DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

W. Hochstättler

Winfried Hochstättler

Fakultät für Mathematik und Informatik
FernUniversität in Hagen
Hagen, Germany

email: winfried.hochstaettler@fernuni-hagen.de

R. Steiner

Raphael Steiner

Institut für Mathematik
\Technische Universität Berlin
Berlin, Germany

email: steiner@math.tu-berlin.de

Title:

The star dichromatic number

PDF

Source:

Discussiones Mathematicae Graph Theory 42(1) (2022) 277-298

Received: 2019-01-29 , Revised: 2019-10-03 , Accepted: 2019-10-03 , Available online: 2019-11-21 , https://doi.org/10.7151/dmgt.2261

Abstract:

We introduce a new notion of circular colourings for digraphs. The idea of this quantity, called star dichromatic number $\vec{\chi}^\ast(D)$ of a digraph $D$, is to allow a finer subdivision of digraphs with the same dichromatic number into such which are ``easier'' or ``harder'' to colour by allowing fractional values. This is related to a coherent notion for the vertex arboricity of graphs introduced in [G. Wang, S. Zhou, G. Liu and J. Wu, Circular vertex arboricity, J. Discrete Appl. Math. 159 (2011) 1231–1238] and resembles the concept of the star chromatic number of graphs introduced by Vince in [15] in the framework of digraph colouring. After presenting basic properties of the new quantity, including range, simple classes of digraphs, general inequalities and its relation to integer counterparts as well as other concepts of fractional colouring, we compare our notion with the notion of circular colourings for digraphs introduced in [D. Bokal, G. Fijavz, M. Juvan, P.M. Kayll and B. Mohar, The circular chromatic number of a digraph, J. Graph Theory 46 (2004) 227–224] and point out similarities as well as differences in certain situations. As it turns out, the star dichromatic number shares all positive characteristics with the circular dichromatic number of Bokal et al., but has the advantage that it depends on the strong components of the digraph only, while the addition of a dominating source raises the circular dichromatic number to the ceiling. We conclude with a discussion of the case of planar digraphs and point out some open problems.

Keywords:

dichromatic number, star chromatic number, circular dichromatic number

References:

  1. D. Bokal, G. Fijavz, M. Juvan, P.M. Kayll and B. Mohar, The circular chromatic number of a digraph, J. Graph Theory 46 (2004) 227–224.
    https://doi.org/10.1002/jgt.20003
  2. G. Chartrand and H.V. Kronk, The point-arboricity of planar graphs, J. London Math. Soc. 44 (1969) 612–616.
    https://doi.org/10.1112/jlms/s1-44.1.612
  3. G. Cornuéjols, Combinatorial Optimization: Packing and Covering (SIAM, Philadelphia, 2001).
    https://doi.org/10.1137/1.9780898717105
  4. T. Feder, P. Hell and B. Mohar, Acyclic homomorphisms and circular colorings of digraphs, SIAM J. Discrete Math. 17 (2003) 161–169.
    https://doi.org/10.1137/S0895480103422184
  5. A. Harutyunyan and B. Mohar, Two results on the digraph chromatic number, J. Discrete Math. 312 (2012) 1823–1826.
    https://doi.org/10.1016/j.disc.2012.01.028
  6. W. Hochstättler, F. Schröder and R. Steiner, On the complexity of digraph colourings and vertex arboricity, Discrete Math. Theor. Comput. Sci. 22 (2020) #4.
    https://doi.org/10.23638/DMTCS-22-1-4
  7. K. Knauer, P. Valicov and P.S. Wenger, Planar digraphs without large acyclic sets, J. Graph Theory 85 (2017) 288–291.
    https://doi.org/10.1002/jgt.22061
  8. Z. Li and B. Mohar, Planar digraphs of digirth four are $2$-colorable, SIAM J. Discrete Math. 31 (2017) 2201–2205.
    https://doi.org/10.1137/16M108080X
  9. A. Lehman, On the width-length inequality, Math. Program. 17 (1979) 403–417.
    https://doi.org/10.1007/BF01588263
  10. C.L. Lucchesi and D.H. Younger, A minimax theorem for directed graphs, J. London Math. Soc. (2) 17 (1978) 369–374.
    https://doi.org/10.1112/jlms/s2-17.3.369
  11. B. Mohar, Circular colorings of edge-weighted graphs, J. Graph Theory 43 (2003) 107–116.
    https://doi.org/10.1002/jgt.10106
  12. B. Mohar and H. Wu, Dichromatic number and fractional chromatic number, Forum Math. Sigma 4 (2016) e32.
    https://doi.org/10.1017/fms.2016.28
  13. E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory: A Rational Approach to the Theory of Graphs (Dover Publications, Mineola, New York, 2013).
  14. R. Steiner, Neumann-Lara-Flows and the Two-Colour-Conjecture (Master's Thesis, FernUniversität in Hagen, 2018).
  15. A. Vince, Star chromatic number, J. Graph Theory 12 (1988) 551–559.
    https://doi.org/10.1002/jgt.3190120411
  16. G. Wang, S. Zhou, G. Liu and J. Wu, Circular vertex arboricity, J. Discrete Appl. Math. 159 (2011) 1231–1238.
    https://doi.org/10.1016/j.dam.2011.04.009
  17. Woodall's Conjecture, at Open Problem Garden.
    http://www.openproblemgarden.org/op/woodalls_conjecture
  18. X. Zhu, Circular chromatic number: A survey, J. Discrete Math. 229 (2001) 371–410.
    https://doi.org/10.1016/S0012-365X(00)00217-X

Close