PRECISE UPPER BOUND FOR THE STRONG EDGE CHROMATIC NUMBER OF SPARSE PLANAR GRAPHS

Oleg V. Borodin ${ }^{1}$
Institute of Mathematics
Siberian Branch of the Russian Academy of Sciences and
Novosibirsk State University, Novosibirsk, 630090, Russia
e-mail: brdnoleg@math.nsc.ru
AND
Anna O. Ivanova ${ }^{2}$
Institute of Mathematics of Ammosov North-Eastern Federal University
Yakutsk, 677891, Russia
e-mail: shmgnanna@mail.ru

Abstract

We prove that every planar graph with maximum degree Δ is strong edge $(2 \Delta-1)$-colorable if its girth is at least $40\left\lfloor\frac{\Delta}{2}\right\rfloor+1$. The bound $2 \Delta-1$ is reached at any graph that has two adjacent vertices of degree Δ.

Keywords: planar graph, edge coloring, 2-distance coloring, strong edgecoloring.

2010 Mathematics Subject Classification: 05C15.

[^0]
1. Introduction

By a graph we mean a non-oriented graph without loops and multiple edges. By $V(G), E(G), \Delta(G)$, and $g(G)$ we denote the sets of vertices and edges, maximum degree, and girth (i.e., the smallest length of a cycle) of a graph G, respectively. (We will drop the argument when the graph is clear from context.)

By the celebrated Vizing's Edge Coloring Theorem [29], each simple graph (not necessarily planar) has $\chi_{e} \leq \Delta+1$, where χ_{e} is its edge chromatic number. Using strong properties of graphs critical w.r.t. edge coloring, Vizing [30] proved that each planar graph with $\Delta \geq 8$ has $\chi_{e}=\Delta$. Sanders and Zhao [28] and, independently, Zhang [33] proved that $\chi_{e}=7$ if $\Delta=7$.

A lot of research is devoted to the vertex 2-distance coloring of planar graphs.
Definition. A coloring $\varphi: V(G) \rightarrow\{1,2, \ldots, k\}$ of G is 2-distance if any two vertices at distance at most two from each other get different colors. The minimum number of colors in 2-distance colorings of G is its 2-distance chromatic number, denoted by $\chi_{2}(G)$.

The problem of 2-distance coloring of vertices arises in applications; in particular, it is one of the main models in the mobile phoning. In graph theory there is an old (1977) conjecture of Wegner [31] that $\chi_{2} \leq\left\lfloor\frac{3}{2} \Delta\right\rfloor+1$ for any planar graph with $\Delta \geq 8$ (see also Jensen and Toft's monograph [24]).

The following upper bounds have been established: $\left\lfloor\frac{9 \Delta}{5}\right\rfloor+2$ for $\Delta \geq 749$ by Agnarsson and Halldorsson [1] and $\left\lceil\frac{9 \Delta}{5}\right\rceil+1$ for $\Delta \geq 47$ by Borodin, Broersma, Glebov, and van den Heuvel [3, 4]. Molloy and Salavatipour [25, 26] proved $\left\lceil\frac{5 \Delta}{3}\right\rceil+78$ for all Δ and $\left\lceil\frac{5 \Delta}{3}\right\rceil+25$ for $\Delta \geq 241$. Havet et. al. [19] gave a proof sketch of $\frac{3}{2} \Delta(1+o(1))$; a full text can be found in [20].

In $[5,10]$ we give sufficient conditions (in terms of g and Δ) for the 2-distance chromatic number of a planar graph to equal the trivial lower bound $\Delta+1$. In particular, we determine the least g such that $\chi_{2}=\Delta+1$ if Δ is large enough (depending on g) to be equal to seven. Constructions of planar graphs with $g=6$ and $\chi_{2}=\Delta+2$ are given in $[5,15]$.

Dvořák, Kràl, Nejedlỳ, and Škrekovski [15] proved that every planar graph with $\Delta \geq 8821$ and $g \geq 6$ has $\chi_{2} \leq \Delta+2$, and Borodin and Ivanova [6, 7] weakened the restriction on Δ to 18 .

Borodin, Ivanova, and Neustroeva [11, 12] proved that $\chi_{2}=\Delta+1$ whenever $\Delta \geq 31$ for planar graphs of girth six with the additional assumption that each edge is incident with a vertex of degree two.

Ivanova [22] improved the results in $[5,10]$ for $\Delta \geq 5$ as follows.
Theorem 1. If G is a planar graph, then $\chi_{2}(G)=\Delta+1$ in each of the cases: $\Delta \geq 16, g=7 ; \Delta \geq 10,8 \leq g \leq 9 ; \Delta \geq 6,10 \leq g \leq 11 ; \Delta=5, g \geq 12$.

A lot of attention is paid to coloring graphs with $\Delta=3$ (called subcubic). For such planar graphs Dvořák, Skrekovski, and Tancer [16] proved that $\chi_{2}=4$ if $g \geq 24$ (i.e., they independently obtained a result in [10]) and $\chi_{2} \leq 5$ if $g \geq 14$. The second of these results was also obtained by Montassier and Raspaud [27], which was improved by Ivanova and Solov'eva [23] and Havet [18] to $g \geq 13$ and by Borodin and Ivanova [9] to $g \geq 12$. Borodin and Ivanova [8] proved $\chi_{2}=4$ if $g \geq 22$, and Cranston and Kim [14] proved $\chi_{2} \leq 6$ for $g \geq 9$.

