn, n ≥ 5, n 6≡ 0 (mod 4),

• G is the net graph,

• G is obtained by attaching a single leaf to two adjacent vertices of C4,

• G is obtained by attaching a single leaf to two vertices at distance 3 on C8.

The following result shows that the first three instances of the above theorem
work also in the more strict case of χρ-critical graphs.

Theorem 9. A graph G ∈ C is 4-χρ-critical if and only if G is one of the following

graphs.
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• G ∼= Cn, n ≥ 5, n 6≡ 0 (mod 4),

• G is the net graph,

• G is obtained by attaching a single leaf to two adjacent vertices of C4.

Proof. Let G ∈ C be an arbitrary 4-χρ-critical graph. Since each χρ-critical
graph is also χρ-vertex critical, Theorem 8 implies that only one of the four cases
is possible for G. We now examine each of these cases.

Case 1. G ∼= Cn, n ≥ 5, n 6≡ 0 (mod 4). By Proposition 7, G is χρ-critical.

Case 2. G is the net graph. Let a1, a2, a3, b1, b2, b3 ∈ V (G) such that a1, a2,
a3 are the leaves and a1b1, a2b2, a3b3 ∈ E(G). If e = aibi, i ∈ {1, 2, 3}, then by
setting c(ai) = c(bi) = c(aj) = c(ak) = 1, c(bj) = 2 and c(bk) = 3, j, k ∈ {1, 2, 3},
j 6= i, k 6= i, j 6= k, c is a packing coloring of G − e using 3 colors. Otherwise,
e = bibj for some i, j ∈ {1, 2, 3}, i 6= j. Then, by letting c(a1) = c(a2) = c(a3) = 2,
c(bi) = c(bj) = 1 and c(bk) = 3, k ∈ {1, 2, 3}, k 6= i, k 6= j, we again get a packing
coloring c of G− e using 3 colors. Therefore, the net graph is 4-χρ-critical graph.

Case 3. G is obtained by attaching a single leaf to two adjacent vertices of
C4. Let a, b, x, y, a1, b1 ∈ V (G) such that deg(a1) = deg(b1) = 1, aa1, bb1 ∈ E(G)
and ax, by /∈ E(G). If e = aa1, then by letting c(a1) = c(b1) = c(a) = c(x) = 1,
c(b) = 2, c(y) = 3, c is a packing coloring ofG−e using 3 colors (by symmetry, this
also settles the case e = bb1). If e = ab, then G− e ∼= P6 and thus χρ(G− e) = 3.
Next, suppose that e = ay. In this case, by letting c(a) = c(b1) = c(x) = 1,
c(a1) = c(y) = 2 and c(b) = 3, c is a packing coloring of G− e using 3 colors (by
symmetry, e = bx is also settled). Finally, if e = xy, then coloring all leaves of
G− e with color 1 and vertices a and b with different colors from {2, 3} yields a
3-packing coloring of G− e, thus G is a 4-χρ-critical graph.

Case 4. G is obtained by attaching a single leaf to two vertices at distance
3 on C8. Denote by a, b ∈ V (G) the vertices of degree 3 and let e = uv ∈ E(G)
such that d(u, a) = 2, d(u, b) = 3, d(v, b) = 2. It is easy to check (one can
also use [10, Proposition 3.3]) that χρ(G − e) > 3, which implies that G is not
χρ-critical.

Next, we focus on χρ-critical trees. By Lemma 5, every χρ-critical graph is
also χρ-vertex-critical. We prove that in trees these two types of critical graphs
coincide.

Theorem 10. A tree T is χρ-critical if and only if it is χρ-vertex-critical.

Proof. According to Lemma 5, we only need to prove that a χρ-vertex-critical
tree T is χρ-critical. Note that for any edge e of T , T−e consists of two connected
components, which we denote by T1 and T2. Since T1 is an induced subgraph of
T , and T is χρ-vertex critical, we infer χρ(T1) < χρ(T ). Analogously, we derive
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that χρ(T2) < χρ(T ). Let c1 be any optimal packing coloring of T1 and c2 any
optimal packing coloring of T2. Since there are no edges between T1 and T2, we
can form a packing coloring c of G− e as follows: c(u) = c1(u) for all u ∈ V (T1)
and c(v) = c2(v) for all v ∈ V (T2). Note that c uses less than χρ(T ) colors and
hence the statement holds.

From Theorem 10 we directly derive two results about χρ-critical trees, which
follow from [12, Proposition 5.1] and [12, Theorem 5.2], dealing with χρ-vertex-
critical trees.

Corollary 11. For every k ≥ 2 there exists a χρ-critical tree T with χρ(T ) = k.

Recall that a caterpillar is a tree such that the removal of all its leaves results
in a path.

Corollary 12. A k-χρ-critical caterpillar T exists if and only if k ≤ 7.

