DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

M. Axenovich

Maria Axenovich

Karlsruhe Institute of Technology

email: maria.aksenovich@kit.edu

A. Karrer

Annette Karrer

Karlsruhe Institute of Technology

email: annette.karrer@kit.edu

Title:

High girth hypergraphs with unavoidable monochromatic or rainbow edges

PDF

Source:

Discussiones Mathematicae Graph Theory 42(2) (2022) 471-484

Received: 2019-07-12 , Revised: 2019-11-29 , Accepted: 2019-11-29 , Available online: 2020-01-16 , https://doi.org/10.7151/dmgt.2291

Abstract:

A classical result of Erdős and Hajnal claims that for any integers $k, r, g \geq 2$ there is an $r$-uniform hypergraph of girth at least $g$ with chromatic number at least $k$. This implies that there are sparse hypergraphs such that in any coloring of their vertices with at most $k-1$ colors there is a monochromatic hyperedge. When there is no restriction on the number of the colors used, one can easily avoid monochromatic hyperedges. Then, however, so-called rainbow or multicolored hyperedges might appear. Nešetřil and R"odl [19] called hypergraphs such that in any vertex-coloring there is either a monochromatic or a rainbow hyperedge, selective. They showed an existence of selective $r$-uniform hypergraphs of girth $g$ for any integers $r, g\geq 2$ using probabilistic and explicit constructions. In this paper, we provide a slightly different construction of such hypergraphs and summarize the probabilistic approaches. The main building block of the construction, a part-rainbow-forced hypergraph, is of independent interest. This is an $r$-uniform $r$-partite hypergraph with a given girth such that in any vertex-coloring that is rainbow on each part, there is a rainbow hyperedge. We give a simple construction of such a hypergraph that does not use iterative amalgamation.

Keywords:

hypergraph, chromatic number, mixed hypergraph, bihypergraphs, monochromatic, rainbow, girth, selective

References:

  1. N. Alon, A. Kostochka, B. Reiniger, D. West and X. Zhu, Coloring, sparseness and girth, Israel J. Math. 214 (2016) 315–331.
    https://doi.org/10.1007/s11856-016-1361-2
  2. Y. Caro, J. Lauri and C. Zarb, Selective hypergraph colourings, Discrete Math. 339 (2016) 1232–1241.
    https://doi.org/10.1016/j.disc.2015.11.006
  3. D. Duffus, V. Rödl, B. Sands and N. Sauer, Chromatic numbers and homomorphisms of large girth hypergraphs, in: Topics in Discrete Mathematics, (Springer 2006) 455–471.
  4. P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959) 34–38.
    https://doi.org/10.4153/CJM-1959-003-9
  5. P. Erdős and A. Hajnal, On chromatic number of graphs and set-systems, Acta Math. Hungar. 17 (1966) 61–99.
    https://doi.org/10.1007/BF02020444
  6. P. Erdős and L. Lovász, Problems and results on $3$-chromatic hypergraphs and some related questions, in: Infinite and Finite Sets, (Keszthely, 1973), Colloq. Math. Soc. János Bolyai 10 (1975) 609–627.
  7. P. Erdős, J. Nešetřil and V. Rödl, Selectivity of hypergraphs, in: Finite and Infinite Sets, Vol. I (Eger, 1981), Colloq. Math. Soc. János Bolyai 37 (1984) 265–284.
    https://doi.org/10.1016/B978-0-444-86893-0.50020-6
  8. T. Feder and M.Y. Vardi, The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory, SIAM J. Comput. 28 (1998) 57–104.
    https://doi.org/10.1137/S0097539794266766
  9. A. Karrer, Colorability of Uniform Hypergraphs without Monochromatic and Rainbow Edges, Master Thesis (Moldova State University, 1997).
  10. A. Kostochka and J. Nešetřil, Properties of Descartes' construction of triangle-free graphs with high chromatic number, Combin. Probab. Comput. 8 (1999) 467–472.
    https://doi.org/10.1017/S0963548399004022
  11. A. Kostochka and V. Rödl, Constructions of sparse uniform hypergraphs with high chromatic number, Random Structures Algorithms 36 (2010) 46–56.
    https://doi.org/10.1002/rsa.20293
  12. I. Kříž, A hypergraph-free construction of highly chromatic graphs without short cycles, Combinatorica 9 (1989) 227–229.
    https://doi.org/10.1007/BF02124683
  13. G. Kun, Constraints, MMSNP and expander relational structures, Combinatorica 33 (2013) 335–347.
    https://doi.org/10.1007/s00493-013-2405-4
  14. A. Kupavskii and D. Shabanov, Colourings of uniform hypergraphs with large girth and applications, Combin. Probab. Comput. 27 (2018) 245–273.
    https://doi.org/10.1017/S0963548317000475
  15. L. Lovász, On chromatic number of finite set-systems, Acta Math. Hungar. 19 (1968) 59–67.
    https://doi.org/10.1007/BF01894680
  16. V. Müller, On colorable critical and uniquely colorable critical graphs, in: Recent Advances in Graph Theory, M. Fiedler (Ed(s)), (Academia, Prague 1975).
  17. V. Müller, On colorings of graphs without short cycles, Discrete Math. 26 (1979) 165–176.
    https://doi.org/10.1016/0012-365X(79)90121-3
  18. J. Nešetřil, A combinatorial classic–-sparse graphs with high chromatic number, in: Erdős Centennial, (Springer, Berlin, Heidelberg 2013) 383–407.
    https://doi.org/10.1007/978-3-642-39286-3_15
  19. J. Nešetřil and V. Rödl, Selective graphs and hypergraphs, Ann. Discrete Math. 3 (1978) 181–189.
    https://doi.org/10.1016/S0167-5060(08)70506-5
  20. J. Nešetřil and V. Rödl, On a probabilistic graph-theoretical method, Proc. Amer. Math. Soc. 72 (1978) 417–421.
    https://doi.org/10.1090/S0002-9939-1978-0507350-7
  21. A. Raigorodskii and D. Shabanov, The Erdős-Hajnal problem of hypergraph colouring, its generalizations, and related problems, Russian Math. Surveys 66 (2011) 933.
    https://doi.org/10.1070/RM2011v066n05ABEH004764
  22. N. Sauer, On the existence of regular n-graphs with given girth, J. Combin. Theory 9 (1970) 144–147.
    https://doi.org/10.1016/S0021-9800(70)80021-7
  23. V. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms, and Applications (AMS, Providence, 2002).
    https://doi.org/10.1090/fim/017

Close