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Abstract

A classical result of Erdős and Hajnal claims that for any integers k, r, g ≥
2 there is an r-uniform hypergraph of girth at least g with chromatic num-
ber at least k. This implies that there are sparse hypergraphs such that in
any coloring of their vertices with at most k− 1 colors there is a monochro-
matic hyperedge. When there is no restriction on the number of the colors
used, one can easily avoid monochromatic hyperedges. Then, however, so-
called rainbow or multicolored hyperedges might appear. Nešetřil and Rödl
[19] called hypergraphs such that in any vertex-coloring there is either a
monochromatic or a rainbow hyperedge, selective. They showed an exis-
tence of selective r-uniform hypergraphs of girth g for any integers r, g ≥ 2
using probabilistic and explicit constructions. In this paper, we provide a
slightly different construction of such hypergraphs and summarize the prob-
abilistic approaches. The main building block of the construction, a part-
rainbow-forced hypergraph, is of independent interest. This is an r-uniform
r-partite hypergraph with a given girth such that in any vertex-coloring that
is rainbow on each part, there is a rainbow hyperedge. We give a simple con-
struction of such a hypergraph that does not use iterative amalgamation.

Keywords: hypergraph, chromatic number, mixed hypergraph, bihyper-
graphs, monochromatic, rainbow, girth, selective.
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1. Introduction

A classical result of Erdős and Hajnal [5], Corollary 13.4, claims that for any inte-
gers k, r, g ≥ 2 there is an r-uniform hypergraph of girth at least g with chromatic
number at least k. This implies that there are sparse hypergraphs such that in
any coloring of their vertices with at most k− 1 colors there is a monochromatic
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hyperedge. The original proof was probabilistic. Other probabilistic construc-
tions were given by Nešetřil and Rödl [20], Duffus et al. [3], Kostochka and Rödl
[11], and, in case of graphs only, by Erdős [4]. Several explicit constructions were
found later, see Lovász [15], Erdős and Lovász [6], Nešetřil and Rödl [20], Duffus
et al. [3], Alon et al. [1], Kř́ıž [12], Kostochka and Nešetřil [10]. Nešetřil [18] as
well as Raigorodskii and Shabanov [21] gave surveys on the topic. Some inter-
esting generalizations and applications were treated by Feder and Vardi [8], Kun
[13], Müller [16, 17], Kupavskii and Shabanov [14], as well as by Nešetřil [18].

When the number of colors used on the vertices of a hypergraph is not re-
stricted, the monochromatic hyperedges could easily be avoided by simply using
a lot of different colors. Then, however, so-called rainbow (totally multicolored)
hyperedges could appear. The notion of a proper coloring when both rainbow
and monochromatic hyperedges are forbidden was introduced by Erdős, Nešetřil
and Rödl [7], see also [19]. In these papers, the authors called hypergraphs for
which any vertex-coloring results in either monochromatic or rainbow hyperedge
as selective hypergraph. Various aspects of these hypergraphs were addressed in
these papers. Caro et al. [2] used the notion of selective hypergraph coloring in
a different context, when the color distribution on the hyperedges satisfy a given
partition pattern. Voloshin called hypergraphs that allow for a vertex-coloring in
which every edge is neither monochromatic nor rainbow, bihypergraphs, [23], he
also introduced a more general notion of mixed hypergraphs, see also Karrer [9].

One of the results of Nešetřil and Rödl [7] is that there are selective hyper-
graphs of arbitrarily high girth. Surprisingly, these fundamental results of Erdős,
Nešetřil and Rödl [7, 19] do not have a single citation in Mathscinet. Here we pro-
vide explicit and probabilistic constructions quite similar to the ones of Nešetřil
and Rödl. One of the key components of the explicit construction are so-called
part-rainbow-forced hypergraphs. We give two new constructions of those, one of
them is significantly smaller than in the original construction. An observation we
make is that one could build such a hypergraph without iterative amalgamation
simply from a hypergraph of high girth and the number of edges exceeding the
number of vertices.

A cycle of length g in a hypergraph is a subhypergraph consisting of g ≥ 2
distinct hyperedges E0, . . . , Eg−1 and containing distinct vertices x0, . . . , xg−1,
such that xi ∈ Ei ∩ Ei+1, i = 0, . . . , g − 1, addition of indices modulo g. The
girth of a hypergraph is the length of a shortest cycle if such exists, and infinity
otherwise. Next is our main result, that is also a result from [19].