4. χρ-Critical Graphs with Diameter 2

In this section, we prove a characterization of χρ-critical graphs with diameter 2.
Maximum independent (alias stable) sets play an important role in these graphs.
As usual, α(G) denotes the cardinality of a maximum independent set of a graph
G. An independent set of G of size α(G) is called an α(G)-set, or shortly, an
α-set, when no confusion can arise.

Recall that χρ(G) ≤ |V (G)|−α(G)+1 holds for any graph G [10]. Moreover,
if G has diameter 2, then χρ(G) = |V (G)| − α(G) + 1 [10]. These two facts will
be used several times in this section.

Theorem 13. If G is a graph with diameter 2, then G is χρ-critical if and only

if for each edge e = u1u2 ∈ E(G) at least one of the following statements holds.

(i) α(G− e) > α(G),

(ii) there exist a vertex y ∈ N [ui] such that dG−e(y, uj) ≥ 3, where {i, j} = {1, 2},
and an α(G)-set A such that A ∩ {y, uj} = ∅.

Proof. Let G be a χρ-critical graph with diameter 2 and let e = u1u2 be an
arbitrary edge of G. Since G is χρ-critical, we have two possibilities for an optimal
packing coloring c of G−e. Notably, c assigns color 1 to at least α(G)+1 vertices,
which implies α(G− e) > α(G), or c assigns color 1 to k ≤ α(G) vertices and the
remaining vertices are assigned colors from {2, 3, . . . , χρ(G) − 1} in such a way
that at least two of these vertices receive the same color.

First, we prove that diam(G − e) ≤ 4. If diam(G − e) ≥ 5, then there exist
a, b ∈ V (G) such that dG−e(a, b) ≥ 5 (and dG(a, b) ≤ 2). This implies that the
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endvertices of e are a and b, a and x ∈ N(b) (note that x is not necessarily on
the shortest a-b-path), or b and x ∈ N(a). In each of these cases one can derive
that there exist two vertices lying on a shortest a-b-path in G − e, which are at
distance at least 3 in G; a contradiction to diam(G) = 2. Thus, diam(G− e) ≤ 4.

If diam(G− e) = 2, then any optimal packing coloring of G− e assigns each
of the colors from {2, 3, . . . , χρ(G− e)} to exactly one vertex. The fact that G is
χρ-critical implies α(G− e) > α(G), thus in this case we are done since (i) holds.

Next, consider the case when diam(G − e) ≥ 3. If α(G − e) > α(G), we are
done, hence suppose that α(G−e) ≤ α(G). Let c be any optimal packing coloring
of G−e. We claim that there does not exist three vertices of G−e, which receive
the same color i ≥ 2 by c. Suppose to the contrary that there exist x1, x2, x3 ∈
V (G) such that c(x1) = c(x2) = c(x3) = i ≥ 2. Then, dG−e(xj , xk) ≥ 3 for each
j, k ∈ {1, 2, 3}, j 6= k. Since diam(G) = 2, e lies on each of the shortest xj-xk-
paths, j, k ∈ {1, 2, 3}, j 6= k. But this is not possible, since it implies that at least
two vertices from {x1, x2, x3} must be at distance at most 2 in G− e. Thus, the
claim is true, that is, c assigns each color from {2, 3, . . . , χρ(G − e)} to at most
two vertices. Recall that diam(G − e) ≤ 4, which implies that |c−1(i)| = 1 for
each i ≥ 4. Therefore, since G is χρ-critical we have |c

−1(2)| = 2 and |c−1(3)| = 1
(respectively, |c−1(3)| = 2 and |c−1(2)| = 1), or |c−1(2)| = 2 and |c−1(3)| = 2.

First, suppose that |c−1(j)| = 2 for some j ∈ {2, 3} and |c−1(i)| = 1 for
each i ∈ {2, 3, . . . , χρ(G − e)} \ {j}. Let u, v ∈ V (G) such that c(u) = c(v) = j,
j ∈ {2, 3}. Then dG−e(u, v) ≥ j + 1 ≥ 3 and since diam(G) = 2, the endvertices
of e = u1u2 are the vertices u and v (u1 = u and u2 = v), u and x ∈ N(v) (u1 = u
and u2 = x, v ∈ N(u2)) or v and x ∈ N(u) (u2 = v and u1 = x, u ∈ N(u1)).
In other words, {u, v} = {y, u3−k}, where y ∈ N [uk] for some k ∈ {1, 2}. Since
|c−1(i)| = 1 for each i ∈ {2, 3, . . . , χρ(G − e)} \ {j} and G is χρ-critical, there
exists an α-set A in G − e with the property that A ∩ {y, u3−k} = ∅. Using the
fact that A does not contain at least one endvertex of e, we infer that A is also
an α-set of G, which completes the proof in this case.

