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Abstract

We introduce a new notion of circular colourings for digraphs. The idea
of this quantity, called star dichromatic number ~χ∗(D) of a digraph D, is
to allow a finer subdivision of digraphs with the same dichromatic number
into such which are “easier” or “harder” to colour by allowing fractional
values. This is related to a coherent notion for the vertex arboricity of
graphs introduced in [G. Wang, S. Zhou, G. Liu and J. Wu, Circular vertex
arboricity, J. Discrete Appl. Math. 159 (2011) 1231–1238] and resembles the
concept of the star chromatic number of graphs introduced by Vince in [15]
in the framework of digraph colouring. After presenting basic properties
of the new quantity, including range, simple classes of digraphs, general
inequalities and its relation to integer counterparts as well as other concepts
of fractional colouring, we compare our notion with the notion of circular
colourings for digraphs introduced in [D. Bokal, G. Fijavz, M. Juvan, P.M.
Kayll and B. Mohar, The circular chromatic number of a digraph, J. Graph
Theory 46 (2004) 227–224] and point out similarities as well as differences
in certain situations. As it turns out, the star dichromatic number shares
all positive characteristics with the circular dichromatic number of Bokal et
al., but has the advantage that it depends on the strong components of the
digraph only, while the addition of a dominating source raises the circular
dichromatic number to the ceiling. We conclude with a discussion of the
case of planar digraphs and point out some open problems.
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1. Introduction

Digraphs and graphs in this paper are considered loopless, but are allowed to
have multiple parallel and anti-parallel arcs between vertices. Digraphs without
parallel or anti-parallel edges are referred to as simple. We will refer to edges
e in graphs by uw where u,w are the end vertices of e, if this does not lead to
confusion with parallel edges. Given an arc (or directed edge) e of a digraph, we
use e = u → w or equivalently e = (u,w) to express that e has tail u and head
w. This is not to be understood as a proper equality but as a statement on the
edge e. Cycles and paths in graphs and directed cycles and paths in digraphs are
always considered without repeated vertices.

Vince in [15] introduced the concept of the star chromatic number of a graph,
nowadays also known as the circular chromatic number. The original definition of
Vince is based on so-called (k, d)-colourings, where colours at adjacent vertices are
not only required to be distinct as usual but moreover ’far apart’ in the following
sense. For every k ∈ N and elements x, y ∈ {0, . . . , k − 1}, let distk(x, y) =
|(x − y)mod k|k, where |a|k = min{|a|, |k − a|}, for all a = 0, . . . , k − 1, denote
the circular k-distance between x and y. Then we define the following.

Definition (cf. [15]). Let G be a graph and (k, d) ∈ N2, k ≥ d. A (k, d)-colouring
of G is an assignment c : V (G) → {0, . . . , k − 1} ' Zk of colours to the vertices
so that distk(c(u), c(w)) ≥ d whenever u,w are adjacent.

Fixing a graph G, Vince furthermore considered the smallest possible value
of k

d where (k, d) allows a legal colouring of G as a fractional measure of the
“colourability” of G.

Definition. Let G be a graph. The quantity

χ∗(G) = inf

{
k

d

∣∣∣∣∃ (k, d)-colouring of G

}
∈ R+

is called the star chromatic number, respectively circular chromatic number of G.

The following theorem captures the most important elementary properties of
the star chromatic number.
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Theorem 1 (cf. [15]). Let G be a graph. Then the following holds.

(i) χ∗(G) is a positive rational number, and χ∗(G) ≥ 2 whenever E(G) 6= ∅
(otherwise χ∗(G) = 1).

(ii) dχ∗(G)e = χ(G), i.e., χ∗(G) ∈ (χ(G)− 1, χ(G)].

(iii) For each rational number q ∈ Q, q = m
n ≥ 2, there is a graph Gm,n with

χ∗(Gm,n) = m
n = q.

(iv) For every k, d ∈ N, there is a (k, d)-colouring of G if and only if k
d ≥ χ

∗(G).

(v) If χ∗(G) = m
n , then there exists a (k, d)-colouring of G with k

d = m
n and

k ≤ |V (G)|.

For further details concerning circular chromatic numbers of graphs we refer
to the survey article [18].

A first definition of circular colourings for digraphs was given by Bokal et
al. in [1], leading to the notion of the circular dichromatic number of digraphs
and graphs. Instead of (k, d)-pairs as in the case of Vince, they, equivalently, use
real numbers for their definition. Given a p ≥ 1, consider a plane-circle Sp of
perimeter p and define a strong circular p-colouring of D to be an assignment
c : V (D)→ Sp of (colouring) points on Sp to the vertices, in such a way that for
every edge e = (u,w) in D, the one-sided distance of c(u), c(w) (i.e., the length
of a clockwise arc connecting c(u) to c(w) in Sp) is at least 1. More formally, we
can identify Sp with the set R/pZ and require that the unique representative of
c(w) − c(u) ∈ R/pZ in the interval [0, p), denoted by (c(w) − c(u)) mod p is at
least one. In this representation, the clockwise direction on Sp is identified with
the positive direction in R/pZ. Since the notion of a strong circular p-colouring
turns out to be much less flexible, the authors also define so-called weak circular
p-colourings of D, p ∈ [1,∞), as maps c : V (D)→ Sp, such that equal colours at
both ends of an edge, i.e., c(u) = c(w) where e = (u,w) ∈ E(D), are allowed, but
at the same time, the one-sided distance of c(u), c(w) on Sp is at least 1 whenever
they are distinct. Moreover, each so-called colour class, i.e., c−1(t), t ∈ Sp has to
induce an acyclic subdigraph of D. This seems much more intuitive and closer
to the definition of legal digraph colourings.

The circular dichromatic number ~χc(D) now is defined as the infimum over all
real values p ≥ 1 for which D admits a strong circular p-colouring, or, equivalently
(as shown in their paper), as the infimum over all values p ≥ 1 providing weak
circular p-colourings of D. Moreover, in the case of weak circular p-colourings
the infimum is always attained.

Proposition 2 [1]. Let D be a digraph. The real value

~χc(D) = inf{p ≥ 1 | ∃ weak circular p-colouring of D}
= inf{p ≥ 1 | ∃ strong circular p-colouring of D}
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is called the circular dichromatic number of D. Furthermore, every digraph ad-
mits a weak circular ~χc(D)-colouring. If G is a graph and O(G) the set of its
orientations, then we define the maximum

~χc(G) = max
D∈O(G)

~χc(D)

to be the circular dichromatic number of the graph G.

