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1. Introduction

By a graph we mean a non-oriented graph without loops and multiple edges. By
V (G), E(G), ∆(G), and g(G) we denote the sets of vertices and edges, maximum
degree, and girth (i.e., the smallest length of a cycle) of a graph G, respectively.
(We will drop the argument when the graph is clear from context.)

By the celebrated Vizing’s Edge Coloring Theorem [29], each simple graph
(not necessarily planar) has χe ≤ ∆+ 1, where χe is its edge chromatic number.
Using strong properties of graphs critical w.r.t. edge coloring, Vizing [30] proved
that each planar graph with ∆ ≥ 8 has χe = ∆. Sanders and Zhao [28] and,
independently, Zhang [33] proved that χe = 7 if ∆ = 7.

A lot of research is devoted to the vertex 2-distance coloring of planar graphs.

Definition. A coloring ϕ : V (G) → {1, 2, . . . , k} of G is 2-distance if any two
vertices at distance at most two from each other get different colors. The min-
imum number of colors in 2-distance colorings of G is its 2-distance chromatic

number, denoted by χ2(G).

The problem of 2-distance coloring of vertices arises in applications; in particular,
it is one of the main models in the mobile phoning. In graph theory there is an
old (1977) conjecture of Wegner [31] that χ2 ≤ ⌊32∆⌋ + 1 for any planar graph
with ∆ ≥ 8 (see also Jensen and Toft’s monograph [24]).

The following upper bounds have been established: ⌊9∆5 ⌋+2 for ∆ ≥ 749 by
Agnarsson and Halldorsson [1] and ⌈9∆5 ⌉ + 1 for ∆ ≥ 47 by Borodin, Broersma,
Glebov, and van den Heuvel [3, 4]. Molloy and Salavatipour [25, 26] proved
⌈5∆3 ⌉ + 78 for all ∆ and ⌈5∆3 ⌉ + 25 for ∆ ≥ 241. Havet et. al. [19] gave a proof
sketch of 3

2∆(1 + o(1)); a full text can be found in [20].

In [5, 10] we give sufficient conditions (in terms of g and ∆) for the 2-distance
chromatic number of a planar graph to equal the trivial lower bound ∆ + 1. In
particular, we determine the least g such that χ2 = ∆ + 1 if ∆ is large enough
(depending on g) to be equal to seven. Constructions of planar graphs with g = 6
and χ2 = ∆+ 2 are given in [5, 15].

Dvořák, Kràl, Nejedlỳ, and Škrekovski [15] proved that every planar graph
with ∆ ≥ 8821 and g ≥ 6 has χ2 ≤ ∆ + 2, and Borodin and Ivanova [6, 7]
weakened the restriction on ∆ to 18.

Borodin, Ivanova, and Neustroeva [11, 12] proved that χ2 = ∆+1 whenever
∆ ≥ 31 for planar graphs of girth six with the additional assumption that each
edge is incident with a vertex of degree two.

Ivanova [22] improved the results in [5, 10] for ∆ ≥ 5 as follows.

Theorem 1. If G is a planar graph, then χ2(G) = ∆ + 1 in each of the cases:

∆ ≥ 16, g = 7; ∆ ≥ 10, 8 ≤ g ≤ 9; ∆ ≥ 6, 10 ≤ g ≤ 11; ∆ = 5, g ≥ 12.
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A lot of attention is paid to coloring graphs with ∆ = 3 (called subcubic). For
such planar graphs Dvořák, Škrekovski, and Tancer [16] proved that χ2 = 4 if
g ≥ 24 (i.e., they independently obtained a result in [10]) and χ2 ≤ 5 if g ≥ 14.
The second of these results was also obtained by Montassier and Raspaud [27],
which was improved by Ivanova and Solov’eva [23] and Havet [18] to g ≥ 13 and
by Borodin and Ivanova [9] to g ≥ 12. Borodin and Ivanova [8] proved χ2 = 4 if
g ≥ 22, and Cranston and Kim [14] proved χ2 ≤ 6 for g ≥ 9.

In 1985, Erdős and Nešetřil introduced the edge analogue of 2-distance col-
oring into consideration.