Next, suppose that |c−1(2)| = 2, |c−1(3)| = 2 and |c−1(i)| = 1 for each
i ∈ {4, 5, . . . , χρ(G − e)}. Let u, v ∈ V (G) such that c(u) = c(v) = 2 and
let z, w ∈ V (G) \ {u, v} such that c(z) = c(w) = 3. Since dG−e(u, v) ≥ 3,
dG−e(z, w) ≥ 4 and diam(G) = 2, each of the shortest u-v-paths and each of the
shortest z-w-paths in G contain the edge e. This implies that for some k ∈ {1, 2}
we have: {u, v} = {y, u3−k}, y ∈ N(uk), {z, w} = {y′, uk} and y′ ∈ N(u3−k).
Since diam(G) = 2, there exists x ∈ N(y) ∩ N(y′). Since y ∈ N(uk), we get
dG−e(z, w) ≤ 3, because the path y′xyuk is a z-w-path in G−e of length 3. With
this contradiction the first implication of the theorem is proved.

For the converse, suppose that G has diameter 2 and for each edge of G at
least one of the statements (i) and (ii) holds. Let e be an arbitrary edge of G. If
α(G− e) ≥ α(G) + 1, then χρ(G− e) ≤ |V (G)| − α(G)− 1 + 1 < χρ(G), and we
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are done. Otherwise, for some k ∈ {1, 2} there exists an α-set A of G, which does
not contain the vertices u3−k and y ∈ N [uk] with the property dG−e(u3−k, y) ≥ 3.
In this case, a coloring c of G− e, which assigns color 2 to the vertices u3−k and
y, color 1 to all vertices from A, and |V (G)| − α(G) − 2 distinct colors to other
vertices, is a packing coloring. Note that c uses |V (G)| − α(G) colors, which is
less than χρ(G) = |V (G)| − α(G) + 1.

5. Critical Block Graphs

In this section, we study χρ-critical block graphs. Recall that a block of a graph
G is a maximal connected subgraph of G, which has no cut vertices (that is, a
maximal 2-connected subgraph or a K2 whose edge is a cut-edge of G). A graph
in which each block is a complete graph, is called a block graph. Using Theorem
13, it is not difficult to characterize χρ-critical block graphs with diameter 2 (as
we will see later, the task gets much harder for χρ-critical block graphs with
diameter 3).

Theorem 14. If G is a block graph with diameter 2, then G is χρ-critical if and

only if δ(G) ≥ 2.

Proof. Let G be a block graph with diameter 2 and let G consist of k blocks,
k ≥ 2. Note that the center of G contains just one vertex x, which is adjacent to
all other vertices of G. Note that α(G) = k and each α-set of G contains exactly
one vertex (different from x) of each block of G.

Let G be χρ-critical. We claim that δ(G) ≥ 2. Suppose to the contrary that
there exists u ∈ V (G) such that deg(u) = 1. Note that u is contained in each
α(G)-set. Hence e = ux does not satisfy the properties from Theorem 13 and so
G is not χρ-critical, a contradiction to our assumption.

Conversely, suppose that δ(G) ≥ 2. Let e = uv be an arbitrary edge of G
and denote by B the block of G such that e ∈ E(B). If u 6= x and v 6= x, then
α(G − e) > α(G), since α(G − e)-sets contain both u and v and k − 1 vertices
from blocks different from B. On the other hand, let one endvertex of e be x, say
u = x. Then, dG−e(v, y) = 3, for some y ∈ V (G) \ V (B). Note that y ∈ N(u).
Since δ(G) ≥ 2, each block of G is of order at least 3 and thus there exists an
α(G)-set A such that A ∩ {v, y} = ∅. Therefore, Theorem 13 implies that G is
χρ-critical.

Now, let G be a block graph with diameter 3. Note that then rad(G) = 2,
and the center of G consists of (at least two) vertices that form a block. We call
this block the central block of G, and all other blocks of G will be called side

blocks. Since diam(G) = 3, G has at least two side blocks, which do not intersect,
yet they intersect with two distinct vertices of the central block.
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We follow with one of the main results of this paper—a characterization of
χρ-critical block graphs with diameter 3.

Theorem 15. Let G be a block graph with diameter 3, and let B be the central

block of G. The graph G is χρ-critical if and only if one of the following three

possibilities holds for the vertices of B.

(a) All vertices in V (B) have degree |V (B)|.

(b) All vertices in V (B) have degree |V (B)|+1, and exactly |V (B)| − 1 vertices

of B have two leaf neighbors.

(c) For each vertex x ∈ V (B) at least one of the following three properties holds.

(c1) x belongs to at least one side block of order at least 4, and does not

have any leaf neighbor;

(c2) x belongs to at least two side blocks of order 3, and does not have any

leaf neighbor;

(c3) x has degree |V (B)| + 1 and has two neighbors, which are both leaves;

in addition, at least one vertex in V (B) satisfies one of the properties

(c1) or (c2).

Proof. For each vertex x of the central block B, let Bx denote the subgraph
induced by N(x) \ V (B).