The following sums up the most basic properties of this quantity.

Theorem 3 [1]. Let D be a digraph. Then the following holds.

(i) ~χc(D) ≥ 1 is a rational number with numerator at most |V (D)|.
(ii) d~χc(D)e = ~χ(D), i.e., ~χc(D) ∈ (~χ(D)− 1, ~χ(D)].

(iii) ~χc(·) attains exactly the rational numbers q ∈ Q, q ≥ 1.

It was furthermore pointed out in [14] that the following discrete notion of
circular (k, d)-colourings corresponds to the above notion of weak circular p-
colourings.

Definition. Let D be a digraph and k ≥ d natural numbers. A circular (k, d)-
colouring is a vertex-colouring c : V (D) → {0, . . . , k − 1} ' Zk such that for all
e = (u,w) ∈ E(D) we have (c(w) − c(u)) mod k ≥ d or c(u) = c(w) and each
colour class c−1(i), i ∈ Zk induces an acyclic subdigraph of D.

Proposition 4 [14]. For every digraph D and every p ≥ 1, there exists a weak
circular p-colouring of D if and only if there is a circular (k, d)-colouring of D
for every pair (k, d) ∈ N2 with k

d ≥ p. Thus,

~χc(D) = inf

{
k

d

∣∣∣∣ ∃ circular (k, d)-colouring of D

}
.

2. The Star Dichromatic Number, General Properties

In this section we introduce a new concept of fractional digraph colouring.

Definition. Let D be a digraph, (k, d) ∈ N2, k ≥ d. An acyclic (k, d)-colouring
of D is an assignment c : V (D)→ Zk of colours to the vertices such that for every
i ∈ Zk, the pre-image of the cyclic interval Ai = {i, i+ 1, . . . , i+ d− 1} ⊆ Zk of
colours, c−1(Ai) ⊆ V (D), induces an acyclic subdigraph of D.

It will be handy to also have an equivalent formulation allowing real numbers
ready, which deals with the circles Sp, p ≥ 1.
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Definition. Let p ∈ R, p ≥ 1. For a, b ∈ [0, p), we denote by (a, b)p the open
“interval” (a, b)p = {y ∈ [0, p) | 0 < (y − a) mod p < (b− a) mod p}. Analogous
definitions apply for [a, b]p, [a, b)p, (a, b]p. In each case, we call (b− a) mod p the
length of the respective interval. For each x ∈ Sp, denote by |x|p = min{x, p−x}
its two-sided distance to 0.

Definition. Let D be a digraph and p ≥ 1. An acyclic p-colouring of D is an
assignment c : V (D) → [0, p) ' R/pZ of “colours” to the vertices, such that for
every open interval I = (a, b)p of length 1 within [0, p) ' R/pZ, the subdigraph
induced by the vertices in c−1(I) is acyclic. The star dichromatic number of D
now is defined as the infimum over the numbers p for which D admits an acyclic
p-colouring

~χ∗(D) = inf{p ≥ 1 | ∃ acyclic p-colouring of D}.

The following ensures that there always exists a ~χ∗(D)-colouring of D.

Proposition 5. Let P = {p ≥ 1 | ∃ acyclicp-colouring of D} ⊆ [1,∞). Then P
is closed. Furthermore, D admits an acyclic ~χ∗(D)-colouring.

Proof. Since P is bounded from below, the latter claim is a consequence of the
former. Let (pn)n∈N be a sequence of elements of P convergent to some p ≥ 1.
We have to show that p ∈ P . Clearly, we may assume pn > p for all n ∈ N. For
given n let c′n : V (D) → [0, pn) denote a feasible pn-colouring of D. Scaling by
p
pn

we derive maps cn : V (D) → [0, p), x 7→ p
pn
c′n(x) with the property that for

every open interval I ⊆ R/pZ of length at most p
pn

there is no directed cycle in

the digraph induced by c−1n (I). We may consider (cn)n∈N as a sequence of vectors

in S
|V (D)|
p . Applying the Theorem of Heine-Borel to (cn)n∈N yields a convergent

subsequence (cnl
)l∈N. Let c = liml→∞ cnl

. Then c : V (D) → [0, p). We claim
that c defines an acyclic p-colouring of D.

Assume to the contrary there was a directed cycle C in D such that c(V (C)) is
contained in an open interval I = (a, b)p ⊆ Sp ' [0, p) of length 1. Since c(V (C))
is finite, there exists 0 < ε < 1

2 such that c(V (C)) ⊆ (a+ε, b−ε)p ⊆ (a, b)p. Since

D is finite, (cnl
)l∈N is a sequence convergent in S

|V (D)|
p and limn→∞ pn = p, we

may choose N ∈ N such that |cN (x)− c(x)| < ε
2 for all x ∈ V (D) and pN < p

1−ε .

Now, cN (V (C)) ⊆
(
a + ε

2 , b −
ε
2

)
mod p. Hence, we have found a directed cycle

in the inverse image of an open interval of length 1 − ε < p
pN

, contradicting the
properties of cN .

As D is considered loopless, P 6= ∅ and thus P is closed and bounded from
below, which implies that it admits a minimum.

The following equivalence now makes the relation between the discrete notion
and the real-number-notion of acyclic colourings of digraphs precise:
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Proposition 6. Let D be a digraph. Then for every real number p ≥ 1, D admits
an acyclic p-colouring if and only if it admits an acyclic (k, d)-colouring for every
(k, d) ∈ N2 fulfilling k

d ≥ p. Consequently,

~χ∗(D) = inf

{
k

d

∣∣∣∣ ∃ acyclic (k, d)-colouring of D

}
.

Proof. For the first implication let c : V (D) → [0, p) be an acyclic p-colouring
of D and let (k, d) ∈ N2 with k

d ≥ p be arbitrary. Define a colouring ck,d of the
vertices by

∀x ∈ V (D) : ck,d(x) =

⌊
k

p
c(x)

⌋
∈ {0, . . . , k − 1}.

We claim that this defines an acyclic (k, d)-colouring ofD. Assume to the contrary
there was a directed cycle C within c−1k,d(Ai) for some i ∈ {0, . . . , k − 1} ' Zk.
Then for all x ∈ V (C),(⌊

k

p
c(x)

⌋
− i
)

mod k ≤ d− 1⇒
(
k

p
c(x)− i

)
mod k < d.