In 1985, Erdős and Nešetřil introduced the edge analogue of 2-distance coloring into consideration.

Definition. An edge coloring $\varphi: E(G) \rightarrow\{1,2, \ldots, k\}$ of G is strong if any two edges get different colors if they are adjacent (i.e., have a common end vertex) or have a common adjacent edge. The minimum number of colors in strong edge-colorings of G is its strong edge chromatic number, denoted by $\chi_{2}^{e}(G)$.
They conjectured that $\chi_{2}^{e} \leq \frac{5}{4} \Delta^{2}$ for Δ even and $\chi_{2}^{e} \leq \frac{1}{4}\left(5 \Delta^{2}-2 \Delta+1\right)$ for Δ odd; they gave a construction showing that this number is necessary. Andersen proved this conjecture for the case $\Delta=3$ [2]. For $\Delta=4$, the conjectured bound is 20 . Horák [21] proved $\chi_{2}^{e} \leq 23$, which bound was strengthened by Cranston [13] to 22. For other related results, we refer the reader to a brief survey by West [32] and a paper by Faudree et al. [17].

Not so much is known about the strong edge chromatic number of planar graphs. It is easy to see that for $\Delta=2$ there are graphs with $\chi_{2}^{e}=4$ and arbitrarily large girth. Indeed, to strong edge color the cycle $C_{3 k}$ it suffices three colors, while for $C_{3 k+1}$ and $C_{3 k+2}$ we need at least four colors, and, moreover, C_{5} has $\chi_{2}^{e}\left(C_{5}\right)=5$.

Clearly, each graph with two adjacent Δ-vertices has $\chi_{2}^{e} \geq 2 \Delta-1$. The purpose of our paper is to establish a precise upper bound, which is $2 \Delta-1$, for the strong edge chromatic number of sufficiently sparse planar graphs.

Theorem 2. Each planar graph G with maximum degree $\Delta \geq 3$ and $g(G) \geq$ $40\left\lfloor\frac{\Delta}{2}\right\rfloor+1$ has $\chi_{2}^{e}(G) \leq 2 \Delta-1$.
Problem 3. Give precise upper bound for $\chi_{2}^{e}(G)$ of a planar graph G in terms of $g(G)$ and $\Delta(G)$.

Problem 4. Is every planar graph with large enough girth (depending on Δ) strong edge ($2 \Delta-1$)-choosable for each $\Delta \geq 3$?

2. Proof of Theorem 2

The main work in the proof is to show that a minimal counterexample cannot contain a long path of Δ-vertices, each with $\Delta-2$ pendant edges. We first prove
this when $\Delta=3$, and later handle the general case $\Delta \geq 4$. To complete the proof by contradiction, we use a short argument based on Euler's formula to show that every planar graph with girth at least $40\left\lfloor\frac{\Delta}{2}\right\rfloor+1$ must contain such a long path of Δ-vertices.

Now we proceed to the formal proof. Among all counterexamples to Theorem 2 , we choose a counterexample with the minimum number of 2^{+}-vertices (i.e., those of degree at least two). To each 2^{+}-vertex v, we add $\Delta-d(v)$ pendant edges. The minimum counterexample G obtained has vertices only of degree 1 and Δ. Without loss of generality, we can assume that G is connected.

Lemma 5. G has no Δ-vertex adjacent to $\Delta-1$ pendant vertices.
Proof. Delete all pendant vertices at such a Δ-vertex. Since the graph obtained has fewer Δ-vertices, it can be colored, and its coloring can be extended to G because each uncolored edge has at most $2 \Delta-2$ restrictions on the choice of color.

Definition. A t-caterpillar $C\left[v_{0}, v_{t+1}\right]$ consists of a path $v_{0} v_{1} \cdots v_{t+1}$, where each $v_{i}, 1 \leq i \leq t$, is incident with $\Delta-2$ pendant edges $e_{i, j}, 1 \leq j \leq \Delta-2$ (see Figure 1). The edges incident with v_{0} other than $v_{0} v_{1}$ are denoted $e_{0, j}, 1 \leq j \leq$ $\Delta-1$.

Figure 1. Caterpillar $C\left[v_{0}, v_{t+1}\right]$.

2.1. Subcubic graphs

Proposition 6. If $\Delta(G)=3$, then G has no 8-caterpillar.
Proof. Suppose G contains $C\left[v_{0}, v_{9}\right]$ (see Figure 2). We delete v_{2}, \ldots, v_{7} and all pendant vertices adjacent to v_{1}, \ldots, v_{8}. By the minimality of G, we have a coloring c of the graph obtained. Without loss of generality, we can assume that $c\left(v_{0} v_{1}\right)=3$ and $\left\{c\left(e_{0,1}\right), c\left(e_{0,2}\right)\right\}=\{1,2\}$. Also, let $c\left(v_{8} v_{9}\right)=\alpha_{3}$, and denote the colors of the other two edges at v_{9} by α_{1} and α_{2}.