To prove the first implication, let G be a χρ-critical graph. The assumption
that the vertices of B do not satisfy the properties (a), (b) and (c) will lead us to
a contradiction. We distinguish two cases, which are then further divided upon
different possibilities.

Case 1. Suppose that there exists at least one vertex in V (B), say x, which
satisfies one of the properties (c1) or (c2). Then there exists y ∈ V (B), which
does not satisfy the properties (c1), (c2), (c3). We distinguish the following four
cases with respect to the number of leaf neighbors of y.

Case 1.1. The vertex y is adjacent to at least three leaves. Let e = yu, where
u ∈ V (By) is a leaf. Now, we prove that there exists an optimal packing coloring
c of G − e, such that c(y) > 1. Suppose that c′ is a χρ(G − e)-packing coloring
with c′(y) = 1. Then the leaves adjacent to y receive different colors by c′, which
are greater than 1. In particular, there exists a leaf v such that c′(v) ≥ 3, and so
the color c′(v) appears only on v. By exchanging the colors of v and y (letting
c(v) = 1 and c(y) = c′(v)) and setting c(u) = 1, we get a packing coloring c of
G − e using χρ(G − e) colors. We infer that c is also a packing coloring of G,
hence χρ(G) ≤ χρ(G− e), a contradiction to G being χρ-critical.

Case 1.2. The vertex y is adjacent to exactly two leaves. Since y does not
satisfy the property (c3), it is contained in at least one side block of order at least
3. In this case, a consideration analogous to Case 1.1 yields the result.
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Case 1.3. The vertex y is adjacent to exactly one leaf. Let e = yu, where
u ∈ V (By) is a leaf. If y is contained in a side block of order at least 3, then
the proof is analogous to Case 1.1. Otherwise, V (By) = {u}. Suppose that c′

is a χρ(G − e)-packing coloring with c′(y) ≥ 2. Then, by letting c(u) = 1, and
c(z) = c′(z) for all z ∈ V (G) \ {u}, c is a packing coloring of G using the same
number of colors as c′. Hence, χρ(G) ≤ χρ(G − e), which is a contradiction.
Now, let c′(y) = 1. Suppose that c′(v) = 2, where v ∈ V (B). Then the color
2 appears only on v with respect to c′ (and perhaps on u). In addition, there
exists a vertex a ∈ V (Bx) such that c′(a) ≥ 3, hence the color c′(a) appears only
on a and perhaps on u with respect to c′. By replacing the colors of vertices v
and a, notably, letting c(a) = 2, c(v) = c′(a), and setting c(u) = 2, c(z) = c′(z)
for all z ∈ V (G) \ {a, v, u}, we infer that c is a packing coloring of G using at
most χρ(G− e) colors. So we again get χρ(G) ≤ χρ(G− e), a contradiction to G
being critical. Finally, if no vertex of B receives color 2 by c′, then already c′ is
a packing coloring of G, setting c′(u) = 2 if necessary.

Case 1.4. The vertex y is not adjacent to any leaf. This implies that y is
either contained in a side block of order 3, or it is a simplicial vertex.

First, consider the case when y is contained in B and in one block isomorphic
to K3. Let e = uv, where u, v ∈ V (By). Suppose that c′ is a χρ(G − e)-packing
coloring ofG−e with c′(y) = 1. This implies that c′(u) 6= c′(v). Since dG(v1, v2) =
dG−e(v1, v2) for all v1, v2 ∈ V (G) except for {v1, v2} = {u, v}, we infer that c′ is
also a packing coloring of G using χρ(G− e) colors. Thus, χρ(G) ≤ χρ(G− e), a
contradiction to G being χρ-critical. Now, let c

′(y) 6= 1. Suppose that c′(w) 6= 2,
for all w ∈ V (B). Then, by letting c(u) = 1, c(v) = 2 and c(z) = c′(z) for
all z ∈ V (G) \ {u, v}, we infer that c is a packing coloring of G using the same
number of colors as c′. Hence, χρ(G) ≤ χρ(G−e), which is a contradiction. Then,
suppose that c′(w) = 2 for some w ∈ V (B). This implies that color 2 appears only
on w with respect to c′. In addition, there exists a vertex a ∈ V (Bx) such that
c′(a) ≥ 3, hence the color c′(a) appears only on a with respect to c′. By replacing
the colors of vertices w and a, notably, letting c(a) = 2, c(w) = c′(a) and setting
c(u) = 1, c(v) = 2 and c(z) = c′(z) for all z ∈ V (G) \ {a, w, u, v}, we infer that c
is a packing coloring of G using at most χρ(G − e) colors, a contradiction to G
being χρ-critical.