Consequently,
(
c(x) − ip

k

)
mod p = p

k

((
k
pc(x) − i

)
mod k

)
< p

k/d ≤ 1. Hence,

c(V (C)) ⊆
( ip
k ,

ip
k + 1

)
p
, contradicting the definition of an acyclic colouring.

For the reverse implication, assume that p ≥ 1 such that for every (k, d) ∈ N2

with k
d ≥ p, there is an acyclic (k, d)-colouring c(k,d) : V (D) → {0, . . . , k − 1} of

D. Let ((kn, dn))n∈N be some sequence in N2 such that pn = kn
dn
≥ p for all

n ∈ N, and limn→∞
kn
dn

= p. Let cn = c(kn,dn) : V (D) → {0, . . . , kn − 1} denote
corresponding acyclic (kn, dn)-colourings of D. We define cpn : V (D) → [0, pn)
by

x 7→ pn
kn
cn(x) ∈ [0, pn).

We claim that for every n this defines an acyclic pn-colouring. Assume to the
contrary there was a cyclic open subinterval (a, b)pn ⊆ [0, pn) of length 1 contain-
ing the colours of a directed cycle C in D, then for every x ∈ V (C), we would
have

0 <

(
pn
kn
cn(x)− a

)
mod pn < 1⇔ 0 < (cn(x)− dna) mod kn <

kn
pn

= dn

and thus, with i = ddnae mod kn, we get 0 ≤ (cn(x) − i) mod kn ≤ dn − 1 for
all x ∈ V (C), implying cn(V (C)) ⊆ Ai. This contradicts cn being an acyclic
(kn, dn)-colouring and shows that indeed, pn ∈ P, n ≥ 1, where again, P denotes
the set of p ≥ 1 allowing an acyclic colouring of D. Since P is closed (Proposition
5), we finally deduce that p = limn→∞ pn ∈ P , and thus the claimed equivalence
follows.
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Although theoretically, the definition of ~χ∗(D) as the infimum of the set P
of real numbers might include irrational values of ~χ∗(D), the following statement
shows that due to the conditions on acyclic p-colourings which are given in terms
of a finite object, namely D, ~χ∗(D) only attains rational numbers with a certain
bound on the numerator. Analogous statements hold for other notions of circular
colourings.

Theorem 7. Let D be a digraph, n = |V (D)|. Then ~χ∗(D) is a rational number
of the form k

d with 1 ≤ d ≤ k ≤ n.

Proof. Our proof follows the lines of the one given for the same result for ~χc(D)
in [1], respectively [11].

Let in the following p = ~χ∗(D). We may assume p > 1. For a given acyclic
p-colouring c : V (D) → Sp ' [0, p) of D we consider the digraph D1(c), defined
over the vertex set V (D) where (u,w) ∈ E(D1(c)) if (c(w) − c(u)) mod p = 1.
Let v0 ∈ V (D) be a fixed reference vertex, we may assume that c(v0) = 0. We
will show that we can choose c such that for every vertex v ∈ V (D), there is
a directed path from v0 to v in D1(c). For this purpose, let c be an acyclic
p-colouring maximal with respect to the cardinality of the set S(c) of vertices
reachable from v0 via directed paths in D1(c). Assume for a contradiction that
S(c) 6= V (D). For s ∈ [0, p), we define

cs(v) =

{
c(v), if v ∈ S(c),

(c(v)− s) mod p, if v /∈ S(c).

Note that for each s ∈ [0, p) so that cs is an acyclic p-colouring, we have S(cs) ⊇
S(c), and due to the maximality of c, S(cs) = S(c). Now, choose s∗ maximal
with the property, that for all s < s∗ cs is an acyclic p-colouring. The assumption
S(c) 6= V (D) now implies that 0 < s∗ < p and cs∗+ε is not an acyclic p-colouring
for arbitrarily small values of ε > 0. Therefore, there must exist a closed interval
[a, b]p ⊆ Sp of length 1 such that c−1s∗ ([a, b]p) contains the vertices of a directed
cycle C and such that there are u,w ∈ V (C) with cs∗(u) = a, cs∗(w) = b and
u ∈ S(c), w /∈ S(c). But this implies that S(c) ∪ {w} ⊆ S(cs∗) contradicting the
choice of c.

We now consider the case that there exists a vertex v ∈ V (D) \ {v0} and
two directed v0-v-walks P1 and P2 of lengths `(P1) > `(P2) that visit at most
one vertex (possibly v) twice. This includes the case, that there exists a directed
cycle in D1(c). Since c(v) = `(P1) mod p = `(P2) mod p, there exists some
m ∈ N such that mp = `(P1) − `(P2). But clearly 0 < `(P1) − `(P2) < n and

hence p = `(P1)−`(P2)
m as required.

Thus we may assume, that for all vertices in v ∈ V (D) all directed v0-
v paths have the same length, defining a map f : V → N, v 7→ `(Pv). We
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have f(v) mod p = c(v) for all v ∈ V (D). We will show that this contradicts
the minimality of p. For that purpose choose δ > 0 such that p − δ > 1 and
for each pair u,w ∈ V (D) of vertices with (f(w) − f(u)) mod p > 1, we have
(f(w) − f(u)) mod (p − δ) > 1. We claim that x 7→ c−δ(x) = f(x) mod (p − δ)
defines an acyclic (p − δ)-colouring of D. Assume to the contrary there was a
directed cycle C in D such that its image under c−δ is contained in a closed
interval [c−δ(u), c−δ(w)]p−δ ⊇ c−δ(V (C)) of length < 1, where u,w ∈ V (C). Let
in the following x ∈ V (C) be arbitrary. Then

(c−δ(x)− c−δ(u)) mod (p− δ) = (f(x)− f(u)) mod (p− δ) < 1

and thus (u, x) /∈ E(D1(c)), (f(x) − f(u)) mod p = (c(x) − c(u))mod p ≤ 1.
We conclude (c(x) − c(u)) mod p < 1 and that there exists ε > 0 such that
(c(x) − c(u)) mod p < 1 − ε for all x ∈ V (C), contradicting c being an acyclic
p-colouring. The claim follows.

Corollary 8. For a digraph D we have ~χ∗(D) ≥ 1 with equality if and only if D
is acyclic.

Proof. The inequality holds by definition. ~χ∗(D) = 1 implies the existence of
an acyclic 1-colouring of D, and thus, since V (D) is finite, that D is acyclic.

The following describes the relationship of ~χ∗(D) with its integer counterpart.