Note that the five edges at any two adjacent Δ-vertices should be colored pairwise differently. Hence, in any extension of c we should have $\left\{c\left(e_{1,1}\right), c\left(v_{1} v_{2}\right)\right\}=$ $\{4,5\},\left\{c\left(e_{2,1}\right), c\left(v_{2} v_{3}\right)\right\}=\{1,2\}$, and $\left\{c\left(e_{3,1}\right), c\left(v_{3} v_{4}\right)\right\} \subseteq\{3,4,5\}$. Similar conditions should hold at vertices v_{8}, v_{7}, v_{6}, and v_{5} (see Figure 2).

Figure 2. Reducing $C\left[v_{0}, v_{9}\right]$ for $\Delta=3$.
It is not hard to check that the problem of extending c to the uncolored edges is reduced to coloring edges $e_{3,1}, v_{3} v_{4}, e_{4,1}, v_{4} v_{5}, e_{5,1}, v_{5} v_{6}, e_{6,1}$ so that the following conditions (V3)-(V6) are satisfied:
(V3) $3 \in\left\{c\left(e_{3,1}\right), c\left(v_{3} v_{4}\right)\right\}$;
(V4) $\left\{c\left(e_{4,1}\right), c\left(v_{4} v_{5}\right)\right\} \neq\{1,2\}$;
(V5) $\left\{c\left(v_{4} v_{5}\right), c\left(e_{5,1}\right)\right\} \neq\left\{\alpha_{1}, \alpha_{2}\right\}$;
(V6) $\alpha_{3} \in\left\{c\left(v_{5} v_{6}\right), c\left(e_{6,1}\right)\right\}$.
Indeed, to check (V3) it suffices to note that if $\left\{c\left(e_{3,1}\right), c\left(v_{3} v_{4}\right)\right\}=\{4,5\}$, then we have no color for $v_{1} v_{2}$. Similarly, if $\left\{c\left(e_{4,1}\right), c\left(v_{4} v_{5}\right)\right\}=\{1,2\}$, then it is impossible to color $v_{2} v_{3}$, which proves (V4) (see Figure 2). The same is true for (V5) and (V6).

Note also that if $e_{3,1}, v_{3} v_{4}, e_{4,1}, v_{4} v_{5}, e_{5,1}, v_{5} v_{6}, e_{6,1}$ are colored according to (V3)-(V6), then we can color the uncolored edges in this order: $v_{2} v_{3}, e_{2,1}, v_{1} v_{2}$, $e_{1,1}, v_{6} v_{7}, e_{7,1}, v_{7} v_{8}$, and $e_{8,1}$.

Put $\left\{\alpha_{4}, \alpha_{5}\right\}=\{1, \ldots, 5\} \backslash\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$. Coloring the seven "central" uncolored edges is split into three cases: by the symmetry between colors 1 and 2 on the one hand, and between 4 and 5 on the other hand, we can assume that $\alpha_{3} \in\{1,3,5\}$. Note that all the conditions (V3)-(V6) are satisfied in the proofs obtained for each case below.

Case 1. $\alpha_{3}=1$. Put $c\left(e_{6,1}\right)=c\left(e_{4,1}\right)=1, c\left(e_{5,1}\right)=2$. If $3 \in\left\{\alpha_{4}, \alpha_{5}\right\}$ then we put $c\left(e_{3,1}\right)=c\left(v_{5} v_{6}\right)=3$. Now put $c\left(v_{4} v_{5}\right)=4$ if $\left\{\alpha_{1}, \alpha_{2}\right\}=\{2,5\}$; otherwise, we put $c\left(v_{4} v_{5}\right)=5$. Finally, we put $c\left(v_{3} v_{4}\right) \in\{4,5\}-c\left(v_{4} v_{5}\right)$. If $3 \notin\left\{\alpha_{4}, \alpha_{5}\right\}$ then we can put $c\left(e_{3,1}\right)=c\left(v_{5} v_{6}\right) \geq 4, c\left(v_{3} v_{4}\right)=3$, and $c\left(v_{4} v_{5}\right) \in\{4,5\}-c\left(v_{5} v_{6}\right)$.

Case 2. $\alpha_{3}=3$. Put $c\left(e_{3,1}\right)=c\left(v_{5} v_{6}\right)=3$ and $c\left(e_{5,1}\right)=2$. If $\left\{\alpha_{4}, \alpha_{5}\right\}=$ $\{1,2\}$ then it suffices to put $c\left(e_{4,1}\right)=c\left(e_{6,1}\right)=1$. Now without loss of generality, we can assume that $4 \in\left\{\alpha_{4}, \alpha_{5}\right\}$; then we put $c\left(v_{3} v_{4}\right)=c\left(e_{61}\right)=4$. Finally, we put $c\left(v_{4} v_{5}\right)=5$ if $5 \notin\left\{\alpha_{1}, \alpha_{2}\right\}$ and $c\left(v_{4} v_{5}\right)=1$ otherwise.