It remains to consider the case when y is a simplicial vertex. Since diam(G) =
3, there exists v ∈ V (B) \ {x} which is not simplicial. If v does not satisfy the
properties (c1), (c2) and (c3), then by switching the roles of y and v, we infer
the result analogously as in Cases 1.1, 1.2, 1.3, or 1.4. Otherwise, let e = yv
and let c′ be a χρ(G − e)-packing coloring of G − e. Note that there exists a
vertex a ∈ V (Bx) such that c′(a) ≥ 3 and hence the color c′(a) appears only on a
with respect to c′. If c′(y) 6= 1, then by exchanging the colors of y and a (letting
c(y) = c′(a) and c(a) = c′(y)) and c(z) = c′(z) for all z ∈ V (G) \ {y, a}, we get
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a packing coloring c of G using χρ(G− e) colors, a contradiction to G being χρ-
critical. Therefore, c′(y) = 1. If c′(v) 6= 1, then we infer that c′ is also a packing
coloring of G, hence χρ(G) ≤ χρ(G − e), a contradiction to G being χρ-critical.
Therefore, c′(y) = c′(v) = 1 and since v satisfies the property (c1), (c2) or (c3),
there exists v′ ∈ V (Bv) such that c′(v′) ≥ 3. This implies that color c′(v′) appears
only on v′ with respect to c′. By replacing the colors of vertices v and v′, notably,
letting c(v) = c′(v′), c(v′) = 1 and c(z) = c′(z) for all z ∈ V (G) \ {v, v′}, we infer
that c is a packing coloring of G using at most χρ(G− e) colors, a contradiction
to G being χρ-critical.

Case 2. None of the vertices from V (B) satisfies (c1) or (c2).

Case 2.1. G contains at least one side block of order at least 3. Let x ∈
V (B)∩V (C), where C is a side block of G, which is not isomorphic to K2. Since
diam(G) = 3, there exists y ∈ V (B) \ {x} such that deg(y) ≥ |V (B)|. If y is
adjacent to at least three leaves or to exactly one leaf, then the proof is analogous
to Case 1.1 or Case 1.3, respectively. If y is not a support vertex, it is contained
in exactly two different blocks of G, one of which is B and the other is isomorphic
to K3 (since y does not satisfy (c1) or (c2)). In this case the proof is analogous
as in Case 1.4. Therefore, each non-simplicial vertex (except perhaps x) of B is
adjacent to exactly two leaves. Next, suppose that there exists a simplicial vertex
v ∈ V (B). Let e = yv and let c′ be a χρ(G − e)-packing coloring of G − e. If
c′(v) = 1 and c′(y) 6= 1, then c′ is also a packing coloring of G using χρ(G − e)
colors, which contradicts that G is χρ-critical. If c′(v) = c′(y) = 1, then there
exists a leaf y′ ∈ V (By) such that c′(y′) ≥ 3 and therefore c′(y′) appears only on
y′ with respect to c′. By exchanging the colors of y and y′ (letting c(y) = c′(y′)
and c(y′) = 1) and c(z) = c′(z) for all z ∈ V (G) \ {y, y′}, we get a packing
coloring c of G using χρ(G− e) colors, what is again a contradiction to G being
χρ-critical. Therefore, c′(v) 6= 1. If c′(v) ≥ 3, then c′(v) appears only on v with
respect to c′, thus c′ is also a packing coloring of G. This yields a contradiction,
since χρ(G) ≤ χρ(G − e). Hence, suppose c′(v) = 2 and note that c′(v′) 6= 2 for
each v′ ∈ V (B) \ {v}. Note that there exists x′ ∈ V (Bx) such that c′(x′) ≥ 3 and
this color appears only on x′. By replacing the colors of vertices v and x′, notably,
letting c(v) = c′(x′), c(x′) = 2 and c(z) = c′(z) for all z ∈ V (G) \ {v, x′}, we infer
that c is a packing coloring of G using at most χρ(G− e) colors, a contradiction
to G being χρ-critical. Therefore, B does not contain simplicial vertices.

Now, suppose that there exists a ∈ V (B), such that a is contained in at
least one side block isomorphic to K2 and in at least one side block isomorphic
to Kn, n ≥ 3. Let e = ab, where b is a leaf, and let c′ be a χρ(G − e)-packing
coloring of G − e. If c′(a) = 1, then there exist a′ ∈ V (Ba) such that c′(a′) ≥ 3.
By exchanging the colors of a and a′ (letting c(a′) = 1 and c(a) = c′(a)) and
setting c(b) = 1, we get a packing coloring c of G− e using χρ(G− e) colors. We
infer that c is also a packing coloring of G, thus χρ(G) ≤ χρ(G − e), which is
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a contradiction to G being χρ-critical. Finally, if c′(a) 6= 1, then already c′ is a
packing coloring of G, setting c′(b) = 1 if necessary. We have χρ(G) ≤ χρ(G− e),
a contradiction to G being χρ-critical.

We conclude that all vertices of B are of degree |V (B)|+1. Since they do not
satisfy the property (b), there exist x, x′ ∈ V (B), which are not support vertices.
Let u, v ∈ V (Bx′) and let e = uv. The proof that χρ(G) ≤ χρ(G−e) is analogous
to Case 1.4, which is the last contradiction of this case.