Theorem 9. Let D be a digraph. Then

d~χ∗(D)e = ~χ(D), i.e., ~χ(D)− 1 < ~χ∗(D) ≤ ~χ(D).

Proof. The latter inequality is an immediate consequence from Proposition 6
and the fact that the acyclic (k, 1)-colourings of D correspond exactly to legal
k-digraph colourings of D in the usual sense, for k ∈ N. On the other hand let
p = ~χ∗(D), k = dpe ∈ N and let c : V (D) → Sp denote an acyclic p-colouring of
D. Since p ≤ k and V (D) is finite, we find k pairwise disjoint cyclic subintervals
I1, . . . , Ik, each of length less than 1 such that all v ∈ V (D) are mapped to the
interior of one of these. Thus c−1(Ii), i = 1, . . . , k induces an acyclic subdigraph
of D, this way defining a k-digraph colouring of D, proving k ≥ ~χ(D).

3. Relations to Other Fractional Digraph Colouring Parameters

We briefly review the notions of the fractional chromatic numbers of graphs and
digraphs in order to draw a comparison with our new fractional colouring number.
The fractional dichromatic number will be a main tool for deriving lower bounds
on star dichromatic numbers.
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Definition (cf. [13] and [12]).

(A) Let G be a graph. Denote by I(G) the collection of independent vertex
subsets of G, and for each v ∈ V (D), let I(G, v) ⊆ I(G) be the subset containing
only those sets including v. The fractional chromatic number χf (G) of G is now
defined as the value of the following linear program

min
∑

I∈I(G)

xI(1)

subject to
∑

I∈I(G,v)

xI ≥ 1, for all v ∈ V (G)

x ≥ 0.

(B) Let D be a digraph. Denote by A(D) the collection of vertex subsets of D
inducing an acyclic subdigraph, and for each v ∈ V (D), let A(D, v) ⊆ A(D)
be the subset containing only those sets including v. The fractional dichromatic
number ~χf (D) of D is now defined as the value of

min
∑

A∈A(D)

xA(2)

subject to
∑

A∈A(D,v)

xA ≥ 1, for all v ∈ V (D)

x ≥ 0.

For a graph G, we define ~χf (G) = maxD∈O(G) ~χf (D) to be its fractional dichro-
matic number.

The following inequality chain finally describes the behaviour of the three
notions of fractional digraph colouring numbers introduced so far in general and
shows that the star dichromatic number separates the fractional from the circular
chromatic number.

Theorem 10. Let D be a digraph. Then ~χf (D) ≤ ~χ∗(D) ≤ ~χc(D).

Proof. Let ~χ∗(D) = k
d and ck : V (D) → Zk be an acyclic (k, d)-colouring for

two integers 0 < d ≤ k. Given A ∈ A(D) let

iA =
∣∣{i ∈ Zk | A = c−1k ({i, . . . , i+ d− 1})

}∣∣
and define xA = iA

d . Then for every vertex v ∈ V (D), we have∑
A∈A(D,v)

xA =
∑

i∈Zk:ck(v)∈{i,...,i+d−1}

1

d
= 1.
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Hence, x is feasible for the program 2 implying ~χf (D) ≤
∑

i∈Zk

1
d = k

d = ~χ∗(D).
For the second inequality, it suffices to show that for every p ≥ 1, any weak

circular p-colouring c : V (D)→ [0, p) in the sense of Bokal et al. is also an acyclic
p-colouring of D. Assume to the contrary there was a directed cycle C in D such
that c(V (C)) is contained in an open subinterval of length 1 in Sp ' [0, p). We
may assume c(V (C)) ⊆ (0, 1)p. Then obviously, 0 < (c(w)− c(u)) mod p < 1 for
every edge (u,w) ∈ E(C) with c(w) > c(u), contradicting the definition of weak
circular colourings. Thus c(C) consists of a single point {t} ⊆ Sp, which means
that c−1(t) is not acyclic, a contradiction. Hence c is a weak colouring and the
claim follows.

It is well-known that for symmetric orientations of graphs the chromatic
number of the original graph equals their dichromatic number. Similar relations
hold for fractional, star and circular dichromatic number.

Remark 11. Let G be an undirected graph, and denote by S(G) its symmetric
orientation where every undirected egde in E(G) is replaced by an anti-parallel
pair of arcs. Then

~χf (S(G)) = χf (G), ~χ∗(S(G)) = ~χc(S(G)) = χ∗(G).

Proof. The first equality follows from the fact that the vertex subsets in S(G)
inducing acyclic subdigraphs are exactly the independent vertex sets in G. Fur-
thermore, since every parallel replacement pair of arcs gives rise to a directed
2-cycle, weak circular p-colourings as well as p-colourings according to our defi-
nition of S(G), for every p ≥ 1, are exactly those maps c : V (G) → [0, p) with
distp(c(u), c(w)) ≥ 1 for every adjacent pair of vertices u,w, implying the latter
two equalities.

As we will see in the next section, when dealing with planar digraphs, finding
digraphs without large acyclic vertex subsets yields good lower bounds for the
fractional and thus also the star dichromatic number. This is made precise by
the following inequality.

Lemma 12. Let D be a digraph and denote by ~α(D) the maximum size of a

vertex subset of D inducing an acyclic subdigraph. Then ~χf (D) ≥ |V (D)|
~α(D) .

Proof. Consider the dual of the linear program (2),

max
∑
v∈V

yv(3)

subject to
∑
v∈A

yv ≤ 1, for all A ∈ A(D)

y ≥ 0.
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Define yv = 1
~α(D) for each vertex v ∈ V . The y clearly is feasible for (3) and the

result follows by linear programming duality.

We now finally present a construction of digraphs (which are part of the
class of so-called circulant digraphs) whose star dichromatic numbers attain every
rational number q ≥ 1. The same digraphs were used in [1].

Theorem 13. Let (k, d) ∈ N2 with k ≥ d. Denote by ~C(k, d) the digraph defined
over the vertex set V (~C(k, d)) = {0, . . . , k − 1} ' Zk so that each vertex i ∈ Zk
has exactly k − d outgoing arcs, namely (i, j), j = i + d, i + d + 1, . . . , i + k − 1.
Then

~χf (D) = ~χ∗(D) = ~χc(D) =
k

d
.

Therefore, ~χ∗(D) attains every rational number q ≥ 1.

Proof. According to Theorem 10 it suffices to show that k
d ≤ ~χf (~C(k, d)) and

~χc(~C(k, d)) ≤ k
d .