Theorem 1. For any integers r, g ≥ 2 there is an r-uniform hypergraph of girth
at least g such that in any coloring of its vertices there is either a monochromatic
or a rainbow (totally multicolored) edge.

To shorten the presentation, we shall say that a hypergraph is rm-unavoidable
if any coloring of its vertices has either a rainbow or a monochromatic edge. We
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give an explicit construction and use it to prove the main theorem in Section 2.
The probabilistic proof is given in Section 3. The proofs of a few standard results
we use are presented in Appendix.

2. Explicit Construction of rm-Unavoidable Hypergraphs

The goal of this section is to construct, for each r ≥ 2 and g ≥ 2, an rm-
unavoidable hypergraph, that we shall call H(r, g), of uniformity r and girth g.
The three main concepts we use are amalgamation, special partite hypergraphs
forcing rainbow edges, and so-called complete partite factors. All of these notions
are defined for partite hypergraphs. A hypergraph is a-partite if its vertex set can
be partitioned in at most a parts such that each hyperedge contains at most one
vertex from each part. We shall first define a part-rainbow-forced hypergraph
as a hypergraph having some special coloring properties and give an explicit
construction of such a hypergraph PR(r, g). Then we incorporate this hypergraph
into a more involved construction of an rm-unavoidable hypergraph H(r, g). Both
of these constructions use amalgamation.

U1 U2 U3 U4

H ?4 F

V1 V2 V3 V4 = V (F )

U5

V5

H

F

Figure 1. Amalgamation of F and H along the 4th part. Here F is a 3-uniform cycle
on 3 edges, H is 5-uniform, 5-partite with 4 edges. The resulting graph is 5-partite,
5-uniform, with curves indicating hyperedges and colors indicating distinct copies of H,
corresponding to the edges of F .

Amalgamation

Given an a-partite hypergraph H with the ith part of size ri and given an ri-
uniform hypergraph F = (V, E), an amalgamation of H and F along the ith part,
denoted by H ?i F , is an a-partite hypergraph obtained by taking |E| vertex-
disjoint copies of H and identifying the ith part of each such copy with a hy-
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peredge of F such that distinct copies get identified with distinct hyperedges.
Moreover, the jth part of H ?i F is a pairwise disjoint union of the jth parts from
the copies of H, for j ∈ {1, . . . , a} \ {i}, see Figure 1. We shall sometimes say
that H ?i F is obtained by amalgamating copies of H along the part i using F .

Partite factor

Let F be an r-uniform r-partite hypergraph. A complete a-partite F -factor is
an a-partite r-uniform hypergraph G that is a union of pairwise vertex-disjoint
copies F1, . . . , F(ar)

of F , such that each part of Fi is contained in some part of

G, i = 1, . . . ,
(
a
r

)
, and such that the union of any r parts of G contains the vertex

set of Fi, for some i = 1, . . . ,
(
a
r

)
, see Figure 2.

F

Figure 2. An example of a complete 4-partite F -factor, where F is a 3-partite 3-uniform
hypergraph with two edges.

Part-rainbow-forced hypergraph

A vertex coloring of an a-partite hypergraph with parts X1, . . . , Xa that assign
|Xi| colors to part i, for each i = 1, . . . , a, is called part rainbow. We say that an
a-partite hypergraph is part-rainbow-forced if in any part-rainbow coloring there
is a rainbow edge.

The following constructions give part-rainbow-forced hypergraphs.

Construction of a hypergraph PR(r, g)

Let r, g ≥ 2, g ≥ 2 be fixed. Let g ≥ 2, let PR(2, g) be a bipartite graph on
vertices x, y, z and edges xy, yz.

Assume now that Hr = PR(r, g) has been constructed and it is an r-uniform,
r-partite hypergraph, r ≥ 2. Let F ′ be an `-uniform hypergraph of girth at least
g and minimum degree `(r + 1), where ` = |E(Hr)|. For completeness, we show
the existence of F ′ in Appendix. It was shown by Sauer [22], see also a survey
on related topics by Nešetřil [18].

