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Abstract

In this paper, we provide a structural characterization of graphs having
a spanning tree with disjoint dominating and 2-dominating sets.
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1. Introduction

Let P and R be two graph-theoretic properties. We say that a pair (P,R) of
disjoint subsets of vertices of a graph G = (VG, EG) is a PR-pair in G if the set P
satisfies the property P in G while the set R satisfies the property R (in G either).
A graph that has a PR-pair is called a PR-graph. The concept of PR-graphs
naturally generalize several graph classes, where existence of a bipartition of the
vertex set with some properties is required. There are considered properties not
only those well-known as, for example, bipartite graphs (as (I, I)-graphs, where
the property I is “the induced subgraph is an empty graph”, in addition imposing
R = VG\P ) or split graphs [10] (as (I,K)-graphs, where the property K is “the
induced subgraph is a clique”, again restricted to R = VG\P ), but also those
very specific, for example, the class of trees [11] with the smallest possible size
of two disjoint dominating sets (as (I2,M)-trees, where the property I2 is “all
vertices are of degree two and the induced subgraph is an empty graph” while
the property M is “the induced subgraph is a perfect matching”, again imposing
R = VG\P ). Herein, following a bunch of papers, see [1, 8, 9, 12, 16, 18, 19] to
mention just a few most recent, we focus on two graph domination properties:
(standard) domination and 2-domination.
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We say that a set D ⊆ VG is a dominating set of a graph G = (VG, EG) if
each vertex in the set VG\D has a neighbor in D; this property, denoted by D,
plays a role of the property P. Analogously, a subset D2 ⊆ VG of G is a 2-
dominating set of G if each vertex in the set VG\D2 has at least two neighbors
in D2; this property, denoted by D2, serves as the property R. The study on
DD2-graphs has been initiated in 2013 by Henning and Rall [12]. In particular,
they showed that every graph with minimum degree at least two is a DD2-graph
and provided a constructive characterization of trees that have a DD2-pair. The
complete structural characterization of all DD2-graphs was given only in 2019 by
Miotk et al. [16]. In addition, the authors provided a characterization of minimal
DD2-graphs and also proved several algorithmic and hardness results concerning
spanning minimal DD2-graphs and DD2-supergraphs of non-DD2-graphs.

In this paper, taking into account an analogous problem studied in [18], we
continue our study on DD2-graphs and characterize the class of these DD2-graphs
that have a spanning tree being a DD2-graph itself; we shall refer to such a tree as
a spanning DD2-tree. Observe that not every DD2-graph has a spanning DD2-tree
— as an example can serve the subdivision graph of any corona graph having
a cycle (see formal definitions below). Therefore, our problem perfectly fits into
the bunch of problems related to the concept of spanning trees having the same
or approximately the same properties as the input graph, i.e., center-preserving
spanning trees [3], diameter-preserving spanning trees [4, 5, 15], degree-preserving
spanning trees [2, 14], and t-spanners [6, 17].

2. Preliminaries

For usual notation and graph theory terminology we generally follow [7]. Specif-
ically, for a vertex v of a graph G = (VG, EG), its neighborhood , denoted by
NG(v), is the set of all vertices adjacent to v, and the cardinality of NG(v), de-
noted by dG(v), is called the degree of v. The closed neighborhood of v, denoted
by NG[v], is the set NG(v) ∪ {v}. In general, for a subset X ⊆ VG of vertices,
the neighborhood of X, denoted by NG(X), is defined to be

⋃
v∈X NG(v), and

the closed neighborhood of X, denoted by NG[X], is the set NG(X) ∪ X. The
minimum degree of a vertex in G is denoted by δ(G). A vertex of degree one
is called a leaf, and the only neighbor of a leaf is called its support vertex (or
simply, its support). If a support vertex has at least two leaves as neighbors, we
call it a strong support, otherwise it is a weak support. The set of leaves, the set
of weak supports, the set of strong supports, and the set of all supports of G is
denoted by LG, S

′

G, S
′′

G, and SG, respectively.

