DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

M. Furuya

Michitaka Furuya

College of Liberal Arts and Sciences,
Kitasato University,
1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan

email: michitaka.furuya@gmail.com

0000-0003-0991-6122

S. Maezawa

Shun-ichi Maezawa

Graduate School of Environment and Information Sciences,
Yokohama National University,
79-1 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan

email: maezawa-shunichi-bg@ynu.jp

0000-0003-1607-8665

R. Matsubara

Ryota Matsubara

Department of Mathematics,
Shibaura Institute of Technology,
307 Fukasaku, Minuma-ku, Saitama 337-8577, Japan

email: ryota@sic.shibaura-it.ac.jp

H. Matsuda

Haruhide Matsuda

Department of Mathematics,
Shibaura Institute of Technology,
307 Fukasaku, Minuma-ku, Saitama 337-8577, Japan

email: hmatsuda@sic.shibaura-it.ac.jp

0000-0003-2022-619X

S. Tsuchiya

Shoichi Tsuchiya

School of Network and Information,
Senshu University,
2-1-1 Higashimita, Tama-ku, Kawasaki-shi, Kanagawa 214-8580, Japan

email: s.tsuchiya@isc.senshu-u.ac.jp

0000-0001-9006-5120

T. Yashima

Takamasa Yashima

Depatment of Mathmatics,
Keio University,
3-14-1 Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522, Japan

email: takamasa.yashima@gmail.com

0000-0002-3378-4740

Title:

Degree sum condition for the existence of spanning $\boldsymbol{k}$-trees in star-free graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 42(1) (2022) 5-13

Received: 2018-02-12 , Revised: 2019-04-05 , Accepted: 2019-06-10 , Available online: 2021-11-29 , https://doi.org/10.7151/dmgt.2234

Abstract:

For an integer $k \geq 2$, a $k$-tree $T$ is defined as a tree with maximum degree at most $k$. If a $k$-tree $T$ spans a graph $G$, then $T$ is called a spanning $k$-tree of $G$. Since a spanning 2-tree is a Hamiltonian path, a spanning $k$-tree is an extended concept of a Hamiltonian path. The first result, implying the existence of $k$-trees in star-free graphs, was by Caro, Krasikov, and Roditty in 1985, and independently, Jackson and Wormald in 1990, who proved that for any integer $k$ with $k \geq 3$, every connected $K_{1,k}$-free graph contains a spanning $k$-tree. In this paper, we focus on a sharp condition that guarantees the existence of a spanning $k$-tree in $K_{1,k+1}$-free graphs. In particular, we show that every connected $K_{1,k+1}$-free graph $G$ has a spanning $k$-tree if the degree sum of any $3k-3$ independent vertices in $G$ is at least $|G|-2$, where $|G|$ is the order of $G$.

Keywords:

spanning tree, $k$-tree, star-free, degree sum condition

References:

  1. H.J. Broersma, Hamilton Cycles in Graphs and Related Topics (Ph.D. Thesis, University of Twente, 1988).
  2. Y. Caro, I. Krasikov and Y. Roditty, Spanning trees and some edge reconstructible graphs, Ars Combin. 20 A (1985) 109–118.
  3. B. Jackson and N.C. Wormald, $k$-walks of graphs, Australas. J. Combin. 2 (1990) 135–146.
  4. Y. Liu, F. Tian and Z. Wu, Some results on longest paths and cycles in $K_{1,3}$-free graphs, J. Changsha Railway Inst. 4 (1986) 105–106.
  5. O. Ore, Notes on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
    https://doi.org/10.2307/2308928
  6. S. Win, Existenz von Gerüsten mit vorgeschriebenem Maximalgrad in Graphen, Abh. Math. Sem. Univ. Hamburg 43 (1975) 263–267.
    https://doi.org/10.1007/BF02995957

Close