For an r-uniform r-partite hypergraph H, let H̃ be an (r+ 1)-partite (r+ 1)-
uniform hypergraph that is obtained from H by expanding each of its edges by
a vertex in a new, (r + 1)st part, such that each edge is extended by an own
vertex, i.e., the size of the (r + 1)st part is equal to the number of edges in H,
see Figure 3.
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U1 U2

Hr

Ur U1 U2

H̃r

Ur

Ur+1

Figure 3. Extension of an r-partite r-uniform hypergraph Hr to an (r+1)-partite (r+1)-

uniform hypergraph H̃r.

Let PR(r + 1, g) = ˜PR(r, g) ?r+1 F
′, i.e., it is an amalgamation of copies of

˜PR(r, g) along the (r + 1)st part using F ′, see Figure 4.

Next, we give an alternative construction.

Construction of a hypergraph PR ∗ (r, g)

Let r, g ≥ 2, g ≥ 2 be fixed. Let g ≥ 2, let PR(2, g) be a bipartite graph on
vertices x, y, z and edges xy, yz.

Let r = 3, g ≥ 2 be fixed. Let PR∗(3, g) have parts U1, U2, U3. First consider
G, a bipartite graph with parts U1 and U2 that is a union of two cycles of length at
least g each, sharing a unique edge and no other vertices except for that edge’s.
We see that G has girth at least g and it has more edges than vertices. Let
PR∗(3, g) be obtained from G by extending each edge of G to a hyperedge with
three vertices where the third vertex is in U3 and has degree one in the resulting
hypergraph. More formally, let U3 = {ve : e ∈ E(G)}, |U3| = |E(G)|, and the set
of hyperedges of PR∗(3, g) is {e ∪ ve : e ∈ E(G)}.

In general, for r ≥ 3, let G be an (r − 1)-uniform hypergraph that is partite
with parts U1, . . . , Ur−1, having girth g, and with set of edges E, |E| > |V (G)|.
Let PR∗(r, g) be an r-partite r-uniform hypergraph with parts U1, . . . , Ur, |Ur| =
|E|, Ur = {ve : e ∈ E} with the edge set {e∪ ve : e ∈ E}, i.e., H restricted to the
parts U1, . . . , Ur−1 coincides with G and each edge of H is extended to a distinct
vertex of Ur.

Lemma 2. For any integers r, g, g > r ≥ 2, PR(r, g) and PR∗(r, g) are part-
rainbow-forced r-uniform hypergraphs of girth at least g.

Proof. By construction, PR(r, g) is an r-uniform r-partite hypergraph, r ≥ 2.
We shall prove by induction on r that PR(r, g) is part-rainbow-forced hypergraph
of girth at least g.
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Hr ?r+1 F
′

Vr+1 = V (F ′)V1 V2 Vr

H̃r

F ′

Ur+1

U1 U2 Ur

Figure 4. Illustration of a part-rainbow-forced (r + 1)-uniform hypergraph PR(r + 1, g)
and a cycle of length 3 in the amalgamated hypergraph F ′. The bold hyperedges form a
cycle of length 11 in the resulted hypergraph.

When r = 2, we see that a part-rainbow coloring assigns distinct colors to
x and z. Thus, no matter how y is colored, xy or yz is rainbow. Moreover this
graph is acyclic, so it has infinite girth.

Assume that PR(r, g) is part-rainbow-forced hypergraph of girth at least g.
Let us prove that Hr+1 = PR(r + 1, g) is also part-rainbow-forced hypergraph
of girth at least g. Let Hr = PR(r, g). Recall that Hr+1 is an amalgamation of

copies H̃1
r , H̃1

r , . . . , H̃
e′
r of H̃r along the (r + 1)st part using F ′, where F ′ is an

`-uniform hypergraph of girth at least g, minimum degree `(r + 1), ` = |E(Hr)|,
and e′ = |E(F ′)|. Recall further, that H̃ i

r is obtained by an extension operation
tilde from H i

r, a copy of Hr.