Next, a graph G is said to be a minimal DD2-graph if G is a DD2-graph and
no proper spanning subgraph of G is a DD2-graph. A multigraph H is called
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a corona graph if every vertex of H is a leaf or it is adjacent to a leaf of H.
The subdivision graph S(H) of a multigraph H is the graph obtained from H by
inserting a new vertex onto each edge of H. For the purpose of characterizing
the class of graphs possessing a spanning DD2-tree we shall employ the following
two results.

Theorem 1 [16]. Let G be a graph with no isolated vertex. Then G is a DD2-

graph if and only if NG(s)\(LG ∪ SG) 6= ∅ for every weak support s of G.

Theorem 2 [16]. A connected graph G is a minimal DD2-graph if and only if

G is a star K1,n (n ≥ 2), a cycle C4, or G is the subdivision graph of a corona

graph, that is, G = S(H) for some connected corona multigraph H.

Finally, let Π = v1v2, . . . , vk be a path in a graph G, with k ≥ 2. We say
that Π is a pendant Pk-path in G if dG(v1) = 1 and dG(vi) = 2 for 2 ≤ i ≤ k,
and the vertex vk+1 ∈ NG(vk)\{vk−1}, called the Pk-support, is of degree at least
three in G, see Figure 1 for an illustration. Similarly, we say that the path Π
forms a Pk-hammock, if dG(vi) = 2 for 1 ≤ i ≤ k, vertices v0 ∈ NG(v1)\{v2} and
vk+1 ∈ NG(vk)\{vk−1}, called Pk-junctions, are of degree at least three in G, and
v0 6= vk+1; if under the same assumptions we have v0 = vk+1, then we refer to Π
as a Pk-loop (with the vertex v0 being the only its Pk-junction), again see Figure
1. The set of all Pk-supports in G is denoted by Sk

G.

vk+1 vk v2 v1
pendant Pk-path

vk+1 vk v1 v0
Pk-hammock vk

v0 = vk+1

v2 v1

Pk-loop

· · · · · · · · ·

· · ·

Figure 1. A pendant Pk-path, a Pk-hammock, and a Pk-loop, respectively.

3. Graphs with Spanning DD2-Tree

Let G = (VG, EG) be a DD2-graph and let F be a spanning subgraph of G.
We say that F is a spanning DD2-forest (of G) if each connected component of
F is an acyclic DD2-graph. As observed in [16], a connected DD2-graph G has
a spanning DD2-forest if and only if G has a spanning DD2-tree. Therefore, from
now on, we shall focus on spanning DD2-forests rather then explicitly on spanning
DD2-trees.

Due to the fact that being a DD2-graph strictly depends on the neighborhoods
of weak supports (see Theorem 1), the neighborhoods of these and only these
vertices will naturally play a key role in our characterization. Namely, let G be
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a connected DD2-graph of order at least five. Taking into account Theorem 2,
observe that none of the edges connecting any two supports or any two P2-
supports in G belongs to any spanning minimal DD2-graph of G. Therefore,
the graph HG resulting from G by deleting all such edges (if they exist) is also
DD2-graph, and moreover, we have the following observation.

Observation 3. A connected graph G has a spanning DD2-forest if and only if

the graph HG has a spanning DD2-forest.

Next, let us observe that if v1v2 is a P2-hammock inHG such that its both P2-
junctions are supports in HG, then the edge v1v2 does not belong to any spanning
minimal DD2-graph of HG. Therefore, the graph BG, called the DD2-backbone of

G, resulting from HG by deleting all such edges of P2-hammocks (if they exist)
is also DD2-graph, and we have the following observation.

Observation 4. The graph HG has a spanning DD2-forest if and only if the

graph BG has a spanning DD2-forest. Consequently, a connected graph G has

a spanning DD2-forest if and only if its DD2-backbone has a spanning DD2-forest.