Let A ∈ A(~C(k, d)), then ~C(k, d)[A], being acyclic contains a sink a ∈ A ⊆ Zk
and therefore A∩{a+d, . . . , a+k−1} = ∅, proving |A| ≤ d and the first inequality
follows using Lemma 12.

For the other inequality, note that ck,d(i) = i
d ∈

[
0, kd

)
for all i ∈ V (~C(k, d))

defines a strong k
d -colouring ck,d of D.

Putting k = n, d = n− 1 in the above, we immediately get the following.

Corollary 14. For every n ∈ N,

~χf (~Cn) = ~χ∗(~Cn) = ~χc(~Cn) =
n

n− 1
.

While the above provides examples for digraphs where the three different
concepts of fractional digraph colouring coincide, we now focus on constructing
examples of digraphs where the numbers vary significantly in order to point out
differences of the approaches.

First of all, it is well-known that contrary to the star chromatic number,
the fractional chromatic number of a graph does not fulfil a ceiling-property,
but can be arbitrarily far apart from the chromatic number of the graph. As
a consequence we conclude that circular and star dichromatic number can be
arbitrarily far apart of the fractional dichromatic number.

Theorem 15. For every C ∈ R+, there is a digraph D with ~χ∗(D) − ~χf (D) =
~χc(D)− ~χf (D) ≥ C.

Proof. By Remark 11 the result follows from the same observation for undirected
graphs. As is well known for the Kneser graphs Gn = K(n, 2), n ≥ 4, we have
χ(Gn)− χf (Gn) = (n− 2)− n

2 = n
2 − 2→∞ (cf. [13], page 32).
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Now we compare ~χ∗ and ~χc in more detail. We see the main advantage of
our new parameter in the fact, that it is sufficient to consider only the strong
components of a digraph D in order to compute ~χ∗(D).

Observation 16. Let D be a digraph and S = D(X,X) a directed cut. Let
D1 = D[X], D2 = D[X]. Then

~χ(D) = max{~χ(D1), ~χ(D2)}, ~χ∗(D) = max{~χ∗(D1), ~χ
∗(D2)}.

On the other hand, for the circular dichromatic number the existence of a
dominating source completely destroys any extra information we hope to gain
compared to the dichromatic number.

Proposition 17. Let D be a digraph. We denote by Ds the digraph arising from
D by adding an extra vertex s, which is a source adjacent to every vertex in V (D).
Then ~χc(D

s) = ~χ(D).

Proof. By Observation 16 we have ~χc(D
s) ≤ ~χ(Ds) = ~χ(D). Assume contrary

to the assertion that there was a strong p-colouring c of Ds with p < ~χ(D) =: k.
We may assume c(s) = 0. According to the definition of a strong colouring, the
interval [0, 1)p does not contain any other vertices, hence c(V (D)) ⊆ [1, p)p. Since
p − 1 < k − 1, we can decompose the interval [1, p)p into k − 1 pairwise disjoint
cyclic subintervals I1, . . . , Ik−1 of Sp, each of length less than one and covering all
the finitely many colouring points. If (u,w) is an edge such that c(u), c(w) ∈ Il
are contained in the same interval, then, since c is a strong colouring, we must
have c(u) > c(w). Hence, each c−1(Il) induces an acyclic subdigraph of D for
each l, all together defining a (k − 1)-digraph colouring of D, a contradiction.
This proves the claim.

Example 18. ~χ∗(~Csn) = n
n−1 < 2 = ~χc(~C

s
n) for all n ≥ 3.

Proof. According to Observation 16 and Theorem 14 we have ~χ∗(~Csn) = ~χ∗(~Cn) =
n
n−1 . The remaining equality follows immediately from Proposition 17.

Corollary 19. For every ε > 0 there is a digraph D with ~χc(D)− ~χ∗(D) ≥ 1−ε.

4. The Star Dichromatic Number of Simple Planar Digraphs and
Circular Vertex Arboricity

Let G be a given (unoriented) graph. If we want to estimate ~χ∗(G), we need to
find (k, d)-digraph colourings for every possible orientation of G. The simplest
way of doing this is to find a single colouring of V (G) yielding a legal (k, d)-
colouring on all the possible orientations at the same time. This leads to the
following definition which is introduced in [16].
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Figure 1. Stacking a source into a directed 4-cycle. While the star dichromatic number
remains unchanged with value 4

3 , the circular dichromatic number jumps from ~χc(~C4) = 4
3

to ~χc(~C
s
4) = 2.

Definition [16]. Let G be a graph and (k, d) ∈ N2, k ≥ d. A (k, d)-tree-colouring
of G is a colouring c : V (G) → Zk ' {0, . . . , k − 1} of the vertices so that with
Ai = {i, i+ 1, . . . , i+ d− 1} ⊆ Zk, c−1(Ai) induces an acyclic subgraph of G for
all i ∈ Zk.

The authors of [16] now define the circular vertex arboricity of a graph G as
the minimal value

va∗(G) = inf

{
k

d

∣∣∣∣∃ (k, d)-tree-colouring of G

}
.

The above now immediately implies

Remark 20. For every graph G, ~χ∗(G) ≤ va∗(G).

As in the previous chapter, they also proved an alternative representation of
this fractional quantity in terms of real numbers.

Definition [16]. Let G be a graph and p ≥ 1. Then a p-circular tree colouring
of G is defined as an assignment c : V (G) → Sp ' [0, p) so that for every open
interval I = (a, b)p ⊆ [0, p) of length 1, c−1(I) induces an acyclic subgraph of G.

Theorem 21 [16]. For every graph G we have

va∗(G) = inf{p | ∃ p-circular tree colouring of G}.

An important conjecture related to colourings of digraphs is the 2-colour-
conjecture by Victor-Neumann-Lara.

Conjecture 22 (Neumann-Lara, 1985). ~χ(D) ≤ 2 for every simple planar di-
graph D.

According to the above, this is equivalent to ~χ∗(D) ≤ 2 for simple planar
digraphs. While the conjecture still remains unproven and since the best known
general result so far only guarantees the existence of 3-colourings of simple planar
digraphs (via vertex arboricity, [2]), the following can be seen as an improvement
of the upper bound 3 for the star dichromatic number of planar digraphs.
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Theorem 23. Let D be a simple planar digraph. Then ~χ∗(D) ≤ 2.5.

Proof. In [16] it is proved that va∗(G) ≤ 2.5 for simple planar graphs. The claim
now follows from Remark 20.