First we shall verify that any part-rainbow coloring c of Hr+1 results in a
rainbow edge. For any i = 1, . . . , e′, consider a restriction of c to the vertex set
of H i

r. Since it is a copy of Hr = PR(r, g), it is again part-rainbow, so there is a
rainbow edge E′i in that copy. Let E′i ∪ {vi} be a corresponding uniquely defined

edge of H̃ i
r. The vertices v1, . . . , ve′ are vertices of F ′. Since the minimum degree
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of F ′ is at least `(r + 1), then e′ = |E(F ′)| ≥ |V (F ′)|`(r + 1)/` = |V (F ′)|
(r + 1). Thus there are at least r + 1 repeated vertices in the list v1, . . . , ve′ , i.e.,
without loss of generality, v = v1 = · · · = vr+1. Thus v extends rainbow edges
E′1, E

′
2, . . . , E

′
r+1 in H1

r , H
2
r , . . . ,H

r+1
r . We claim that at least one of the extended

edges E′1 ∪ {v}, E′2 ∪ {v}, . . . , E′r+1 ∪ {v} is rainbow. Assume not, then c(v) is
present in each of E′1, E

′
2, . . . , E

′
r+1. However, there are at most r vertices of each

given color in the first r parts. Since E′1, E
′
2, . . . , E

′
r+1 are pairwise disjoint, we

have a contradiction.

To see that the girth of Hr+1 is at least g, consider a cycle C in Hr+1, see
bold edges in Figure 4. If the edges of C come from one copy of H̃r, then the
length of C is at least g as the girth of H̃r is the same as girth of Hr. If the edges
of C come from at least two distinct copies of H̃r, then C is a union of hyperpaths
P0, P1, . . . , Pm−1 from different copies of H̃r, such that the consecutive paths share
a vertex in the last (r + 1)st part, i.e., V (Pi) ∩ V (Pi+1) = {ui}, u0, . . . , um−1 are
distinct vertices from Vr+1, addition modulo m. Thus ui and ui+1 belong to the
same copy of H̃r and thus the same edge of F ′, i = 0, . . . ,m−1, addition modulo
m. We see that these edges of F ′ form a cycle in F ′ of length at most the length
of C. On the other hand, we know that any cycle in F ′ has length at least g,
implying that C has length at least g. This concludes the proof that PR(r+1, g)
is part-rainbow-forced of girth at least g.

Now, we shall argue that PR∗(r, g) is a part-rainbow forced r-uniform hyper-
graph of girth at least g, for g > r. The fact that it has girth at least g follows from
the fact that G has girth at least g. Consider a part-rainbow coloring of PR∗(r, g).
Assume that there is no rainbow hyperedge. Since |Ur| = |E(G)| > |V (G)|, there
is a vertex in Ur having a color not present in U1 ∪ · · · ∪ Ur−1. Let U ′r be the
set of all such vertices, let x = |U ′r|. Each v ∈ U ′r belongs to a unique hyper-
edge ev of H. This hyperedge is not rainbow, there are some two vertices in
ev ∩ (U1 ∪ · · · ∪ Ur−1) that have the same color. We select exactly one such pair,
denote its vertices uv, u

′
v. Consider a fixed color, say 1, and consider all selected

vertices uv, u
′
v of color 1. We see that the total number of such vertices is at most

r − 1 since each Ui, i = 1, . . . , r − 1 is rainbow colored. Moreover, the respective
edges ev do not form a cycle since g > r. Thus the pairs uvu

′
v correspond to a

forest, thus having more vertices than edges. This implies that the number of ver-
tices of color 1 is at least the number of respective hyperedges ev plus one. Thus
the total number of distinct colors used on U1 ∪ · · · ∪Ur−1 is at most |V (G)| − x.
On the other hand, x is the number of vertices from Ur of colors not used on
U1 ∪ · · · ∪ Ur−1, so x ≥ |Ur| − (|V (G)| − x) = |E(G)| − |V (G)| + x ≥ 1 + x, a
contradiction.

Now we construct an rm-unavoidable hypergraph H(r, g) of uniformity r and
girth at least g.
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Construction of a hypergraph H(r, g)

For g = 2 and any r ≥ 2, let H(r, 2) be a complete r-uniform hypergraph on
(r−1)2+1 vertices. Assume that for any r ≥ 2, H(r, g−1) has been constructed.
Let F = PR(r, g) be as given in the previous construction. Let a = (r − 1)2 + r
and let M1 be a complete a-partite F -factor. For any partite hypergraph G, let
|G|i denote the size of the ith part of G.

Let M2 = M1 ?1 H1, where H1 = H(|M1|1, g − 1). Let M3 = M2 ?2 H2,
where H2 = H(|M2|2, g − 1). In general, let Mj+1 = Mj ?j Hj , where Hj =
H(|Mj |j , g− 1). We see that the jth part ofMj+1 corresponds to the vertex set
of Hj . Let H(r, g) =Ma+1.

