Article in volume
Authors:
Title:
Spanning trees with disjoint dominating and 2-dominating sets
PDFSource:
Discussiones Mathematicae Graph Theory 42(1) (2022) 299-308
Received: 2019-05-14 , Revised: 2019-10-03 , Accepted: 2019-10-03 , Available online: 2019-11-13 , https://doi.org/10.7151/dmgt.2258
Abstract:
In this paper, we provide a structural characterization of graphs
having a spanning tree with disjoint dominating and 2-dominating sets.
Keywords:
domination, 2-domination, spanning tree
References:
- V. Anusuya and R. Kala, A note on disjoint dominating sets in graphs, Int. J. Contem. Math. Sci. 7 (2012) 2099–2110.
- H. Broersma, O. Koppius, H. Tuinstra, A. Huck, T. Kloks, D. Kratsch and H. Müller, Degree-preserving trees, Networks 35 (2000) 26–39.
https://doi.org/10.1002/(SICI)1097-0037(200001)35:1<26::AID-NET3>3.0.CO;2-M - F. Buckley and M. Lewinter, On graphs with center-preserving spanning tree, Graph Theory Notes N.Y. 14 (1987) 33–35.
- F. Buckley and M. Lewinter, A note on graphs with diameter-preserving spanning trees, J. Graph Theory 12 (1988) 525–528.
https://doi.org/10.1002/jgt.3190120408 - F. Buckley and Z. Palka, Property preserving spanning trees in random graphs, in: Random Graphs '87, Karoński, Jaworski and Ruciński (Ed(s)), (Wiley & Sons, New York 1990) 17–28.
- L. Cai and D.G. Corneil, Tree spanners, SIAM J. Discrete Math. 8 (1995) 359–387.
https://doi.org/10.1137/S0895480192237403 - G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs (CRC Press, Boca Raton, 2016).
- P. Delgado, W.J. Desormeaux and T.W. Haynes, Partitioning the vertices of a graph into two total dominating sets, Quaest. Math. 39 (2016) 863–873.
https://doi.org/10.2989/16073606.2016.1188862 - W.J. Desormeaux, T.W. Haynes and M.A. Henning, Partitioning the vertices of a cubic graph into two total dominating sets, Discrete Appl. Math. 223 (2017) 52–63.
https://doi.org/10.1016/j.dam.2017.01.032 - S. Földes and P.L. Hammer, Split graphs, Congr. Numer. 19 (1977) 311–315.
- M.A. Henning, Ch. Löwenstein and D. Rautenbach, Remarks about disjoint dominating sets, Discrete Math. 309 (2009) 6451–6458.
https://doi.org/10.1016/j.disc.2009.06.017 - M.A. Henning and D.F. Rall, On graphs with disjoint dominating and $2$-dominating sets, Discuss. Math. Graph Theory 33 (2013) 139–146.
https://doi.org/10.7151/dmgt.1652 - A. Kaneko and K. Yoshimoto, On spanning trees with restricted degrees, Inform. Process. Lett. 73 (2000) 163–165.
https://doi.org/10.1016/S0020-0190(00)00018-1 - Ch.-Ch. Lin, G.J. Chang and G.-H. Chen, The degree-preserving spanning tree problem in strongly chordal and directed path graphs, Networks 56 (2009) 183–187.
https://doi.org/10.1002/net.20359 - Y. Liu and J. Huang, Diameter-preserving spanning trees in sparse weighted graphs, Graphs Combin. 25 (2009) 753–758.
https://doi.org/10.1007/s00373-010-0887-z - M. Miotk, J. Topp and P. Żyliński, Disjoint dominating and $2$-dominating sets in graphs, Discrete Optim. 35 (2020) 100553.
https://doi.org/10.1016/j.disopt.2019.100553 - I. Papoutsakis, Tree spanners of bounded degree graphs, Discrete Appl. Math. 236 (2018) 395–407.
https://doi.org/10.1016/j.dam.2017.10.025 - J. Southey and M.A. Henning, A characterization of graphs with disjoint dominating and paired-dominating sets, J. Comb. Optim. 22 (2011) 217–234.
https://doi.org/10.1007/s10878-009-9274-1 - J. Southey and M.A. Henning, Dominating and total dominating partitions in cubic graphs, Cent. Eur. J. Math. 9 (2011) 699–708.
https://doi.org/10.2478/s11533-011-0014-2
Close