While the star dichromatic number can be considered an oriented version of
the circular vertex arboricity there does not seem to be an unoriented counterpart
to the circular colourings introduced by Bokal et al.. Note that any map c :
V (G) → Sp ' [0, p) that is a simultaneous weak circular p-colouring of each
possible orientation of a graph G which is no forest necessarily must have p ≥ 2.

The bound ~χ∗(D) ≤ 2 for planar digraphs as a consequence of the 2-colour-
conjecture is best-possible as there exist simple planar digraphs with star dichro-
matic number arbitrarily close to 2. This is a consequence of the case g = 3 of
the following theorem.

Theorem 24. For every g ≥ 3 and every ε > 0, there exists a planar digraph D

of digirth g with ~χ∗(D) ∈
[
g−1
g−2 − ε,

g−1
g−2

]
.

Proof. Knauer et al. [7] constructed a sequence
(
Dg
f

)
f≥1 of planar digraphs of

digirth g with
∣∣V (Dg

f

)∣∣ = f(g−1)+1 and so that for the maximum order ~α
(
Dg
f

)
of an induced acyclic subdigraph of Dg

f , we have ~α
(
Dg
f

)
≤
∣∣V (Dg

f

)∣∣(g−2)+1

g−1 for all
f ≥ 1. Applying Lemma 12 this yields

~χ∗
(
Dg
f

)
≥ ~χf

(
Dg
f

)
≥
∣∣V (Dg

f

)∣∣
~α
(
Dg
f

) ≥ ∣∣V (Dg
f

)∣∣(g − 1)∣∣V (Dg
f

)∣∣(g − 2) + 1
.

Since the latter expression is convergent to g−1
g−2 for f → ∞, it remains to show

that all the Dg
f , f ≥ 1 admit acyclic (g − 1, g − 2)-colourings. This is easily

seen using the inductive construction described in [7]. For f ≥ 2, Dg
f arises from

Dg
f−1 by adding an extra directed path P = s1, . . . , sg−1 with g − 1 new vertices

whose only connections to V
(
Dg
f

)
consist of two vertices x 6= y ∈ V

(
Dg
f−1
)

that
both are adjacent to x1 and xg−1 via edges that are oriented in such a way that
x, P as well as y, P induce directed cycles. Now we inductively find an acyclic
(g − 1, g − 2)-colouring by colouring the vertices of P with the g − 1 pairwise
distinct colours. Clearly, this cannot create any new directed cycle using at most
g − 2 colours.

There is some evidence that the construction given in [7] is asymptotically
best-possible. Thus, we are tempted to generalize the 2-colour-conjecture as
follows.
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w

v1 v2

v3

v4v5

v6

Figure 2. The simple planar digraph D7 with star dichromatic number 2.

Conjecture 25. For every planar digraph D of digirth at least g ≥ 3, we have
~χ∗(D) ≤ g−1

g−2 . In other words, D admits a colouring with g − 1 colours so that
each directed cycle in D contains each colour at least once.

The above implies that this bound for a given g, if true, is best-possible. We
furthermore note that these upper bounds for g ≥ 4 do not apply for the circular
dichromatic number ~χc(D) (take e.g. ~Csg from Example 18). We are not aware of
an example for which the bound in the above inequality is attained with equality
for g ≥ 4. For the case g = 3, we have the following (minimal) example of a
simple planar digraph with star dichromatic number exactly 2.

Proposition 26. The digraph D7 depicted in Figure 2 has ~χ∗(D7) = 2, while
~χ∗(D) ≤ 5

3 for any simple planar digraph D on at most 6 vertices.

Proof. The labels w, v1, . . . , v6 of the vertices in D7 refer to Figure 2. To see
that ~χ∗(D7) ≤ 2, notice that c : V (D7) → {0, 1}, c(w) = c(v1) = c(v3) =
0, c(v2) = c(v4) = c(v5) = c(v6) = 1 defines a valid 2-colouring of D7. Assume
now for a proof by contradiction that we had ~χ∗(D7) < 2 and thus (according to
Theorem 7 and Proposition 6) that there was an acyclic (k, d)-colouring of D7

where 1 ≤ d ≤ k ≤ 7 are integers such that k
d < 2. The latter implies k

d ≤
7
4

and consequently the existence of an acyclic (7, 4)-colouring c7,4 : V (D7)→ Z7 '
{0, . . . , 6} of D7. Without loss of generality, we may assume that c(w) = 0.
Because any pair of elements is contained in a cyclic subinterval of length 4 in
Z7, the vertices of any directed triangle in D7 must receive pairwise distinct
colours. For any vertex vi contained in a directed triangle together with w, we
must have c(vi) 6= 0, i = 1, . . . , 6. Considering the directed triangle v1v5v3, we
find that at least one of the vertices v1, v3, v5 must have colour 1 or 6. Because of
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the symmetry of D7 we may assume that c(v1) ∈ {6, 1}. Possibly after replacing
c with −c we can even assume c(v1) = 1. Looking at the triangle v1, v2, w, this
forces c(v2) = 4. As v1v2v3 forms a directed triangle, it follows that c(v3) ∈ {5, 6}.
Assume first that c(v3) = 6. Looking at the triangle wv3v4, this forces c(v4) = 3,
and because v3v4v5 is a directed triangle as well, this implies c(v5) ∈ {1, 2}. This
now is a contradiction, because it means that the colour set of the directed triangle
v1v3v5 is contained in the cyclic subinterval {6, 0, 1, 2} of Z7. Consequently, we
may assume that we are in the case of c(v3) = 5. The directed triangle wv3v4
now forces c(v4) ∈ {2, 3}, and as the colour set of v3v4v5 must not be contained
in {2, 3, 4, 5}, c(v5) has to be either 0, 1 or 6. This now leads to the contradiction
that {c(v1), c(v3), c(v5)} ⊆ {5, 6, 0, 1}.

The second part of the claim can be verified by checking the existence of
(5, 3)-colourings of all simple planar digraphs on up to 6 vertices. This is a
simple but lengthy case distinction by hand but can be easily checked using a
brute force program run on a standard personal computer.

Naturally, one might expect that the K4 is an extremal example for colourings
of simple planar digraphs. Surprisingly, this is not the case. Considering more
generally odd and even wheels we find.

Example 27. For k ≥ 3 denote by Wk the wheel with k + 1 vertices.

(A) If k is odd, then

~χ∗(Wk) = ~χf (Wk) =
3

2
.

