Discussiones Mathematicae Graph Theory 33(4) (2013)
759-770
DOI: https://doi.org/10.7151/dmgt.1708
Precise upper bound for the strong edge chromatic number of sparse planar graphs
Oleg V. Borodin
Institute of Mathematics | Anna O. Ivanova
Institute of Mathematics of |
Abstract
We prove that every planar graph with maximum degree Δ is strong edge (2 Δ −1)-colorable if its girth is at least 40⌊ Δ/2⌋ +1. The bound 2 Δ −1 is reached at any graph that has two adjacent vertices of degree Δ.
Keywords: planar graph, edge coloring, 2-distance coloring, strong edge-coloring
2010 Mathematics Subject Classification: 05C15.
References
[1] | G. Agnarsson and M.M. Halldorsson, Coloring powers of planar graphs, SIAM J. Discrete Math. 16 (2003) 651--662, doi: 10.1137/S0895480100367950 . |
[2] | L.D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete Math. 108 (1992) 231--252, doi: 10.1016/0012-365X(92)90678-9. |
[3] | O.V. Borodin, H.J. Broersma, A.N. Glebov and J. van den Heuvel, The minimum degree and chromatic number of the square of a planar graph, Diskretn. Anal. Issled. Oper. 8 (2001) 9--33 (in Russian). |
[4] | O.V. Borodin, H.J. Broersma, A.N. Glebov and J. van den Heuvel The structure of plane triangulations in terms of stars and bunches, Diskretn. Anal. Issled. Oper. 8 (2001) 15--39 (in Russian). |
[5] | O.V. Borodin, A.N. Glebov, A.O. Ivanova, T.K. Neustroeva and V.A. Tashkinov, Sufficient conditions for the 2-distance (Δ+1)-colorability of plane graphs, Sib. Elektron. Mat. Izv. 1 (2004) 129--141 (in Russian). |
[6] | O.V. Borodin and A.O. Ivanova, 2-distance (Δ+2)-coloring of planar graphs with girth six and Δ≥ 18, Discrete Math. 309 (2009) 6496--6502, doi: 10.1016/j.disc.2009.06.029. |
[7] | O.V. Borodin and A.O. Ivanova, List 2-distance (Δ+2)-coloring of planar graphs with girth six, European J. Combin. 30 (2009) 1257--1262, doi: 10.1016/j.ejc.2008.12.019. |
[8] | O.V. Borodin and A.O. Ivanova, 2-distance 4-colorability of planar subcubic graphs with girth at least 22, Discuss. Math. Graph Theory 32 (2012) 141--151, doi: 10.7151/dmgt.1592. |
[9] | O.V. Borodin and A.O. Ivanova, List 2-facial 5-colorability of plane graphs with girth at least 12, Discrete Math. 312 (2012) 306?-314, doi: 10.1016/j.disc.2011.09.018. |
[10] | O.V. Borodin, A.O. Ivanova, and T.K. Neustroeva, 2-distance coloring of sparse plane graphs, Sib. Elektron. Mat. Izv. 1 (2004) 76--90 (in Russian). |
[11] | O.V. Borodin, A.O. Ivanova and T.K. Neustroeva, Sufficient conditions for 2-distance (Δ+1)-colorability of planar graphs of girth 6 , Diskretn. Anal. Issled. Oper. 12(3) (2005) 32--47 (in Russian). |
[12] | O.V. Borodin, A.O. Ivanova and T.K. Neustroeva, Sufficient conditions for the minimum 2-distance colorability of planar graphs with girth 6, Sib. Elektron. Mat. Izv. 3 (2006) 441--450 (in Russian). |
[13] | D.W. Cranston, Strong edge-coloring of graphs with maximum degree 4 using 22 colors, Discrete Math. 306 (2006) 2772--2778, doi: 10.1016/j.disc.2006.03.053. |
[14] | D.W. Cranston and S.-J. Kim, List-coloring the square of a subcubic graph, J. Graph Theory 57 (2008) 65--87, doi: 10.1002/jgt.20273. |