We point out that the DD2-backbone BG of G is unique (of course, BG = G
may hold) which follows from the fact that the above operation of deleting edges
of P2-hammocks never creates a (new) edge connecting any two supports or any
two P2-supports. Furthermore, notice that the number of weak supports in the
backbone BG is at most the number of weak supports in the graph G itself.

Taking into account Observations 3 and 4, in the following, for simplicity of
the presentation, we shall assume that G is a connected DD2-backbone, that is,
G is a DD2-graph being the DD2-backbone of itself (recall that the order of G
is at least five). For the same reason, starting from Lemma 5 establishing the
necessity condition, we shall split our discussion into several pieces. But before
we proceed further, let us define the property, which we shall refer to as the X -

property, that plays a crucial role in our characterization of DD2-graphs having a
spanning DD2-forest.

Let G = (VG, EG) be a connected graph of order at least five, and let X be
a subset of VG \ LG such that S′

G ⊆ NG(X). We say that X (and so the graph
G itself) has the X -property if for each non-empty independent set I satisfying
NG(I) ⊆ X, we have |I| < |NG(I)|. Notice that if there is no weak support in G,
then the empty set has the X -property in G by the definition. Also, if G has only
one weak support, say s, then any 1-element set X = {x}, where x ∈ NG(s)\LG,
has the X -property in G (since in this case, the only independent set I in G
satisfying NG(I) ⊆ X is the empty set).

Lemma 5 (Necessity). Let G = (VG, EG) be a connected DD2-backbone of order

at least five. If G has a spanning DD2-forest, then G has the X -property.



Spanning Trees with Disjoint Dominating and 2-Dominating Sets 303

Proof. Let F be a minimal spanning DD2-forest of G and suppose contrary to
our claim that there is no subset X ⊆ VG\LG satisfying the X -property in G;
observe that G must have at least two weak supports (by our discussion above).

Let (D,D2) be a DD2-pair in F . Since F is a DD2-graph, each weak support
s ∈ S′

G has a neighbor in D2\LG (by Theorem 1). Now, let X ⊆ D2\LG be a
minimal set such that S′

G ⊆ NG(X) and let I be a non-empty independent set
in G such that NG(I) ⊆ X and |I| ≥ |NG(I)| ≥ 1 (such a set I exists by the
assumption). Since F is a minimal DD2-graph and NG(I) ⊆ X, it follows from
Theorem 2 that dF (v) = 2 for each v ∈ I. Consequently, since |I| ≥ |NG(I)|,
we obtain (see the next paragraph) that the induced subgraph F [I ∪NG(I)] has
a cycle, a contradiction.

To argue non-acyclity of F [I ∪ NG(I)], consider the graph H = (VH , EH),
where VH = NG(I) and EH = {xy : x, y ∈ VH share a (degree two) neighbor in
F}. Observe that H has |I| ≥ |VH | edges, and so it has a cycle whose subdivision
is a cycle in F [I ∪NG(I)].

The remaining part of the section is devoted to the sufficient condition related
with the X -property. In particular, we will show that any connected DD2-graph
of order at least five with at most one weak support has a spanning DD2-forest.

Lemma 6 (Sufficiency). Let G be a connected DD2-backbone of order at least

five. If G satisfies the X -property, then G has a spanning DD2-forest.

Proof. Suppose contrarily that G = (VG, EG) is a smallest (with respect to the
order primarily and the size secondarily) connected DD2-backbone that has the
X -property but does not have a spanning DD2-forest. We split our discussion
into four cases, depending on the minimum degree of G and the number of its
weak supports.