(B) If k is even, then

~χ∗(Wk) =
5

3
but ~χf (Wk) =

3k − 2

2k − 2
.

Proof. In the following, whenever we refer to a vertex w, it is to be understood
as the dominating vertex of the respective wheel we deal with. In the following,
wheels are considered to be canonically embedded in the plane such that w is the
only inner vertex.

(A) As a wheel contains a triangle, using Corollary 14, we find 3
2 = ~χf (C3) ≤

~χf (Wk) ≤ ~χ∗(Wk). Next, we construct an acyclic (3, 2)-coloring. Since k is odd,
along the circular ordering of incoming and outgoing edges around w, there has
to be a consecutive pair of edges with the same orientation, i.e., both incoming
or both outgoing. Denote by x1, x2 their end vertices on the rim. We now color
Wk by assigning 0 to w and colouring the outer cycle using alternatingly 1 and 2
except for x1, x2, which both receive 1. Clearly, this is an acyclic (3, 2)-coloring,
unless the outer cycle is directed. In that case, not only the triangle wx1x2, but
also one of its neighbouring triangles is not directed. Hence, we may assume
that, say, x1 is not a vertex of a directed triangle. Now recoloring x1 with color
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0 yields an acyclic (3, 2)-coloring. Hence for every orientation D of Wk we find
~χ∗(D) ≤ 3

2 .

(B) We first prove ~χ∗(D) ≤ 5
3 for all orientations D of Wk. If the outer cycle is

undirected similar to case (A) we find an acyclic (3, 2)-colouring of D by assigning
0 to the central vertex and alternatingly 1, 2 to the outer vertices. Hence we may
assume that the outer cycle is directed in D. If there exists a pair of consecutive
vertices x1, x2 on the outer cycle where wx1x2 is not a directed triangle, recoloring
either x1 or x2 by 0 yields an acyclic (3, 2)-coloring as in the odd case. So, we
may assume that the outer cycle is directed and all edges incident to w are
alternatingly incoming and outgoing in the cyclic order of ED(w). Hence, in the
cyclic order, every second triangle is directed and the others are not. We define
an acyclic (5, 3)-colouring of D by starting with a 0, 2, 3-colouring of the vertices,
where w receives colour 0 and the outer vertices alternating colours 2 and 3 such
that the directed triangles have its vertices coloured by 0, 3, 2 in cyclic order.
Now choose one directed edge whose tail is coloured by 2 and recolour its head
with 4 and its tail with 1. It is now easily seen that the vertices of no directed
triangle nor of the outer cycle are contained in the union of three consecutive
colour classes of colours of Z5 = {0, 1, 2, 3, 4}, which proves ~χ∗(D) ≤ 5

3 also in
this case.

Next we show that ~χ∗(Wk) ≥ 5
3 . Clearly, this can be true only for the

orientation considered the last for the upper bound. Let p be any real number
admitting an acyclic colouring. As D contains a directed triangle, p ≥ 3

2 . Assume
for a contradiction p < 5

3 and let c : V (D)→ [0, p) be an acyclic p-colouring of D.
We may assume c(w) = 0. We will show that |c(v)|p ≥ 2−p for all v ∈ V (D)\{w}.

Assume this was wrong. Possibly replacing c by c̃ = p− c mod p this yields
the existence of a vertex v ∈ V (D)\{w} such that 0 ≤ c(v) < 2 − p. Let u
be the other vertex in the unique directed triangle containing w and v. Let
m = c(v)

2 ∈ Sp, then Sp ⊆ [0, (p2 + m) mod p]p ∪ [(p2 + m) mod p, c(v)]p and

|p2 +m− c(v)|p = p
2 +m < p+2−p

2 = 1. Hence in any case = {c(w), c(u), c(x)} is
contained in an interval of length strictly smaller than 1 contradicting c being an
acyclic p-colouring.

Thus, indeed |c(v)|p ≥ 2 − p > 1
3 for all outer vertices. Hence the image

of the outer directed cycle under c is contained in an open cyclic subinterval of
length p− 2

3 < 1, again contradicting the definition of an acyclic p-colouring. We
conclude ~χ∗(Wk) ≥ ~χ∗(D) ≥ 5

3 for this special orientation, proving the claims for
the star dichromatic number.

We now turn to proving ~χf (Wk) ≤ 3k−2
2k−2 . Denote by V +, V − a bipartition

of the outer cycle of Wk. Note that V + ∪ {w}, V − ∪ {w} and all subsets of
V (Wk)\{w} of size k − 1 induce forests in Wk, hence also acyclic sets for any
orientation of Wk. We construct an instance of (2) by putting a weight of 1

2 on
each of V + ∪ {w}, V − ∪ {w}, and a weight of 1

2(k−1) on each of the k subsets of
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V (Wk)\{w} of size k − 1, all other acyclic vertex sets receive a weight of 0. We
compute 1

2 + 1
2 ≥ 1 for w and (k−1) · 1

2(k−1) + 1
2 ≥ 1 for each outer vertex. Hence,

we have a feasible instance (2), verifying ~χf (Wk) ≤ 1
2 + 1

2 + k
2(k−1) = 3k−2

2k−2 as
claimed.

Finally, we prove ~χ∗(Wk) ≥ 3k−2
2k−2 using the same special orientation D of Wk

where the outer cycle is directed and the orientations of edges incident to w are
alternating in cyclic order. We construct a suitable instance of the dual program
(3), defining yw = k−2

2k−2 and yv = 1
k−1 for every outer vertex. Let A be a maximal

acyclic set. If w /∈ A, then, since the outer cycle is directed, A = V (Wk)\{w, x}
for some outer vertex x. In this case, we verify∑

v∈A
yv = (k − 1) · 1

k − 1
= 1.

If w ∈ A, clearly A contains at most one vertex of each directed triangle. There-
fore |A \ {w}| ≤ k

2 and again we verify the restriction

∑
v∈A

yv ≤
k

2
· 1

k − 1
+

k − 2

2k − 2
= 1.

Using linear programming duality we find that ~χf (D) ≥
∑

v∈V (Wk)
yv = k

k−1 +
k−2
2k−2 = 3k−2

2k−2 .