Definition. An edge coloring ϕ : E(G) → {1, 2, . . . , k} of G is strong if any two
edges get different colors if they are adjacent (i.e., have a common end vertex)
or have a common adjacent edge. The minimum number of colors in strong
edge-colorings of G is its strong edge chromatic number, denoted by χe

2(G).

They conjectured that χe
2 ≤

5
4∆

2 for ∆ even and χe
2 ≤

1
4(5∆

2−2∆+1) for ∆ odd;
they gave a construction showing that this number is necessary. Andersen proved
this conjecture for the case ∆ = 3 [2]. For ∆ = 4, the conjectured bound is 20.
Horák [21] proved χe

2 ≤ 23, which bound was strengthened by Cranston [13] to
22. For other related results, we refer the reader to a brief survey by West [32]
and a paper by Faudree et al. [17].

Not so much is known about the strong edge chromatic number of planar
graphs. It is easy to see that for ∆ = 2 there are graphs with χe

2 = 4 and
arbitrarily large girth. Indeed, to strong edge color the cycle C3k it suffices three
colors, while for C3k+1 and C3k+2 we need at least four colors, and, moreover, C5

has χe
2(C5) = 5.

Clearly, each graph with two adjacent ∆-vertices has χe
2 ≥ 2∆ − 1. The

purpose of our paper is to establish a precise upper bound, which is 2∆− 1, for
the strong edge chromatic number of sufficiently sparse planar graphs.

Theorem 2. Each planar graph G with maximum degree ∆ ≥ 3 and g(G) ≥
40⌊∆2 ⌋+ 1 has χe

2(G) ≤ 2∆− 1.

Problem 3. Give precise upper bound for χe
2(G) of a planar graph G in terms

of g(G) and ∆(G).

Problem 4. Is every planar graph with large enough girth (depending on ∆)
strong edge (2∆− 1)-choosable for each ∆ ≥ 3?

2. Proof of Theorem 2

The main work in the proof is to show that a minimal counterexample cannot
contain a long path of ∆-vertices, each with ∆− 2 pendant edges. We first prove
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this when ∆ = 3, and later handle the general case ∆ ≥ 4. To complete the proof
by contradiction, we use a short argument based on Euler’s formula to show that
every planar graph with girth at least 40⌊∆2 ⌋+ 1 must contain such a long path
of ∆-vertices.

Now we proceed to the formal proof. Among all counterexamples to The-
orem 2, we choose a counterexample with the minimum number of 2+-vertices
(i.e., those of degree at least two). To each 2+-vertex v, we add ∆−d(v) pendant
edges. The minimum counterexample G obtained has vertices only of degree 1
and ∆. Without loss of generality, we can assume that G is connected.

Lemma 5. G has no ∆-vertex adjacent to ∆− 1 pendant vertices.

Proof. Delete all pendant vertices at such a ∆-vertex. Since the graph obtained
has fewer ∆-vertices, it can be colored, and its coloring can be extended to G
because each uncolored edge has at most 2∆ − 2 restrictions on the choice of
color.

Definition. A t-caterpillar C[v0, vt+1] consists of a path v0v1 · · · vt+1, where each
vi, 1 ≤ i ≤ t, is incident with ∆ − 2 pendant edges ei,j , 1 ≤ j ≤ ∆ − 2 (see
Figure 1). The edges incident with v0 other than v0v1 are denoted e0,j , 1 ≤ j ≤
∆− 1.

q q q q q q

�
�
�

q q q
q
q
q

q
q
q

c c cc

s ss s
v0 v1 vt vt+1

e0,1

e0,∆−1
e1,1 e1,∆−2 et,1 et,∆−2

Figure 1. Caterpillar C[v0, vt+1].

2.1. Subcubic graphs

Proposition 6. If ∆(G) = 3, then G has no 8-caterpillar.

Proof. Suppose G contains C[v0, v9] (see Figure 2). We delete v2, . . . , v7 and
all pendant vertices adjacent to v1, . . . , v8. By the minimality of G, we have a
coloring c of the graph obtained. Without loss of generality, we can assume that
c(v0v1) = 3 and {c(e0,1), c(e0,2)} = {1, 2}. Also, let c(v8v9) = α3, and denote the
colors of the other two edges at v9 by α1 and α2.