Case 3. $\alpha_{3}=5$. We put $c\left(e_{3,1}\right)=c\left(v_{5} v_{6}\right)=5$ and $c\left(v_{3} v_{4}\right)=3$. If $3 \in$ $\left\{\alpha_{4}, \alpha_{5}\right\}$, then we put $c\left(e_{6,1}\right)=3$ and further put $c\left(v_{4} v_{5}\right)=4$ if $4 \notin\left\{\alpha_{1}, \alpha_{2}\right\}$ and $c\left(e_{4,1}\right)=4$ otherwise. If $3 \notin\left\{\alpha_{4}, \alpha_{5}\right\}$, i.e. $3 \in\left\{\alpha_{1}, \alpha_{2}\right\}$ and $\{1,2\} \cap\left\{\alpha_{4}, \alpha_{5}\right\} \neq$ \varnothing, then we can assume by symmetry that $1 \in\left\{\alpha_{4}, \alpha_{5}\right\}$, and it suffices to put $c\left(e_{6,1}\right)=c\left(e_{4,1}\right)=1, c\left(e_{5,1}\right)=2$, and $c\left(v_{4} v_{5}\right)=4$.

We can rewrite Proposition 6 as follows:
Lemma 7. For $\Delta=3$, suppose that $c\left(v_{0} v_{1}\right)=3$ and $\left\{c\left(e_{0,1}\right), c\left(e_{0,2}\right)\right\}=\{1,2\}$; then for every three colors α, β, and γ we can color the caterpillar $C\left[v_{0}, v_{8}\right]$ so that $c\left(v_{8} v_{9}\right)=\gamma$ and $\left\{c\left(e_{8,1}\right), c\left(v_{7} v_{8}\right)\right\}=\{\alpha, \beta\}$.

Informally speaking, we can 5 -color the caterpillar $C\left[v_{0}, v_{8}\right]$ for arbitrary color assigned to edge $v_{8} v_{9}$ and any two other colors assigned to the pair of edges $\left\{e_{8,1}, v_{7} v_{8}\right\}$. However, we do not claim that we can choose the color of $e_{8,1}$ as we wish.

2.2. Case $\Delta \geq 4$

Proposition 8. If $\Delta(G) \geq 4$, then G has no $8\left\lfloor\frac{\Delta}{2}\right\rfloor$-caterpillar.
Proof. Suppose G contains $C\left[v_{0}, v_{L+1}\right\rfloor$, where $L=8\left\lfloor\frac{\Delta}{2}\right\rfloor$. We delete v_{2}, \ldots, v_{L-1} and all pendant vertices adjacent to v_{1}, \ldots, v_{L}. By the minimality of G, we have a coloring c of the graph obtained.

Without loss of generality, we can assume that $c\left(v_{0} v_{1}\right)=\Delta$ and the other $\Delta-1$ edges at v_{0} are colored with $1,2, \ldots, \Delta-1$. Also, suppose that $c\left(v_{L} v_{L+1}\right)=$ ρ_{Δ}^{\prime} and the other $\Delta-1$ edges at v_{L+1} are colored with $\rho_{1}^{\prime}, \rho_{2}^{\prime}, \ldots, \rho_{\Delta-1}^{\prime}$ (see Figure 3).

Let $\left\{\rho_{1}^{(L)}, \ldots, \rho_{\Delta-1}^{(L)}\right\}=\{1, \ldots, 2 \Delta-1\} \backslash\left\{\rho_{1}^{\prime}, \ldots, \rho_{\Delta}^{\prime}\right\}$. Then we have
$\left\{c\left(v_{L-1} v_{L}\right), c\left(e_{L, 1}\right), \ldots, c\left(e_{L, \Delta-2}\right)\right\}=\left\{\rho_{1}^{(L)}, \ldots, \rho_{\Delta-1}^{(L)}\right\}$, and we put $\rho_{\Delta}^{(L)}=$ $c\left(v_{L} v_{L+1}\right)$.

This obvious equivalence makes it possible to split coloring our $C\left[v_{0}, v_{L+1}\right]$ into manageable pieces of length eight by suitably precoloring neighborhoods of vertices $v_{8 k}$, where $1 \leq k \leq L-1$, as described in lemmas below.

Definition. Colors $1, \ldots, \Delta-1$ are minor, while colors $\Delta+1, \ldots, 2 \Delta-1$ are major.

Figure 3. Shift of the precoloring from v_{L+1} to v_{L} in Proposition 8.
Lemma 9. Let $\Delta \geq 4$. Suppose we have a partial coloring c of $C\left[v_{0}, v_{8}\right]$ such that $c\left(v_{0} v_{1}\right)=\Delta$ and $\left\{c\left(e_{0,1}\right), \ldots, c\left(e_{0, \Delta-1}\right)\right\}=\{1, \ldots, \Delta-1\}$; then for any color set $R=\left\{\rho_{1}, \ldots, \rho_{\Delta}\right\}$ such that at most two of ρ_{i} 's are major there is an extension of c to $C\left[v_{0}, v_{8}\right]$ such that $c\left(v_{8} v_{9}\right)=\rho_{\Delta}$ and $\left\{c\left(v_{7} v_{8}\right), c\left(e_{8,1}\right), \ldots, c\left(e_{8, \Delta-2}\right)\right\}=$ $\left\{\rho_{1}, \ldots, \rho_{\Delta-1}\right\}$, except for the case when ρ_{Δ} is minor, $\Delta \in R$, and R contains precisely two major colors (see Figure 4).