Concerning fractional dichromatic numbers, Conjecture 25 would imply a
tight upper bound of ~χf (D) ≤ g−1

g−2 for planar digraphs of digirth g. In the
following, we want to approach this upper bound by showing that indeed, ~χf (D)
tends to 1 for planar digraphs of large digirth. This is not at all obvious, as it
is known that when dropping the restriction of planarity, directed graphs with
arbitrarily large digirth may have arbitrarily large dichromatic number at the
same time (cf. [5]). In order to do so, we recall the following terminologies as well
as a related famous max-min-principle, known as Lucchesi-Younger-Theorem.

Definition.
• A clutter is a set family with no members containing each other.

• A subset of arcs in a digraph is called dijoin if it intersects every directed cut.

• A subset of arcs in a digraph is called feedback arc set if it intersects every
directed cycle.

Theorem 28 (Lucchesi-Younger, cf. [10]). Let D be a digraph and w : E(D)→
N0 a weighting of the edges with non-negative integers. Then the minimal weight
of a dijoin in D equals the maximum number of (minimal) dicuts in D so that
every arc a is contained in at most w(a) of them.
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The terminology used in the following refers to [3], especially Chapter 1.1.
According to Definition 1.5 and Theorem 1.25 in [3], the Lucchesi-Younger-
Theorem means that the clutter of minimal directed cuts in any digraph admits
the Max-Flow-Min-Cut-Property (MFMC). Consecutive application of Theorem
1.8 and Theorem 1.17 in [3], where the latter is a theorem of Lehman (cf. [9]),
yields that the blocker of the clutter of minimal directed cuts, namely the clutter
of minimal dijoins, is ideal. This means the following statement which was also
pointed out in the article [17] on Woodall’s Conjecture in the Open Problem
Garden.

Theorem 29. Let D be a digraph and let g denote the minimal size of a directed
cut in D. Then there is m ∈ N and a collection of dijoins J1, . . . , Jm equipped
with a weighting x1, . . . , xm ∈ R+ such that x1 + · · ·+ xm = g and for every arc
e ∈ E(D), we have

∑
i:e∈Ji xi ≤ 1.

By considering planar digraphs and their directed duals, the dualities between
minimal directed cuts and directed cycles as well as of dijoins and feedback arc
sets yield.

Corollary 30. If D is a planar digraph of digirth g, then there are m feedback
arc sets F1, . . . , Fm ⊆ E(D) equipped with a weighting x1, . . . , xm ∈ R+ so that
x1 + · · ·+ xm = g and for each edge e ∈ E(D),

∑
i:e∈Fi

xi ≤ 1.

From this we may now conclude an upper bound for the fractional dichro-
matic number which approaches 1 for planar digraphs of large digirth.

Theorem 31. Let g ≥ 6. Then for every planar digraph D of digirth g we have
~χf (D) ≤ g

g−5 .

Proof. Without loss of generality assume D to be simple. Let F1, . . . , Fm,
x1, . . . , xm be as given by Corollary 30. Use the 5-degeneracy of the underly-
ing graph U(D) of D to derive an ordering v1, . . . , vn, n = |V (D)| of the vertices
so that for each i ∈ {1, . . . , n}, vi has degree at most 5 in Gi = U(D)[v1, . . . , vi].
For each vi, let c(vi) denote the set of j ∈ {1, . . . ,m} so that vi has an incident
edge in Fj ∩ E(Gi). Then clearly∑

j∈c(vi)

xj ≤
∑

e∈EGi
(v)

∑
j:e∈Fj

xj ≤ degGi
(vi) ≤ 5

for each vi. Furthermore, the vertex set Xj = {x ∈ V (D) | j /∈ c(x)} is acyclic in
D for all j = 1, . . . ,m. In any directed cycle C in D we find an arc contained in
Fj , and thus, j is contained in at least one of the c-sets of its end vertices.

We now define an instance of the linear optimization program 2 defining
~χf (D) according to xA = iA

g−5 , where iA =
∑

j∈{1,...,m}:A=Xj
xj for each A ∈
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A(D). Then those variables are non-negative and for each vertex v, we have

∑
A∈A(D,v)

iA =
∑

j∈{1,...,m}:v∈Xj

xj =
∑
j /∈c(v)

xj =
m∑
j=1

xj −
∑
j∈c(v)

xj ≥ g − 5.

Hence this is a legal instance proving ~χf (D) ≤
∑

A∈A
iA
g−5 =

∑m
j=1 xj
g−5 = g

g−5 .

5. Conclusion and Some Open Problems

The star dichromatic number of a digraph introduced and analysed in this paper
seems to share all desirable attributes of the competing parameter from [1], the
circular chromatic number. But, while the star dichromatic number is always a
lower bound for the circular dichromatic number, it has the additional advan-
tage that it is immune to the existence of directed cuts, while the addition of
a dominating source makes the circular dichromatic number hit the ceiling. We
therefore believe that the parameter introduced in the present paper yields a
preferable generalization of the star chromatic number of Vince to the directed
case. This is also supported by the fact that it can be seen as oriented version of
the circular vertex arboricity.

In the planar case it might be true that the star chromatic number approaches
1 when the digirth increases (Conjecture 25). Note that this is impossible for
~χc(D). It might be rewarding to study in particular the case g = 4 of Conjec-
ture 25, e.g., orientations of planar triangulations without directed triangles, as
recently there has been substantial progress towards digraph colourings of this
class [8].

Also, it would be interesting to determine the computational complexity of
decision problems of the form.

Instance: A digraph D (possibly from a certain class) and a real number p > 1.

Decide whether ~χ∗(D) ≤ p.
In [4] it was shown that corresponding decision problem for the circular

dichromatic number is NP-complete, even if restricted to planar digraphs. We
conjecture that the same should be true for the star dichromatic number. This
is true at least for all integers p ∈ N, p ≥ 2, since in that case ~χ∗(D) ≤ p ⇔
~χc(D) ≤ p for all digraphs D.

We want to conclude with an incomplete list of other natural questions that
remain unanswered in this paper.

• For any g ≥ 4, is there a planar digraph of digirth g with ~χ∗(D) = g−1
g−2?

• Is there a meaningful characterization of digraphs with ~χ∗(D) = ~χf (D)?

• Which digraphs satisfy ~χ∗(D) = ~χ(D) or, more generally, ~χ∗(D) = ~χc(D)?
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• What about the star dichromatic number of tournaments?

• Does the following statement hold true: For any ε > 0, there is a δ > 0 such
that any planar digraph D with ~χf (D) ≤ 1 + δ has ~χ∗(D) ≤ 1 + ε?
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Note added in proof

Since the submission of this paper, in [6] we could solve the complexity related
questions for the star dichromatic number posed Section 5.
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