Case 2.2. All side blocks of G are isomorphic to K2. First, suppose that there
exists a simplicial vertex a ∈ V (B). Since diam(G) = 3, there also exist u ∈ V (B)
and v ∈ V (Bu). Let e = uv. Note that χρ(G− e) ≥ |V (B)| since B is a complete
subgraph of G−e. Then, by setting c(a) = 1, c(v) = 1, c(u) = 2, c(l) = 1 for each
leaf l of G − e, and c(vi) = i for each vi ∈ V (B) \ {a, u}, i ∈ {3, 4, . . . , |V (B)|},
we get a packing coloring c of G using |V (B)| colors. Thus, χρ(G) ≤ χρ(G− e),
a contradiction to G being χρ-critical.

Therefore, V (B) has no simplicial vertices. Since the vertices from V (B) do
not satisfy the property (a), there exists u ∈ V (B) such that deg(u) ≥ |V (B)|+1.
Let v, v′ ∈ V (Bu) and let e = uv. Then, G− e contains a subgraph H such that
V (B) ⊂ V (H) and each vertex of H is of degree |V (B)| or 1. Let c be an optimal
packing coloring of H. First, we prove that χρ(H) ≥ |V (B)| + 1. Since B is a
complete graph, all vertices of B receive different colors by a packing coloring c.
If no vertex of B receives color 1, it is clear that χρ(H) ≥ |V (B)| + 1. On the
other hand, if c(p) = 1 for p ∈ V (B), then for the leaf neighbor q of p we get
c(q) > 1. Hence the color c(q) does not appear among vertices of B, which again
implies that χρ(H) ≥ |V (B)|+1. Since H is a subgraph of G− e, it follows that
χρ(G − e) ≥ |V (B)| + 1. By setting c(u) = 2, c(v) = c(v′) = 1, c(l) = 1 for all
leaves l ∈ V (G), and c(vi−1) = i for all vi−1 ∈ V (B) \ {u}, 3 ≤ i ≤ |V (B)| + 1,
we infer that c is a packing coloring of G using at most |V (B)|+ 1 colors. So we
again get χρ(G) ≤ χρ(G− e), which is a contradiction to G being χρ-critical. By
this, one direction of the proof is complete.

For the converse implication, let us assume that vertices in V (B) satisfy one
the properties (a), (b) or (c), and prove that G is χρ-critical. That is, for each
edge e ∈ E(G) we will show that χρ(G − e) < χρ(G). Denote by c an optimal
packing coloring of G and let e = uv be an edge of G that will be removed.

Case a. Vertices of V (B) satisfy the property (a). One can prove that
χρ(G) ≥ |V (B)|+ 1 along the same lines as proving that χρ(H) ≥ |V (B)|+ 1 in
Case 2.2 (in fact, the graphs are isomorphic). Next, we prove that χρ(G − e) ≤
|V (B)|. If u, v ∈ V (B), then form a packing coloring c′ of G − e using |V (B)|
colors as follows. Let c′(u) = c′(v) = 1, c′(l) = 2 for all leaves l of G, and let the
other vertices of G receive different colors from {3, . . . , |V (B)|} by c′. Otherwise,
u ∈ V (B) and v /∈ V (B). In this case, let c′(u) = c′(v) = 1, c′(l) = 1 for all
leaves l of G, and let the vertices from V (B) \ {u} receive different colors from
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{2, . . . , |V (B)|} by c′. Since c′ uses |V (B)| colors, we infer that χρ(G − e) ≤
|V (B)|, which implies that G is χρ-critical.

Case b. Vertices of V (B) satisfy the property (b). Denote by t the vertex
from V (B), which is not a support vertex.

We first prove that χρ(G) ≥ |V (B)|+ 2. Note that if c(a) = 1 for a ∈ V (B),
the vertices a′, a′′ ∈ V (Ba) receive colors greater than 1. The colors c(a′), c(a′′)
thus cannot appear on vertices of B. This readily implies that c uses at least
|V (B)|+2. Hence c(a) > 1 for all a ∈ V (B), and we may assume that the vertices
in B receive colors from {2, . . . , |V (B)| + 1}. Note that one of the vertices t′ in
V (Bt) has c(t

′) > 1. Since t′ is at distance at most 2 from vertices in B, we find
that c(t′) > |V (B)|+ 1. Thus χρ(G) ≥ |V (B)|+ 2.