Figure 4. The exception in Lemma 9.
Proof. Since R contains at most two major colors, it follows that it contains at least $\Delta-3$ minor colors. Moreover, R contains $\Delta-3$ minor colors different from ρ_{Δ}. Indeed, this is obvious if R contains at least $\Delta-2$ minor colors. So suppose R contains precisely $\Delta-3$ minor colors. It follows from the assumption of Lemma 9 that the other three elements of R are Δ and two major colors. Due to the exception described in the statement of Lemma 9, we have $\rho_{\Delta} \geq \Delta$, as desired.

Without loss of generality, we can assume that R contains $\Delta-3$ minor colors $R_{m}=\left\{\rho_{1}, \ldots, \rho_{\Delta-3}\right\}$. We put $\left\{c\left(e_{i, 1}\right), \ldots, c\left(e_{i, \Delta-3}\right)\right\}=R_{m}$ for all $i \in\{2,4,6,8\}$ (see Figure 5). Since there are $\Delta-1$ major colors, it follows that there is a set R_{s} of $\Delta-3$ major colors such that $R_{s} \cap R=\varnothing$. For all $i \in\{1,3,5,7\}$, we put $\left\{c\left(e_{i, 1}\right), \ldots, c\left(e_{i, \Delta-3}\right)\right\}=R_{s}$.

Let m_{1} and m_{2} be the two minor colors avoiding R_{m}, and let s_{1} and s_{2} be the two major colors avoiding R_{s}. Note that $\left\{\rho_{\Delta-2}, \rho_{\Delta-1}, \rho_{\Delta}\right\} \subset\left\{m_{1}, m_{2}, \Delta, s_{1}, s_{2}\right\}$ by our construction. So we are in the situation of Lemma 7 (which deals with the case $\Delta=3$) with respect to the yet uncolored edges of $C\left[v_{0}, v_{8}\right]$, where $\left\{m_{1}, m_{2}, \Delta, s_{1}, s_{2}\right\}$ plays the role of $\{1,2,3,4,5\}$. Thus c can be extended to $C\left[v_{0}, v_{8}\right]$ as desired.

Figure 5. Proof in Lemma 9.
By Lemma 9, we can color any caterpillar $C\left[v_{8 k}, v_{8 k+8}\right]$ if its end vertices are precolored the same:

Corollary 10. Let $\Delta \geq 4$, and let $k \geq 1$ be an integer. Suppose c is a partial coloring of $C\left[v_{8 k}, v_{8 k+8}\right]$ such that $c\left(v_{8 k} v_{8 k+1}\right)=c\left(v_{8 k+8} v_{8 k+9}\right)=\rho_{\Delta}$ and $\left\{c\left(v_{8 k-1} v_{8 k}\right)\right.$, $\left.c\left(e_{8 k, 1}\right), \ldots, c\left(e_{8 k, \Delta-2}\right)\right\}=\left\{c\left(v_{8 k+7} v_{8 k+8}\right), c\left(e_{8 k+8,1}\right), \ldots, c\left(e_{8 k+8, \Delta-2}\right)=\left\{\rho_{1}, \ldots\right.\right.$, $\left.\rho_{\Delta-1}\right\}$; then c can be extended to $C\left[v_{8 k}, v_{8 k+8}\right]$.
Clearly, the statement of Corollary 10 is equivalent to the special case of Lemma 9 when $R=\{1, \ldots, \Delta\}$.

Our next lemma easily resolves the exceptional case arising in Lemma 9 .
Lemma 11. Let $\Delta \geq 4$. Suppose we have a partial coloring c of $C\left[v_{0}, v_{16}\right]$ such that $c\left(v_{0} v_{1}\right)=\Delta$ and $\left\{c\left(e_{0,1}\right), \ldots, c\left(e_{0, \Delta-1}\right)\right\}=\{1, \ldots, \Delta-1\}$; then for any color set $R=\left\{\rho_{1}, \ldots, \rho_{\Delta}\right\}$ such that precisely two of ρ_{i} 's are major and $\Delta \in R$ there is an extension of c to $C\left[v_{0}, v_{16}\right]$ in which $c\left(v_{16} v_{17}\right)$ is some minor color from R and $\left\{c\left(v_{15} v_{16}\right), c\left(e_{16,1}\right), \ldots, c\left(e_{16, \Delta-2}\right)\right\}=R-c\left(v_{16} v_{17}\right)$.

Proof. Given R, we define a coloring of edges at the intermediate vertex v_{8} as follows: $c\left(v_{8} v_{9}\right)=\Delta$ and $\left\{c\left(v_{7} v_{8}\right), c\left(e_{8,1}\right), \ldots, c\left(e_{8, \Delta-2}\right)\right\}=R-\Delta$. It follows that this coloring can be extended to $C\left[v_{0}, v_{8}\right]$ by Lemma 9 and to $C\left[v_{8}, v_{16}\right]$ by Corollary 10.