Case 1. δ(G) ≥ 2. Observe that G is not a cycle, and so there exists v0 ∈ VG

of degree at least three. Let e = v0v1 be an edge in G. If dG(v1) ≥ 3, then
the graph G′ = G − e also has no support, and hence it is a DD2-graph by
Theorem 1. Moreover, G′ is DD2-backbone and so the minimality of G implies
that G′ has a spanning DD2-forest F (notice that G′ may be disconnected, but
this is not a problem at all). Since F is also a spanning DD2-forest of G, we obtain
a contradiction. If dG(v1) = 2, then G has a Pk+1-loop L = v1 · · · vk+1 or a Pk-
hammock H = v1 · · · vk, for some k ≥ 1. Consider again the graph G′ = G − e.
Now, the vertex v2 is the only weak support in G′. It follows again from Theorem
1 that G′ is a DD2-graph, moreover, it is the DD2-backbone of itself. Since the
set X = {x}, where x ∈ NG(v2)\{v1}, has the X -property, it follows from the
minimality of G that G′ has a spanning DD2-forest. But such a forest is also a
spanning DD2-forest of G, a contradiction.
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Case 2. δ(G) = 1 and G has only strong supports. Notice that G is not
a star, since otherwise G would be a DD2-spanning tree of itself, a contradiction.
Consider the strong support v0 and delete an edge e = v0v1 ∈ EG from G, with
v1 /∈ LG. It follows from Theorem 1 that the resulting graph G′ = G − e is
a DD2-graph; notice that G′ has at most one weak support. Since any graph
with at most one weak support satisfies the X -property and the number of weak
supports in the DD2-backbone of a DD2-graph is at most the number of weak
supports in that graph, G′ or some of its spanning subgraphs is a DD2-backbone
that has the X -property. But then, the minimality of G implies a contradiction.

Case 3. G has at least one weak support. Recall — our supposition is that
G is a smallest DD2-backbone that satisfies the X -property but does not have
a spanning DD2-forest. Now, for the purpose of a contradiction, we shall prove
the following, more restricted, implication (and so our supposition involves now
the relevant set D as well).

If D is a minimal set satisfying the X -property in a given DD2-backbone G, then

G has a spanning DD2-forest F such that for each d ∈ D, the edge dsd belongs

to F , where sd ∈ S′

G ∩ (N(d)\N [D\{d}]), that is, sd is any weak support being

an (external) private neighbor of d in G.

We note in passing that if S′

G = ∅, then the only minimal set satisfying the X -
property in G is the empty set, and so in this case the above stronger implication
is also satisfied (by Case 1 and Case 2, respectively).

Assume first that G has exactly one weak support, that is |S′

G| = 1. Let
s ∈ S′

G and consider a vertex ds ∈ NG(s)\LG (such a vertex ds exists since G is
a DD2-graph and it is of order at least five). Notice that the set {ds} makes G
satisfying the X -property. Now, one can observe, by arguments similar to those in
Cases 1 and 2, that to avoid a contradiction, the only possible adjacent vertices
of degree at least three in G are ds and s; we omit the details. Furthermore,
an analogous argument also implies a contradiction when dG(ds) = 2 and ds has
a neighbor v /∈ S′

G such that dG(v) ≥ 3; we again omit the details. Next, we
consider three subcases.

Subcase 3.1. Assume that all neighbors of ds that do not belong to S′

G are
of degree two, and all neighbors of s that do not belong to D are also of degree
two. If some of those neighbors of ds, say v1, . . . , vj , j ≥ 2, share a neighbor
v 6= s, then by deleting from G all edges dsvi, for each i ∈ {1, . . . , j}, we do
not create any new weak support in the resulting graph G′, and the vertex v
becomes — if not has already been — a strong support. Again, similarly as in
Cases 1 and 2 (we omit the details), the minimality of G implies the existence of
a spanning DD2-forest F = (VF , EF ) of G′ with dsd ∈ EF , and so of G as well,
a contradiction.
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Otherwise, if the only such shared neighbor of ds is v = s, then we shall
handle this subcase as Subcase 3.3, assuming that the following Subcase 3.2 has
not occurred.