Note that the five edges at any two adjacent ∆-vertices should be colored pair-
wise differently. Hence, in any extension of c we should have {c(e1,1), c(v1v2)} =
{4, 5}, {c(e2,1), c(v2v3)} = {1, 2}, and {c(e3,1), c(v3v4)} ⊆ {3, 4, 5}. Similar con-
ditions should hold at vertices v8, v7, v6, and v5 (see Figure 2).
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Figure 2. Reducing C[v0, v9] for ∆ = 3.

It is not hard to check that the problem of extending c to the uncolored edges is
reduced to coloring edges e3,1, v3v4, e4,1, v4v5, e5,1, v5v6, e6,1 so that the following
conditions (V3)–(V6) are satisfied:

(V3) 3 ∈ {c(e3,1), c(v3v4)};

(V4) {c(e4,1), c(v4v5)} 6= {1, 2};

(V5) {c(v4v5), c(e5,1)} 6= {α1, α2};

(V6) α3 ∈ {c(v5v6), c(e6,1)}.

Indeed, to check (V3) it suffices to note that if {c(e3,1), c(v3v4)} = {4, 5}, then we
have no color for v1v2. Similarly, if {c(e4,1), c(v4v5)} = {1, 2}, then it is impossible
to color v2v3, which proves (V4) (see Figure 2). The same is true for (V5) and
(V6).

Note also that if e3,1, v3v4, e4,1, v4v5, e5,1, v5v6, e6,1 are colored according to
(V3)–(V6), then we can color the uncolored edges in this order: v2v3, e2,1, v1v2,
e1,1, v6v7, e7,1, v7v8, and e8,1.

Put {α4, α5} = {1, . . . , 5} \ {α1, α2, α3}. Coloring the seven “central” un-
colored edges is split into three cases: by the symmetry between colors 1 and 2
on the one hand, and between 4 and 5 on the other hand, we can assume that
α3 ∈ {1, 3, 5}. Note that all the conditions (V3)–(V6) are satisfied in the proofs
obtained for each case below.

Case 1. α3 = 1. Put c(e6,1) = c(e4,1) = 1, c(e5,1) = 2. If 3 ∈ {α4, α5} then
we put c(e3,1) = c(v5v6) = 3. Now put c(v4v5) = 4 if {α1, α2} = {2, 5}; otherwise,
we put c(v4v5) = 5. Finally, we put c(v3v4) ∈ {4, 5} − c(v4v5). If 3 /∈ {α4, α5}
then we can put c(e3,1) = c(v5v6) ≥ 4, c(v3v4) = 3, and c(v4v5) ∈ {4, 5}−c(v5v6).
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Case 2. α3 = 3. Put c(e3,1) = c(v5v6) = 3 and c(e5,1) = 2. If {α4, α5} =
{1, 2} then it suffices to put c(e4,1) = c(e6,1) = 1. Now without loss of generality,
we can assume that 4 ∈ {α4, α5}; then we put c(v3v4) = c(e61) = 4. Finally, we
put c(v4v5) = 5 if 5 /∈ {α1, α2} and c(v4v5) = 1 otherwise.

Case 3. α3 = 5. We put c(e3,1) = c(v5v6) = 5 and c(v3v4) = 3. If 3 ∈
{α4, α5}, then we put c(e6,1) = 3 and further put c(v4v5) = 4 if 4 /∈ {α1, α2} and
c(e4,1) = 4 otherwise. If 3 /∈ {α4, α5}, i.e. 3 ∈ {α1, α2} and {1, 2} ∩ {α4, α5} 6=
∅, then we can assume by symmetry that 1 ∈ {α4, α5}, and it suffices to put
c(e6,1) = c(e4,1) = 1, c(e5,1) = 2, and c(v4v5) = 4.

We can rewrite Proposition 6 as follows:

Lemma 7. For ∆ = 3, suppose that c(v0v1) = 3 and {c(e0,1), c(e0,2)} = {1, 2};
then for every three colors α, β, and γ we can color the caterpillar C[v0, v8] so
that c(v8v9) = γ and {c(e8,1), c(v7v8)} = {α, β}.