Lemma 12. Let $\Delta \geq 4$, let $k \geq 1$ be an integer, and we have a color set $R=$ $\left\{\rho_{1}, \ldots, \rho_{\Delta}\right\}$ such that at least three of ρ_{i} 's are major. Suppose c is a partial coloring of $C\left[v_{8 k}, v_{8 k+8}\right]$ in which $c\left(v_{8 k+8} v_{8 k+9}\right)=\rho_{\Delta}$ and $\left\{c\left(v_{8 k+7} v_{8 k+8}\right), c\left(e_{8 k+8,1}\right)\right.$, $\left.\ldots, c\left(e_{8 k+8, \Delta-2}\right)\right\}=\left\{\rho_{1}, \ldots, \rho_{\Delta-1}\right\} ;$ then there exists a color set $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{\Delta}\right\}$ such that
(1) Λ contains two fewer major colors than R and contains two more minor colors than R, and
(2) there is an extension of c to $C\left[v_{8 k}, v_{8 k+8}\right]$ such that $c\left(v_{8 k} v_{8 k+1}\right)=\lambda_{\Delta}=\rho_{\Delta}$ and $\left\{\lambda_{1}, \ldots, \lambda_{\Delta-1}\right\}=\left\{c\left(v_{8 k+7} v_{8 k+8}\right), c\left(e_{8 k, 1}\right), \ldots, c\left(e_{8 k, \Delta-2}\right)\right\}$.

Proof. We first put $\lambda_{\Delta}=\rho_{\Delta}$. It follows from the assumption on R that $R-\rho_{\Delta}$ contains at least two major colors, say ρ_{1} and ρ_{2}. Since there are $\Delta-1$ minor colors, it follows that $R-\rho_{\Delta}$ avoids at least two minor colors, say m_{1} and m_{2}. We put $\Lambda=\left\{m_{1}, m_{2}, \rho_{3}, \ldots, \rho_{\Delta}\right\}$.

Now Lemma 9 can be applied to $C\left[v_{8 k}, v_{8 k+8}\right]$ (it does not matter that k is not necessarily zero). Indeed, colors $\left\{m_{1}, m_{2}, \rho_{3}, \ldots, \rho_{\Delta-1}\right\}$ can be regarded as "minor", and ρ_{Δ} is an analog of color Δ. We see that R contains precisely two "major" colors from the viewpoint of Lemma 9 (i.e., they do not appear in Λ), namely, ρ_{1} and ρ_{2}, which are also major in the ordinary sense. Furthermore, R is not an exception for Λ, since $\lambda_{\Delta}=\rho_{\Delta}$.

Finishing the proof of Proposition 8.

We are now able to construct color sets $R^{(8 k)}=\left\{\rho_{1}^{(8 k)}, \ldots, \rho_{\Delta}^{(8 k)}\right\}$, to be precolorings at vertices $v_{8 k}$ of our $C\left[v_{0}, v_{L}\right\rfloor$, for k from $\left\lfloor\frac{\Delta}{2}\right\rfloor-1$ to 1 by induction. (Recall that still $L=8\left\lfloor\frac{\Delta}{2}\right\rfloor$.)
Induction base. We are given a set $R^{(L)}=\left\{\rho_{1}^{(L)}, \ldots, \rho_{\Delta}^{(L)}\right\}$ defined at the beginning of Section 2.2, and we must color the edges incident with v_{L} as follows: $c\left(v_{L} v_{L+1}\right)=\rho_{\Delta}^{(L)}$ and $\left\{c\left(v_{L-1} v_{L}\right), c\left(e_{L, 1}\right), \ldots, c\left(e_{L, \Delta-2}\right)\right\}=\left\{\rho_{1}^{(L)}, \ldots, \rho_{\Delta-1}^{(L)}\right\}$.
Induction Step $(k+1 \rightarrow k)$. We are given a set $R^{(8 k+8)}$, and we must color the edges incident with $v_{8 k+8}$ as follows: $c\left(v_{8 k+8} v_{8 k+9}\right)=\rho_{\Delta}^{(8 k+8)}$ and $\left\{c\left(v_{8 k+7} v_{8 k+8}\right), c\left(e_{8 k+8,1}\right), \ldots, c\left(e_{8 k+8, \Delta-2}\right)\right\}=\left\{\rho_{1}^{(8 k+8)}, \ldots, \rho_{\Delta-1}^{(8 k+8)}\right\}$.

We now construct a set $R^{(8 k)}$ to color the edges incident with $v_{8 k}$ so that $c\left(v_{8 k} v_{8 k+1}\right)=\rho_{\Delta}^{(8 k)},\left\{c\left(v_{8 k-1} v_{8 k}\right), c\left(e_{8 k, 1}\right), \ldots, c\left(e_{8 k, \Delta-2}\right)\right\}=\left\{\rho_{1}^{(8 k)}, \ldots, \rho_{\Delta-1}^{(8 k)}\right\}$, and $C\left[v_{8 k}, v_{8 k+8}\right]$ can be colored.

Case 1. $R^{(8 k+8)}$ contains at least three major colors. We apply Lemma 12. The resulting set $R^{(8 k)}$ has two fewer major colors than $R^{(8 k+8)}$.

Case 2. $R^{(8 k+8)}$ contains at most two major colors. Here, we put $R^{(8 k+8)}=$ $R^{(8 k)}$.

So, we have constructed sets $R^{(8 k)}$ for all $k \geq 1$. By construction, we can color the caterpillar $C\left[v_{8}, v_{L}\right]$ in portions of length eight as described in Lemmas $9,11,12$, and Corollary 10. We are done if we can color caterpillar $C\left[v_{0}, v_{8}\right]$, so suppose we cannot.