Subcase 3.2. Assume that none two of the neighbors of ds share a neighbor
v 6= s and degG(v) = 2 for each v ∈ NG(ds)\{s}. Let v1 ∈ NG(ds)\S

′

G and let
v2 ∈ NG(v1)\{ds} (notice v2 /∈ LG as |S′

G| = 1). If dG(v2) ≥ 3 and v2 is a strong
support, then by deleting the edge dsv1 we do not create any new support in the
resulting graph, and thus we can apply a reasoning similar to that in Case 1; we
omit the formal proof.

Otherwise, if dG(v2) ≥ 3 and v2 is not a strong support, then deleting the
edge dsv1 creates one new weak support v2 in the graph G′ = G − dsv1, and
observe that in that case dG(v) = 2 must hold for each v ∈ NG(v2) (by so far
handled cases), and so v 6= s. Consequently, although G′ has now two weak
supports, any vertex v ∈ NG(v2)\{v1} shares at most one (degree two) neighbor
with ds. Therefore G′ or some of its spanning graphs is the DD2-backbone of
itself that satisfies the X -property with D′ = {ds, v} if dG(ds) ≥ 3, and with
D′ = {v} if dG(ds) = 2, for any v ∈ NG(v2)\{v1}. In both cases, the minimality
of G implies a contradiction. Notice that if dG(ds) = 2, then ds becomes a leaf
in G′ while s becomes a strong support, and so the edge dss always belongs to
the resulting DD2-forest, regardless of the case.

Otherwise, if dG(v2) = 2, then consider v3 ∈ NG(v2)\{v1} (notice that v3 ∈
{s, ds} may hold). If dG(v3) ≥ 3, then deleting the edge v2v3 results in the graph
G′ such that v2 is the only new leaf while v1 is the only new weak support in
G′, and v1 can be dominated only by ds in G′. Since G′ is a DD2-backbone that
satisfies the X -property with D = {ds} (and only such D), it has a spanning DD2-
forest F = (VF , EF ) with dsd ∈ EF by the minimality of G, being a spanning
DD2-forest of G as well, a contradiction.

Otherwise, if also dG(v3) = 2 (observe that v3 /∈ {s, ds}), then the graph G′ =
G−dsv1 is a DD2-graph having exactly two weak supports s and v2 if dG(ds) ≥ 3,
and respectively, having only one weak support v2 if dG(ds) = 2 (in this case, s
becomes a strong support in G′). Since v3 is the only non-leaf vertex adjacent to
v2 in G′ and it is of degree two, the graph G′ or some of its spanning graphs is
a DD2-backbone that satisfies the X -property with D′ = {ds, v3} if dG(ds) ≥ 3,
and with D′ = {v3} if dG(ds) = 2. And again, in both cases, the minimality of
G implies a contradiction. Notice that if dG(ds) = 2 and so ds ∈ LG′ , then the
edge dss always belongs to the resulting DD2-forest, regardless of the case.

Subcase 3.3. Assume that dG(ds) ≥ 3, all but vertex s neighbors of ds are of
degree two, and NG(v) = {s, ds} for any non-leaf vertex v 6= s, ds. Then deleting
all edges dsv, where v 6= s, results in a star graph with the centre at s, and so in
a spanning DD2-forest of G with dsd as one of its edges, a final contradiction for
|S′

G| = 1.
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Case 4. Assume that G has at least two weak supports. Let D ⊂ VG\LG

be a minimal subset such that S′

G ⊆ NG(D), and let I be a largest indepen-
dent set such that NG(I) ⊆ D (recall that G satisfies the X -property, and so
|I ′| < |NG(I

′)| holds for any non-empty subset I ′ ⊆ I; also notice that I may
be the empty set). Let G′ be the (simple) graph resulting from deleting all ver-
tices in I from G, then identifying all vertices in D with one vertex dD /∈ VG,
identifying all weak supports in S′