Informally speaking, we can 5-color the caterpillar C[v0, v8] for arbitrary color
assigned to edge v8v9 and any two other colors assigned to the pair of edges
{e8,1, v7v8}. However, we do not claim that we can choose the color of e8,1 as we
wish.

2.2. Case ∆ ≥ 4

Proposition 8. If ∆(G) ≥ 4, then G has no 8⌊∆2 ⌋-caterpillar.

Proof. Suppose G contains C[v0, vL+1], where L = 8⌊∆2 ⌋. We delete v2, . . . , vL−1

and all pendant vertices adjacent to v1, . . . , vL. By the minimality of G, we have
a coloring c of the graph obtained.

Without loss of generality, we can assume that c(v0v1) = ∆ and the other
∆−1 edges at v0 are colored with 1, 2, . . . ,∆−1. Also, suppose that c(vLvL+1) =
ρ′∆ and the other ∆ − 1 edges at vL+1 are colored with ρ′1, ρ

′
2, . . . , ρ

′
∆−1 (see

Figure 3).

Let {ρ
(L)
1 , . . . , ρ

(L)
∆−1} = {1, . . . , 2∆− 1} \ {ρ′1, . . . , ρ

′
∆}. Then we have

{c(vL−1vL), c(eL,1), . . . , c(eL,∆−2)} = {ρ
(L)
1 , . . . , ρ

(L)
∆−1}, and we put ρ

(L)
∆ =

c(vLvL+1).

This obvious equivalence makes it possible to split coloring our C[v0, vL+1]
into manageable pieces of length eight by suitably precoloring neighborhoods of
vertices v8k, where 1 ≤ k ≤ L− 1, as described in lemmas below.

Definition. Colors 1, . . . ,∆ − 1 are minor, while colors ∆ + 1, . . . , 2∆ − 1 are
major.
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Figure 3. Shift of the precoloring from vL+1 to vL in Proposition 8.

Lemma 9. Let ∆ ≥ 4. Suppose we have a partial coloring c of C[v0, v8] such that

c(v0v1) = ∆ and {c(e0,1), . . . , c(e0,∆−1)} = {1, . . . ,∆− 1}; then for any color set

R = {ρ1, . . . , ρ∆} such that at most two of ρi’s are major there is an extension

of c to C[v0, v8] such that c(v8v9) = ρ∆ and {c(v7v8), c(e8,1), . . . , c(e8,∆−2)} =
{ρ1, . . . , ρ∆−1}, except for the case when ρ∆ is minor, ∆ ∈ R, and R contains

precisely two major colors (see Figure 4).

q q q q q q

q q q
q
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q
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{1, . . . ,∆− 1}

∆

{≥ ∆+ 1,≥ ∆+ 1,∆,≤ ∆− 1, . . . ,≤ ∆− 1}

≤ ∆− 1s
?q

Figure 4. The exception in Lemma 9.

Proof. Since R contains at most two major colors, it follows that it contains
at least ∆ − 3 minor colors. Moreover, R contains ∆ − 3 minor colors different
from ρ∆. Indeed, this is obvious if R contains at least ∆ − 2 minor colors. So
suppose R contains precisely ∆− 3 minor colors. It follows from the assumption
of Lemma 9 that the other three elements of R are ∆ and two major colors. Due
to the exception described in the statement of Lemma 9, we have ρ∆ ≥ ∆, as
desired.

Without loss of generality, we can assume that R contains ∆−3 minor colors
Rm = {ρ1, . . . , ρ∆−3}. We put {c(ei,1), . . . , c(ei,∆−3)} = Rm for all i ∈ {2, 4, 6, 8}
(see Figure 5). Since there are ∆ − 1 major colors, it follows that there is a set
Rs of ∆ − 3 major colors such that Rs ∩ R = ∅. For all i ∈ {1, 3, 5, 7}, we put
{c(ei,1), . . . , c(ei,∆−3)} = Rs.

Let m1 and m2 be the two minor colors avoiding Rm, and let s1 and s2 be the
two major colors avoiding Rs. Note that {ρ∆−2, ρ∆−1, ρ∆} ⊂ {m1,m2,∆, s1, s2}
by our construction. So we are in the situation of Lemma 7 (which deals with
the case ∆ = 3) with respect to the yet uncolored edges of C[v0, v8], where
{m1,m2,∆, s1, s2} plays the role of {1, 2, 3, 4, 5}. Thus c can be extended to
C[v0, v8] as desired.
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Figure 5. Proof in Lemma 9.