Note that then our $R^{(8)}$ contains at most two major colors, for if it contains at least three of them, then $R^{(16)}$ contains at least five (as mentioned in Case 1 above), and so on, and finally, $R^{(L)}$ contains at least $2\left\lfloor\frac{\Delta}{2}\right\rfloor+1 \geq \Delta$ major colors, which is impossible.

So, $R^{(8)}$ is an exceptional set described in Lemma 9, which means that $\rho_{\Delta}^{(8)}$ is minor, $R^{(8)}$ contains Δ and precisely two major colors. Let us prove that $R^{(16)}=R^{(8)}$, i.e., $R^{(8)}$ was obtained from $R^{(16)}$ as in Case 2 above. Indeed, otherwise the argument in the previous paragraph shows that $R^{(L)}$ contains at least $2\left\lfloor\frac{\Delta}{2}\right\rfloor \geq \Delta-1$ major colors, which is possible only if Δ is odd. However, we should also have $\rho_{\Delta}^{(L)}=\cdots=\rho_{\Delta}^{(8)} \leq \Delta-1$ (by (2) in Lemma 12) and $\Delta \in R^{(8 k)}$ whenever $1 \leq k \leq\left\lfloor\frac{\Delta}{2}\right\rfloor$ (by (1) in Lemma 12). This implies that $R^{(L)}$ contains
Δ, one minor color $\left(\rho_{\Delta}^{(L)}=\rho_{\Delta}^{(8)}\right)$, and all $\Delta-1$ major colors, which is impossible since $\left|R^{(L)}\right|=\Delta$.

Now we delete this invalid set $R^{(8)}$ and get in the situation of Lemma 11. Thus, we can color the caterpillar $C\left[v_{0}, v_{16}\right]$ in addition to the already colored $C\left[v_{16}, v_{L}\right]$. This completes the proof of Proposition 8.

Completing the proof of Theorem 2.

So, G may have only $\leq\left(8\left\lfloor\frac{\Delta}{2}\right\rfloor-1\right)$-caterpillars. We delete all pendant vertices to obtain graph G^{\prime}. By Lemma 5, G^{\prime} has no pendant vertices. Now contract all k-threads, when $k \geq 1$, of G^{\prime} (i.e., paths consisting of k vertices of degree 2) to edges.

Euler's formula $|V|-|E|+|F|=2$ for the pseudograph G^{*} obtained can be rewritten as $(4|E|-6|V|)+(2|E|-6|F|)=-12$, where F is a set of faces of G^{*}. Hence,

$$
\sum_{v \in V}(2 d(v)-6)+\sum_{f \in F}(r(f)-6)<0
$$

where $d(v)$ is the degree of vertex v, and $r(f)$ is the size of face f. Since the minimum degree of G^{*} is at least 3 , it follows that there is a face f of size at most 5 in G^{*}. Restore all 2-vertices of contracted k-threads; then each edge of f becomes a path of at most $8\left\lfloor\frac{\Delta}{2}\right\rfloor$ edges, which implies that $r(f) \leq 40\left\lfloor\frac{\Delta}{2}\right\rfloor$ in G, contrary to the assumption on $g(G)$. Theorem 2 is proved.

References

[1] G. Agnarsson and M.M. Halldorsson, Coloring powers of planar graphs, SIAM J. Discrete Math. 16 (2003) 651-662. doi:10.1137/S0895480100367950
[2] L.D. Andersen, The strong chromatic index of a cubic graph is at most 10, Discrete Math. 108 (1992) 231-252. doi:10.1016/0012-365X(92)90678-9
[3] O.V. Borodin, H.J. Broersma, A.N. Glebov and J. van den Heuvel, The minimum degree and chromatic number of the square of a planar graph, Diskretn. Anal. Issled. Oper. 8 (2001) 9-33 (in Russian).
[4] O.V. Borodin, H.J. Broersma, A.N. Glebov and J. van den Heuvel The structure of plane triangulations in terms of stars and bunches, Diskretn. Anal. Issled. Oper. 8 (2001) 15-39 (in Russian).
[5] O.V. Borodin, A.N. Glebov, A.O. Ivanova, T.K. Neustroeva and V.A. Tashkinov, Sufficient conditions for the 2-distance $(\Delta+1)$-colorability of plane graphs, Sib. Elektron. Mat. Izv. 1 (2004) 129-141 (in Russian).
[6] O.V. Borodin and A.O. Ivanova, 2-distance $(\Delta+2)$-coloring of planar graphs with girth six and $\Delta \geq 18$, Discrete Math. 309 (2009) 6496-6502. doi:10.1016/j.disc.2009.06.029