G with one weak support sD /∈ VG, and fi-
nally identifying all leaves incident to weak supports in G with one leaf lD /∈ VG

(being a DD2-backbone by G implies that no loops can be created, and any mul-
tiedge, if appears, is reduced). Observe that G′ is a connected DD2-backbone
and S′

G′ = {sD}. Consider now the set D′ = {dD}. It follows from Case 3 and
the minimality of G that G′ has a spanning DD2-forest F

′ = (VF ′ , EF ′) such that
dDsD ∈ EF ′ (and the edge sDlD ∈ EF ′ as well). Next, let F ′′ = (VG\I, EF ′′) be
the subgraph of G, where EF ′′ contains these and only these edges:

• all edges of F ′ with both endpoints in VG\(I ∪D ∪ S′

G ∪ (NG(S
′

G) ∩ LG));

• all edges dsd and sdlsd , where d ∈ D, sd ∈ S′

G is a private neighbor of d, and
lsd is the unique leaf adjacent to sd in G (observe that such a vertex d may
have many private neighbors in S′

G — then, for each such weak support, we
add the appropriate set of two edges);

• for each edge e′ = xy ∈ EF ′ such that x ∈ {dD, sD} and y /∈ {dD, sD, LG}
(and so y ∈ VG\(I ∪ D ∪ S′

G ∪ (NG(S
′

G) ∩ LG))), we add to EF ′′ the edge
e ∈ EG that corresponds to e′.

Observe that acyclicity of F ′ implies acyclicity of F ′′, and F ′′ has at least |D|
connected components each of which is a DD2-graph. Moreover, none of two
vertices in D belongs to the same component of F ′′ and, by the construction, for
each d ∈ D, the edge dsd belongs to F ′′, where sd ∈ S′

G ∩ (N(d)\N [D\{d}]).
Now, to reach the final contradiction, we have to handle vertices in I, if any.

Namely, if I = ∅, then F ′′ is just a spanning DD2-forest of G, a contradiction. So
assume I 6= ∅. First, we add all vertices in I to F ′′. Next, let B = (I∪NG(I), EB)
be the maximal bipartite subgraph of G whose edges have one endpoint in I and
the other — in NG(I) ⊆ D, respectively. Since |I ′| < |NG(I

′)| for any subset
I ′ ⊆ I and dB(v) ≥ 2 for each v ∈ I, the graph B has a spanning tree T such
that dT (v) ≥ 2 for each v ∈ I [13, Theorem 1]. Consequently, by adding to F ′′

also all edges of T , we obtain a spanning DD2-forest F of G. Clearly, F is also
a DD2-forest of G such that for each d ∈ D, the edge dsd belongs to F , where
sd ∈ S′

G ∩ (NG(d)\NG[D\{d}]), the final contradiction.

Summarizing, for DD2-graphs of order at least five, the necessity condi-
tion is established by Lemma 5, while the sufficiency condition is established
by Lemma 6. Therefore, supported by a simple enumeration of graphs of order
at most four, we may conclude with the following theorem.
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Theorem 7. Let G 6= C4 be a connected DD2-graph.

(a) If G has at most one weak support, then G has a spanning DD2-tree.

(b) Otherwise, if |S′

G| ≥ 2, then G has a spanning DD2-tree if and only if in

the DD2-backbone BG of G, there exists a subset X ⊂ VBG
\LBG

such that

S′

BG
⊆ NBG

(X) and for each non-empty independent set I in BG satisfying

NBG
(I) ⊆ X, we have |I| < |NBG

(I)|.

Notice that the above characterization of DD2-graphs having spanning DD2-
trees is non-practical from the algorithmic point of view. Therefore, we close our
paper with the open question concerning the computational complexity status of
the following problem.

The spanning DD2-tree problem.

For a given graph G, determine whether G has a spanning DD2-tree.
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