In order to prove that χρ(G−e) ≤ |V (B)|+1 for all e = uv, first suppose that
u, v ∈ V (B). Form a packing coloring c′ of G−e using |V (B)|+1 colors as follows.
Let c′(u) = c′(v) = 1, c′(u′) = 2, c′(u′′) = 3, c′(v′) = 2, c′(v′′) = 3 for u′, u′′ ∈
V (Bu), v

′, v′′ ∈ V (Bv). Further, let the vertices from V (G) \ (V (B) ∪ V (Bu) ∪
V (Bv)) receive colors from {1, 2} by c′ and let the other vertices of G receive
different colors from {4, . . . , |V (B)|+1} by c′. Therefore, χρ(G−e) ≤ |V (B)|+1.
If u ∈ V (B) and v /∈ V (B), then form a packing coloring c′ of G− e as follows. If
u ∈ V (B) \ {t}, then let c′(u) = c′(v) = 1, c′(t′) = 1 for t′ ∈ V (Bt), c

′(l) = 1 for
all leaves from V (G) \ V (Bu), and c′(u′) = c(t′′) = 2 for u′ ∈ V (Bu), t

′′ ∈ V (Bt).
Otherwise, u = t and let c′(u) = c′(v) = 1, c′(l) = 1 for all leaves l ∈ V (G) and
c′(u′) = 2 for u′ ∈ V (Bu). In both cases |(c′)−1(1)∪ (c′)−1(2)| = 2|V (B)|+1 and
thus χρ(G− e) ≤ |V (G− e)| − (2|V (B)|+ 1) + 2 = |V (B)|+ 1. Finally, suppose
that u, v /∈ V (B) and by letting c′(l) = 1 for each leaf l of G− e and c′(a) = 2 for
some a ∈ V (B), c′ is a packing coloring of G− e using at most |V (B)|+1 colors,
which implies that χρ(G− e) < χρ(G).

Case c. Vertices of V (B) satisfy the property (c). Denote by p3 the number
of vertices from V (B) with the property (c3) and by k the number of blocks of
G. First, we prove that |c−1(1) ∪ c−1(2)| ≤ k − 1 + |V (B)| − p3 (which implies
χρ(G) ≥ |V (G)| − k + 1− |V (B)|+ p3 + 2).

Suppose that c(a) = 2 for some a ∈ V (B). Then c(x) 6= 2 for all x ∈
V (G)\{a}, since d(a, x) ≤ 2. If c(b) = 1 for some b ∈ V (B), then c(b′) 6= 1 for all
b′ ∈ V (Bb), which implies that |c−1(1)| ≤ k − 1. Otherwise, at most one vertex
in each side block receives color 1 by c, which again implies |c−1(1)| ≤ k − 1.
Therefore, in both cases we have |c−1(1) ∪ c−1(2)| ≤ k ≤ k − 1 + |V (B)| − p3,
since B contains at least one vertex which does not satisfy the property (c3).

Next, suppose that c(a) 6= 2 for all a ∈ V (B). Given a vertex b ∈ V (B) with
the property (c1) or (c2), let Bb

1, . . . , B
b
lb

be the side blocks of G that contain

b. Since each Bb
i is of order at least 3, at most one vertex in Bb

i receives color
1 by c and at most one vertex from V (Bb

1) ∪ · · · ∪ V (Bb
lb
) receives color 2 by c.
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Therefore, the overall number of vertices in all side blocks that contain a vertex
b ∈ V (B) with the property (c1) or (c2), which receive color 1 or 2 by c, is most
k − 1 − 2p3 + |V (B)| − p3. Now, consider vertices b ∈ V (B) with the property
(c3) (that is, b is a support vertex). If c(b) = 1, then there exists b′ ∈ V (Bb)
such that c(b′) /∈ {1, 2}. Therefore at most 2p3 − 1 leaves receive color in {1, 2}
by c. Thus, |c−1(1) ∪ c−1(2)| ≤ k − (2p3 + 1) + |V (B)| − p3 + 2p3 − 1 + 1 =
k−1+ |V (B)|−p3. Otherwise, c(b) 6= 1 for all support vertices b ∈ V (B), and at
most 2p3 leaves receive a color from {1, 2} by c, which implies the same bound,
|c−1(1) ∪ c−1(2)| ≤ k − 1 + |V (B)| − p3.

Next, we construct (an optimal) packing coloring c0 of G as follows. For
each b ∈ V (B) that does not satisfy the property (c3), let any vertex from
each set V (Bb

i ) \ {b}, 1 ≤ i ≤ lb, receive color 1. In addition, let any (other)
vertex from (V (B1) ∪ · · · ∪ V (Bb

lb
)) \ {b} receive color 2 by c0. Further, let

{c0(b
′), c0(b

′′)} = {1, 2} for b′, b′′ ∈ V (Bb), where b ∈ V (B) satisfies the property
(c3). Finally, let all the remaining vertices of G receive pairwise distinct colors
by c0. Since |c−1

0 (1)| = k − 1 − p3 and |c−1
0 (2)| = |V (B)|, the coloring c0 is an

optimal packing coloring of G. Additionally, note that c0(b) 6= 1 for all b ∈ V (B).
In order to prove, that χρ(G − e) < χρ(G) for every e = uv, we will denote

by c′ a packing coloring of G− e and consider three subcases with respect to the
type of the edge e.