Now, we shall prove that this construction gives an rm-unavoidable hyper-
graph that is r-uniform and has girth g. This will give a proof of Theorem 1.

Proof of Theorem 1. We shall show that H(r, g) is an rm-unavoidable hyper-
graph of girth at least g, by induction on g. When g = 2, H(r, 2) is a compete
r-uniform hypergraph on (r − 1)2 + 1 vertices. It has girth 2 and in any vertex
coloring there are either r vertices of the same color, forming a monochromatic
edge, or r vertices of distinct colors, forming a rainbow edge. Assume that for
any r ≥ 2, H(r, g − 1) is an rm-unavoidable hypergraph of girth at least g − 1.

Consider H(r, g) =M =Ma+1 given in the construction. Let c be a vertex
coloring of M. Consider the ath part of M = Ma+1. This part corresponds to
the vertex set of Ha = H(|Ma|a, g − 1), an rm-unavoidable hypergraph. Thus,
there is a monochromatic or rainbow subset Xa in the ath part ofM of size equal
to the uniformity of Ha, i.e., of size |Ma|a. Since Xa ∈ E(Ha), Xa is the ath part
of a copy of Ma.

Consider (a− 1)st part of this copy ofMa. Similarly to the above, there is a
monochromatic or rainbow subset Xa−1 of this part of size equal to the uniformity
of Ha−1 = H(|Ma−1|a−1, g − 1), i.e., of size |Ma−1|a−1. Since Xa−1 ∈ E(Ha−1),
Xa−1 is the (a− 1)st part of a copy of Ma−1 such that the ath part of this copy
is a subset of Xa.

Continuing in this manner we see that there is a monochromatic or a rainbow
subset Xj of jth part of Mj+1 of size equal to the uniformity of Hj , i.e., of size
|Mj |j . We have that Xj is the jth part of a copy of Mj such that the (j + t)th

part of this copy is a subset of Xj+t, j + t ∈ {j + 1, j + 2, . . . , a}.
Thus X1, X2, . . . , Xa form parts of an a-uniform sub-hypergraph of M con-

taining a copy of M1. Recall that M1 is a complete a-partite F -factor. Each
of these parts is monochromatic or rainbow. Since a = (r − 1)2 + r, there are
either at least r parts that are rainbow or at least (r − 1)2 + 1 parts that are
monochromatic. If there are r rainbow parts, the copy of F on these parts con-
tains a rainbow edge as F is part-rainbow-forced. So, assume that there are at
least (r − 1)2 + 1 monochromatic parts. If there are r of those that are of the
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same color, any edge in a copy of F on these parts is monochromatic. Otherwise
there are at most (r− 1) parts of each given color, so there are r monochromatic
parts of distinct colors. These r parts in turn contain an edge of F , and since an
edge has at most one vertex from each part, this edge is rainbow.

Now, we verify that the girth ofM is at least g by an argument similar to one
of Lemma 2. To do that, we shall prove by induction on j that Mj has girth at
least g, j = 1, . . . , a. SinceM1 is a complete a-partite F factor, it has girth equal
to the girth of F , that is at least g. Assume thatMj has girth at least g. Let us
prove that Mj+1 has girth at least g. Recall that Mj+1 =Mj ?j Hj , i.e., Mj+1

is obtained by amalgamating copies of Mj along Hj = H(|Mj |j , g − 1). Let X
be the jth part ofMj+1, i.e., the vertex set of Hj . Consider a shortest cycle C in
Mj+1. If C is a subgraph of one of these copies of Mj , then by induction C has
length at least g. If the edges of C come from at least two distinct copies ofMj ,
then C is an edge-disjoint union of hyperpaths P0, P1, . . . , Pm−1, each with at
least 2 edges, from different copies of Mj , such that the consecutive paths share
a vertex in X, i.e., V (Pi) ∩ V (Pi+1) = {ui}, i = 0, . . . ,m − 1, and u0, . . . , um−1
are distinct vertices from X, addition modulo m. Thus ui and ui+1 belong to
the same copy of Mj and thus correspond to the vertices from the same edge of
Hj , i = 0, . . . ,m − 1, addition modulo m. We see that these edges of Hj form
a cycle in Hj of length at most half the length of C. On the other hand, we
know that any cycle in Hj has length at least g − 1, implying that C has length
at least 2(g − 1) ≥ g. This concludes the proof of Theorem 1 using an explicit
construction.