Precise Upper Bound for the Strong Edge Chromatic Number ... 769

[7] O.V. Borodin and A.O. Ivanova, List 2-distance $(\Delta+2)$-coloring of planar graphs with girth six, European J. Combin. 30 (2009) 1257-1262. doi:10.1016/j.ejc.2008.12.019
[8] O.V. Borodin and A.O. Ivanova, 2-distance 4-colorability of planar subcubic graphs with girth at least 22, Discuss. Math. Graph Theory 32 (2012) 141-151. doi:10.7151/dmgt. 1592
[9] O.V. Borodin and A.O. Ivanova, List 2-facial 5-colorability of plane graphs with girth at least 12, Discrete Math. 312 (2012) 306-314. doi:10.1016/j.disc.2011.09.018
[10] O.V. Borodin, A.O. Ivanova, and T.K. Neustroeva, 2-distance coloring of sparse plane graphs, Sib. Elektron. Mat. Izv. 1 (2004) 76-90 (in Russian).
[11] O.V. Borodin, A.O. Ivanova and T.K. Neustroeva, Sufficient conditions for 2distance $(\Delta+1)$-colorability of planar graphs of girth 6 , Diskretn. Anal. Issled. Oper. 12(3) (2005) 32-47 (in Russian).
[12] O.V. Borodin, A.O. Ivanova and T.K. Neustroeva, Sufficient conditions for the minimum 2-distance colorability of planar graphs with girth 6, Sib. Elektron. Mat. Izv. 3 (2006) 441-450 (in Russian).
[13] D.W. Cranston, Strong edge-coloring of graphs with maximum degree 4 using 22 colors, Discrete Math. 306 (2006) 2772-2778. doi:10.1016/j.disc.2006.03.053
[14] D.W. Cranston and S.-J. Kim, List-coloring the square of a subcubic graph, J. Graph Theory 57 (2008) 65-87. doi:10.1002/jgt. 20273
[15] Z. Dvořák, D. Kràl, P. Nejedlý and R. Škrekovski, Coloring squares of planar graphs with girth six, European J. Combin. 29 (2008) 838-849. doi:10.1016/j.ejc.2007.11.005
[16] Z. Dvořák, R. Škrekovski and M. Tancer, List-coloring squares of sparse subcubic graphs, SIAM J. Discrete Math. 22 (2008) 139-159. doi:10.1137/050634049
[17] R.J. Faudree, A. Gyárfás, R.H. Schelp and Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205-211. doi:10.1016/j.disc.2007.12.100
[18] F. Havet, Choosability of the square of planar subcubic graphs with large girth, Discrete Math. 309 (2009) 3353-3563.
[19] F. Havet, J. van den Heuvel, C. McDiarmid and B. Reed, List colouring squares of planar graphs, European Conference on Combinatorics, Graph Theory and Applications, Eurocomb 2007 (Sevilla, Spain, September, 2007) www-sop.inria.fr/members/Frederic.Havet/habilitation/ext-abstr.pdf
[20] F. Havet, J. van den Heuvel, C. McDiarmid and B. Reed, List colouring squares of planar graphs, INRIA Research Report no. RR-6586 (2008). http://hal.inria.fr/inria-00303303/
[21] P. Horák, The strong chromatic index of graphs with maximum degree four, Contemp. Methods in Graph Theory (1990) 399-403.
[22] A.O. Ivanova, List 2-distance $(\Delta+1)$-coloring of planar graphs with girth at least 7, Diskretn. Anal. Issled. Oper. 17(5) (2010) 22-36 (in Russian).
[23] A.O. Ivanova and A.S. Solov'eva, 2-Distance ($\Delta+2$)-coloring of sparse planar graphs with $\Delta=3$, Mathematical Notes of Yakutsk University 16(2) (2009) 32-41(in Russian).
[24] T. Jensen and B. Toft, Graph Coloring Problems (New York: John Willey \& Sons, 1995).
[25] M. Molloy and M.R. Salavatipour, Frequency channel assignment on planar networks, in: LNCS, vol. 2461, R.H. Mohring and R. Raman (Eds.)(Springer 2002) 736-747.
doi:10.1007/3-540-45749-6_64
[26] M. Molloy and M.R. Salavatipour, A bound on the chromatic number of the square of a planar graph, J. Combin. Theory (B) 94 (2005) 189-213.
doi:10.1016/j.jctb.2004.12.005
[27] M. Montassier and A. Raspaud, A note on 2-facial coloring of plane graphs, Inform. Process. Lett. 98 (2006) 235-241. doi:10.1016/j.ipl.2006.02.013
[28] D.P. Sanders and Y. Zhao, On total 9-colouring planar graphs of maximum degree seven, J. Graph Theory 31 (1999) 67-73.
doi:10.1002/(SICI)1097-0118(199905)31:1〈67::AID-JGT6〉3.0.CO;2-C
[29] V.G. Vizing, On an estimate of the chromatic index of a p-graph, Diskret. Analiz 3 (1964) 25-30 (in Russian).
[30] V.G. Vizing, Critical graphs with given chromatic index, Metody Diskret. Analiz 5 (1965) 9-17 (in Russian).
[31] G. Wegner, Graphs with given diameter and a coloring problem, Technical Report (University of Dortmund, Germany, 1977).
[32] D.B. West, Strong edge-coloring (Open Problems-Graph Theory and Combinatorics, http://www.math.uiuc.edu/~ west/openp/strongedge.html, 2003).
[33] L. Zhang, Every planar graph with maximum degree 7 is of class 1, Graphs Combin. 16 (2000) 467-495.
doi:10.1007/s003730070009
Received 4 November 2011
Revised 20 September 2012
Accepted 20 September 2012

[^0]: ${ }^{1}$ The author was supported by the Ministry of education and science of the Russian Federation (contract number 14.740.11.0868) and by grants 12-01-00631 and 12-01-00448 of the Russian Foundation for Basic Research.
 ${ }^{2}$ The author was supported by grants 12-01-00631 and 12-01-98510 of the Russian Foundation for Basic Research.