[15] | Z. Dvořák, D. Kràl, P. Nejedlý and R. Škrekovski, Coloring squares of planar graphs with girth six, European J. Combin. 29 (2008) 838--849, doi: 10.1016/j.ejc.2007.11.005. |
[16] | Z. Dvořák, R. Škrekovski and M. Tancer, List-coloring squares of sparse subcubic graphs, SIAM J. Discrete Math. 22 (2008) 139--159, doi: 10.1137/050634049. |
[17] | R.J. Faudree, A. Gyárfás, R.H. Schelp and Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205--211, doi: 10.1016/j.disc.2007.12.100. |
[18] | F. Havet, Choosability of the square of planar subcubic graphs with large girth, Discrete Math. 309 (2009) 3353--3563. |
[19] | F. Havet, J. van den Heuvel, C. McDiarmid and B. Reed, List colouring squares of
planar graphs, European Conference on Combinatorics, Graph Theory and Applications, Eurocomb 2007 ( Sevilla, Spain, September, 2007) www-sop.inria.fr/members/Frederic.Havet/habilitation/ext-abstr.pdf |
[20] | F. Havet, J. van den Heuvel, C. McDiarmid and B. Reed, List colouring squares of planar graphs, INRIA Research Report no. RR-6586 (2008). http://hal.inria.fr/inria-00303303/. |
[21] | P. Horák, The strong chromatic index of graphs with maximum degree four, Contemp. Methods in Graph Theory (1990) 399--403. |
[22] | A.O. Ivanova, List 2-distance (Δ+1)-coloring of planar graphs with girth at least 7, Diskretn. Anal. Issled. Oper. 17(5) (2010) 22--36 (in Russian). |
[23] | A.O. Ivanova and A.S. Solov'eva, 2-Distance (Δ +2)-coloring of sparse planar graphs with Δ=3 , Mathematical Notes of Yakutsk University 16(2) (2009) 32--41 (in Russian). |
[24] | T. Jensen and B. Toft, Graph Coloring Problems (New York: John Willey & Sons, 1995). |
[25] | M. Molloy and M.R. Salavatipour, Frequency channel assignment on planar networks, in: LNCS, vol. 2461, R.H. Mohring and R. Raman (Eds.)(Springer 2002) 736--747, doi: 10.1007/3-540-45749-6_64. |
[26] | M. Molloy and M.R. Salavatipour, A bound on the chromatic number of the square of a planar graph, J. Combin. Theory (B) 94 (2005) 189--213, doi: 10.1016/j.jctb.2004.12.005. |
[27] | M. Montassier and A. Raspaud, A note on 2-facial coloring of plane graphs, Inform. Process. Lett. 98 (2006) 235--241, doi: 10.1016/j.ipl.2006.02.013. |
[28] | D.P. Sanders and Y. Zhao, On total 9-colouring planar graphs of maximum degree seven, J. Graph Theory 31 (1999) 67--73, doi: 10.1002/(SICI)1097-0118(199905)31:1<67::AID-JGT6>3.0.CO;2-C. |
[29] | V.G. Vizing, On an estimate of the chromatic index of a p-graph, Diskret. Analiz 3 (1964) 25--30 (in Russian). |
[30] | V.G. Vizing, Critical graphs with given chromatic index, Metody Diskret. Analiz 5 (1965) 9--17 (in Russian). |
[31] | G. Wegner, Graphs with given diameter and a coloring problem, Technical Report (University of Dortmund, Germany, 1977). |
[32] | D.B. West, Strong edge-coloring (Open Problems---Graph Theory and Combinatorics, http://www.math.uiuc.edu/∼ west/openp/strongedge.html, 2003). |
[33] | L. Zhang, Every planar graph with maximum degree 7 is of class 1, Graphs Combin. 16 (2000) 467--495, doi: 10.1007/s003730070009. |
Received 4 November 2011
Revised 20 September 2012
Accepted 20 September 2012
Close