By Lemma 9, we can color any caterpillar C[v8k, v8k+8] if its end vertices are
precolored the same:

Corollary 10. Let ∆≥4, and let k≥1 be an integer. Suppose c is a partial colo-

ring of C[v8k, v8k+8] such that c(v8kv8k+1)=c(v8k+8v8k+9)=ρ∆ and {c(v8k−1v8k),
c(e8k,1), . . . , c(e8k,∆−2)} = {c(v8k+7v8k+8), c(e8k+8,1), . . . , c(e8k+8,∆−2)={ρ1, . . . ,
ρ∆−1}; then c can be extended to C[v8k, v8k+8].

Clearly, the statement of Corollary 10 is equivalent to the special case of Lemma 9
when R = {1, . . . ,∆}.

Our next lemma easily resolves the exceptional case arising in Lemma 9.

Lemma 11. Let ∆ ≥ 4. Suppose we have a partial coloring c of C[v0, v16] such
that c(v0v1) = ∆ and {c(e0,1), . . . , c(e0,∆−1)} = {1, . . . ,∆−1}; then for any color

set R = {ρ1, . . . , ρ∆} such that precisely two of ρi’s are major and ∆ ∈ R there

is an extension of c to C[v0, v16] in which c(v16v17) is some minor color from R
and {c(v15v16), c(e16,1), . . . , c(e16,∆−2)} = R− c(v16v17).

Proof. Given R, we define a coloring of edges at the intermediate vertex v8 as
follows: c(v8v9) = ∆ and {c(v7v8), c(e8,1), . . . , c(e8,∆−2)} = R − ∆. It follows
that this coloring can be extended to C[v0, v8] by Lemma 9 and to C[v8, v16] by
Corollary 10.

Lemma 12. Let ∆ ≥ 4, let k ≥ 1 be an integer, and we have a color set R =
{ρ1, . . . , ρ∆} such that at least three of ρi’s are major. Suppose c is a partial color-

ing of C[v8k, v8k+8] in which c(v8k+8v8k+9) = ρ∆ and {c(v8k+7v8k+8), c(e8k+8,1),
. . . , c(e8k+8,∆−2)} = {ρ1, . . . , ρ∆−1}; then there exists a color set Λ ={λ1, . . . , λ∆}
such that

(1) Λ contains two fewer major colors than R and contains two more minor

colors than R, and

(2) there is an extension of c to C[v8k, v8k+8] such that c(v8kv8k+1) = λ∆ = ρ∆
and {λ1, . . . , λ∆−1} = {c(v8k+7v8k+8), c(e8k,1), . . . , c(e8k,∆−2)}.

Proof. We first put λ∆ = ρ∆. It follows from the assumption on R that R− ρ∆
contains at least two major colors, say ρ1 and ρ2. Since there are ∆ − 1 minor
colors, it follows that R − ρ∆ avoids at least two minor colors, say m1 and m2.
We put Λ = {m1,m2, ρ3, . . . , ρ∆}.
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Now Lemma 9 can be applied to C[v8k, v8k+8] (it does not matter that k is
not necessarily zero). Indeed, colors {m1,m2, ρ3, . . . , ρ∆−1} can be regarded as
“minor”, and ρ∆ is an analog of color ∆. We see that R contains precisely two
“major” colors from the viewpoint of Lemma 9 (i.e., they do not appear in Λ),
namely, ρ1 and ρ2, which are also major in the ordinary sense. Furthermore, R
is not an exception for Λ, since λ∆ = ρ∆.

Finishing the proof of Proposition 8.

We are now able to construct color sets R(8k) = {ρ
(8k)
1 , . . . , ρ

(8k)
∆ }, to be precolor-

ings at vertices v8k of our C[v0, vL], for k from ⌊∆2 ⌋−1 to 1 by induction. (Recall
that still L = 8⌊∆2 ⌋.)