Case c.1. u, v ∈ V (B). Since dG−e(u
′, v′) = 4 for u′ ∈ V (Bu) and v′ ∈ V (Bv),

we have diam(G − e) > diam(G). If u and v do not satisfy the property (c3),
then there exist u′ ∈ V (Bu) and v′ ∈ V (Bv), such that c0(u

′) = i ≥ 3 and
c0(v

′) = j ≥ 3, i 6= j, and d(u′, v′) > 3. Therefore, using Lemma 3, we infer that
χρ(G − e) < χρ(G). Next, suppose that only u satisfies one of the properties
(c1) or (c2). Recall that c0(v) ≥ 3, c0(v

′) = 1 and c0(v
′′) = 2 for v′, v′′ ∈ V (Bv).

By exchanging the colors of v and v′, c0 is still an optimal packing coloring of
G, and we have analogous situation as above, and so Lemma 3 yields the result.
Finally, suppose that both, u and v, satisfy the property (c3). Without loss of
generality we may assume that c0(u) = 3. Then, by letting c′(u) = c′(v) = 1,
c′(v′) = c′(u′) = 2, c′(u′′) = c′(v′′) = 3 for u′, u′′ ∈ V (Bu), v

′, v′′ ∈ V (Bv), and
c′(x) = c0(x) for all x ∈ V (G)\{u, v, u′, u′′, v′, v′′}, c′ is a packing coloring of G−e
using fewer colors than c0. Namely, |(c′)−1(1) ∪ (c′)−1(2)| = k − 1 + |V (B)| − p3
and |(c′)−1(3)| = 2. Thus, χρ(G− e) < χρ(G).

Case c.2. u ∈ V (B), v /∈ V (B). If u satisfies the property (c1) or (c2),
then without loss of generality we may assume that c0(v) ≥ 3. If there exists
x ∈ V (B), x 6= u, and also some a ∈ V (Bx) with c(a) ≥ 3, then using Lemma 3
we infer the result. Note that such an a certainly exists if x satisfies the property
(c1) or (c2). Otherwise, x satisfies the property (c3). By exchanging the colors
c0(x) ≥ 3 and c0(x

′) = 1, x′ ∈ V (Bx), c0 is still an optimal packing coloring of G
and again we have an analogous situation. Thus, the result follows.
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If u satisfies the property (c3), then there exists x ∈ V (B) having one of the
properties (c1) or (c2). Note that c0(u) ≥ 3 and without loss of generality we
may also assume that c0(v) = 1. By exchanging the colors of u and v and then
using Lemma 3 for the vertices v and a ∈ V (Bx) with the color c(a) ≥ 3, we infer
that χρ(G− e) < χρ(G).

Case c.3. u /∈ V (B), v /∈ V (B). Note that in this case u, v ∈ V (Bz) for
some z ∈ V (B) with the property (c1) or (c2). Since there exists at least one
vertex in V (Bz), which receives a color greater than 2 by c0, we may assume that
c0(u) ≥ 3. Note that the color c0(u) appears only on u. Next, since at least one
vertex from the same block as u receives color 1 by c0, we can also assume that
c0(v) = 1. Then, by letting c′(u) = 1 and c′(x) = c0(x) for all x ∈ V (G) \ {u}, c′

is a packing coloring of G− e using less colors than c0. The proof is complete.

6. Concluding Remarks

Critical graphs for the chromatic number are one of the classical topics in graph
theory. By Dirac’s theorem, δ(G) ≥ k−1 ifG is k-critical. As shown in this paper,
there exist packing chromatic critical graphs with minimum degree 1, and in fact,
as proved in Section 3, there are k-χρ-critical trees for any k ≥ 2. Although by
Theorem 14, δ(G) ≥ 2 in diameter 2 block χρ-critical graphs G, already among
χρ-critical block graphs with diameter 3, there are several types of these graphs
that contain leaves.

It is also well known that the operation of join performed on two critical
graphs for the chromatic number yields a critical graph. While an analogous
statement for the packing chromatic number is again not true (a small example
is the join of two copies of P4, for which one can easily see that it is not χρ-
critical), we wonder whether there is some natural graph operation that would
preserve χρ-critical graphs.

A natural problem that arises from Section 3 is to characterize all 4-χρ-critical
graphs, which is done in that section only within two classes of graphs. We note
that [10, Proposition 3.2] gives a characterization of 2-connected graphs G with
χρ(G) = 3, which could be very useful in investigating 4-χρ-critical graphs.

Finally, we propose the problem of characterizing χρ-critical graphs with
radius 2.
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[11] M. Kim, B. Lidický, T.Masařik and F. Pfender, Notes on complexity of packing

coloring , Inform. Process. Lett. 137 (2018) 6–10.
https://doi.org/10.1016/j.ipl.2018.04.012
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