3. Proof of Theorem 1 — Probabilistic Construction

This proof is just a slight generalization of the probabilistic construction for high-
girth, high-chromatic-number hypergraphs by Nešetřil and Rödl. Let an `-cycle
be a cycle of length `. Let r, g be fixed, put R = (r − 1)2 + 1 and consider an
R-uniform hypergraph H = H(n,R, g) = (X, E) with n vertices, girth at least g,

and with |E| =
⌈
n
1+ 1

g

⌉
. Such a graph exists, if n is large enough by Lemma 5,

see Appendix.

Let us order the hyperedges of H as E1, E2, . . . , Em. Let Mn be the family
of all sequences (E′1, . . . , E

′
m) such that |E′i| = r and E′i ⊆ Ei, i = 1, . . . ,m. For a

given sequence Q ∈Mn, let HQ be a hypergraph whose hyperedges are elements
of Q. We say that a coloring of X is good for Q if there are no monochromatic and
no rainbow edges under this coloring of HQ. We say that Q is colorable if there
is a coloring of X that is good for Q. We shall count the number of colorable
sequences and shall show that it is strictly less than the number of all sequences
in Mn. This will imply that there is a non-colorable sequence corresponding to
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an rm-unavoidable hypergraph.
Each hypergraph HQ, Q ∈Mn has girth at least g since H has this property.

In addition |Mn| ≥ an
1+ 1

g
, where a =

(
R
r

)
, since there are a ways to choose an

r-element subset from an edge of H and m ≥ n
1+ 1

g . Now we consider a coloring
of X with arbitrary number of colors. Each edge E of H is colored with at
least r or less than r colors. If E is colored with less than r colors, there are
r vertices in E of the same color since E has R = (r − 1)2 + 1 elements and

R
(r−1) > (r − 1). If E is colored with at least r colors, there are r vertices with
pairwise distinct colors. Thus each edge E of H contains a ”bad” subset that is
either monochromatic or rainbow, and only at most

(|E|
r

)
− 1 =

(
R
r

)
− 1 = a− 1

of all r-element subsets of E could be ”good”. Therefore each coloring c of X

is good for at most (a − 1)

⌈
n
1+ 1

g
⌉
≤ (a − 1)1+n

1+ 1
g

members of Mn. Since the
total number of colors in X is at most n in any coloring, it is enough to consider
colorings with colors 1, . . . , n. Since there are nn colorings with n colors we have
that

∣∣{Q ∈Mn| Q is colorable}
∣∣ =

∣∣∣∣∣
⋃

c:X→[n]

⋃

Q∈Mn

{Q | c is good for Q}

∣∣∣∣∣

≤
∑

c:X→[n]

∣∣∣∣∣
⋃

Q∈Mn

{Q | c is good for Q}

∣∣∣∣∣

≤ nn · (a− 1)1+n
1+ 1

g
.

Next we shall show that nn · (a−1)1+n
1+ 1

g
< an

1+ 1
g

for all sufficiently large n.

Indeed, nn(a− 1)1+n
1+ 1

g
< an

1+ 1
g ⇔ n ln(n) + ln(a− 1) < n

1+ 1
g ln

(
a

a−1
)
. The last

inequality holds since ln
(

a
a−1
)
> 0. Therefore the number of colorable members

from Mn is less than the total number of members in Mn and thus there is an
non-colorable Q ∈ Mn that gives HQ, an r-uniform hypergraph of girth at least
g that is rm-unavoidable.
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[5] P. Erdős and A. Hajnal, On chromatic number of graphs and set-systems, Acta
Math. Hungar. 17 (1966) 61–99.
https://doi.org/10.1007/BF02020444
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4. Appendix

Lemma 3. For any `, g ≥ 2, q ≥ 1 there is an `-uniform hypergraph of girth at
least g and minimum degree at least q.