Induction base. We are given a set R(L) = {ρ
(L)
1 , . . . , ρ

(L)
∆ } defined at the

beginning of Section 2.2, and we must color the edges incident with vL as follows:

c(vLvL+1) = ρ
(L)
∆ and {c(vL−1vL), c(eL,1), . . . , c(eL,∆−2)} = {ρ

(L)
1 , . . . , ρ

(L)
∆−1}.

Induction step (k + 1 → k). We are given a set R(8k+8), and we must

color the edges incident with v8k+8 as follows: c(v8k+8v8k+9) = ρ
(8k+8)
∆ and

{c(v8k+7v8k+8), c(e8k+8,1), . . . , c(e8k+8,∆−2)} = {ρ
(8k+8)
1 , . . . , ρ

(8k+8)
∆−1 }.

We now construct a set R(8k) to color the edges incident with v8k so that

c(v8kv8k+1) = ρ
(8k)
∆ , {c(v8k−1v8k), c(e8k,1), . . . , c(e8k,∆−2)} = {ρ

(8k)
1 , . . . , ρ

(8k)
∆−1},

and C[v8k, v8k+8] can be colored.

Case 1. R(8k+8) contains at least three major colors. We apply Lemma 12.
The resulting set R(8k) has two fewer major colors than R(8k+8).

Case 2. R(8k+8) contains at most two major colors. Here, we put R(8k+8) =
R(8k).

So, we have constructed sets R(8k) for all k ≥ 1. By construction, we can
color the caterpillar C[v8, vL] in portions of length eight as described in Lem-
mas 9, 11, 12, and Corollary 10. We are done if we can color caterpillar C[v0, v8],
so suppose we cannot.

Note that then our R(8) contains at most two major colors, for if it contains
at least three of them, then R(16) contains at least five (as mentioned in Case 1
above), and so on, and finally, R(L) contains at least 2⌊∆2 ⌋+1 ≥ ∆ major colors,
which is impossible.

So, R(8) is an exceptional set described in Lemma 9, which means that ρ
(8)
∆

is minor, R(8) contains ∆ and precisely two major colors. Let us prove that
R(16) = R(8), i.e., R(8) was obtained from R(16) as in Case 2 above. Indeed,
otherwise the argument in the previous paragraph shows that R(L) contains at
least 2⌊∆2 ⌋ ≥ ∆− 1 major colors, which is possible only if ∆ is odd. However, we

should also have ρ
(L)
∆ = · · · = ρ

(8)
∆ ≤ ∆− 1 (by (2) in Lemma 12) and ∆ ∈ R(8k)

whenever 1 ≤ k ≤ ⌊∆2 ⌋ (by (1) in Lemma 12). This implies that R(L) contains
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∆, one minor color (ρ
(L)
∆ = ρ

(8)
∆ ), and all ∆− 1 major colors, which is impossible

since |R(L)| = ∆.
Now we delete this invalid set R(8) and get in the situation of Lemma 11.

Thus, we can color the caterpillar C[v0, v16] in addition to the already colored
C[v16, vL]. This completes the proof of Proposition 8.

Completing the proof of Theorem 2.

So, G may have only ≤ (8⌊∆2 ⌋ − 1)-caterpillars. We delete all pendant vertices
to obtain graph G′. By Lemma 5, G′ has no pendant vertices. Now contract all
k-threads, when k ≥ 1, of G′ (i.e., paths consisting of k vertices of degree 2) to
edges.

Euler’s formula |V | − |E|+ |F | = 2 for the pseudograph G∗ obtained can be
rewritten as (4|E| − 6|V |) + (2|E| − 6|F |) = −12, where F is a set of faces of G∗.
Hence, ∑

v∈V

(2d(v)− 6) +
∑

f∈F

(r(f)− 6) < 0,

where d(v) is the degree of vertex v, and r(f) is the size of face f . Since the
minimum degree of G∗ is at least 3, it follows that there is a face f of size at
most 5 in G∗. Restore all 2-vertices of contracted k-threads; then each edge of f
becomes a path of at most 8⌊∆2 ⌋ edges, which implies that r(f) ≤ 40⌊∆2 ⌋ in G,
contrary to the assumption on g(G). Theorem 2 is proved.
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