Proof. To see that such a hypergraph exists, consider an `-uniform hypergraph
F of girth at least g and chromatic number greater than q. If F has a vertex v
that belongs to at most q − 1 edges, delete it from F . We obtain a hypergraph
F − v of chromatic number greater than q again because otherwise we can take a
proper coloring of F−v with at most q colors and extend it to a proper coloring of
F . Indeed, if E1, . . . , Eq′ , q

′ ≤ q−1 are the edges incident to v, choose a color for
v that is not a color of monochromatic Ei− v under the proper coloring of F − v,
i = 1, . . . , q′, if such a monochromatic edge exists. Since only at most q−1 colors
are forbidden for v, one color is still available. Continue this deletion process until
possible. The process must stop with a non-empty graph of chromatic number
greater than q and minimum degree at least q. Since it is a sub-hypergraph of
the original hypergraph, it has girth at least g.

Lemma 4 [20]. Let C(r, `, n) be the number of `-cycles in the r-uniform complete
hypergraph on n vertices, r ≥ 3. Then C(r, `, n) ≤ c(r, `)

(
n

(r−1)`
)
, for a function

c(r, `) independent of n.

Proof. Observe that the largest number of vertices in an `-cycle C of length `
is (r − 1)`. Indeed a cycle C of length ` is defined as a subhypergraph C with `
distinct vertices x0, . . . , x`−1, ` ≥ 2 and distinct hyperedges E0, . . . E`−1 such that
xi, xi+1 ∈ Ei, i = 0, . . . , `−1, addition of indices modulo `. Thus, each hyperedge
Ei, i = 0, . . . , ` − 1, has at most r − 2 vertices not in the set {x0, . . . , x`−1}.
Therefore the total number of vertices in C is at most `(r−2)+ |{x0, . . . , x`−1}| =
`(r − 2) + ` = `(r − 1). Thus, an upper bound on the number of all `-cycles is(

n
`(r−1)

)
· c(r, `), where

(
n

`(r−1)
)

is the number of ways to choose a set on `(r − 1)

vertices and c(r, `) is the number of `-cycles on a given set of `(r− 1) vertices.

Lemma 5 [20]. For any positive integers r and s, r ≥ 2, s ≥ 3 there exists an
n0 ∈ N such that for any n ≥ n0, n ∈ N there exists an r-uniform hypergraph
(X, E) with girth at least s and with |E| > n1+ 1

s .

Proof. We consider a setM =M(n, r, s) of all r-uniform hypergraphs on vertex

set [n] with m = 2
⌈
n1+ 1

s

⌉
edges. Then |M| =

((nr)
m

)
. Choose a hypergraph H

fromM randomly and uniformly, i.e., with probability 1
|M| . Let K be a complete

r-uniform hypergraph on vertex set [n]. Call cycles of length smaller than s bad.
Let Xj be the number of cycles of length j in H and Xbad be the number of bad
cycles. Then Exp(Xj) =

∑
C Prob(C ⊆ H), where the sum is over all cycles C of
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length j in K. Then Exp(Xj) ≤ C(r, j, n)
((

n
r)−j

m−j
)

((
n
r)
m )

, where C(r, j, n) is the number

of cycles of length j in K and second term is the probability of occurrence of such

a cycle. Using Lemma 4, we have that Exp(Xj) ≤ c(r, j)
(

n
(r−1)j

)((
n
r)−j

m−j
)

((
n
r)
m )

. Then,

for constants c̃(r, j), j = 2, . . . , s− 2 and C̃(r, s), we have

Exp(Xbad) =

s−1∑

j=2

Exp(Xj)

≤
s−1∑

j=2

c(r, j) ·
(

n

(r − 1)j

)((nr)−j
m−j

)

((nr)
m

)

=
s−1∑

j=2

c(r, j) ·
(

n

(r − 1)j

)
m · (m− 1) · · · (m− j + 1)(
n
r

)
· (
(
n
r

)
− 1) · · · (

(
n
r

)
− j + 1)

≤
s−1∑

j=2

c(r, j) ·
(

n

(r − 1)j

)(
m(
n
r

)
)j

≤
s−1∑

j=2

c̃(r, j)n(r−1)j−rjmj

≤
s−1∑

j=2

c̃(r, j)n(r−1)j−rjn(1+1/s)j

≤ C̃(r, s)n.

Since Exp(Xbad) ≤ C̃(r, s)n, there is a hypergraph from M with at most
C̃(r, s)n cycles of length at most s− 1. Delete an edge from each such cycle and
obtain a hypergraph on at least 2n1+1/s − C̃(r, s)n > n1+1/s edges and girth at
least s.
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