ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory


Discussiones Mathematicae Graph Theory 32(4) (2012) 749-769

Wiener and Vertex PI Indices of the Strong Product of Graphs

K. Pattabiraman and P. Paulraja

Department of Mathematics, Annamalai University
Annamalainagar 608 002, India


The Wiener index of a connected graph G, denoted by W(G), is defined as ½ ∑u,v ∈ V(G)dG(u,v). Similarly, the hyper-Wiener index of a connected graph G, denoted by WW(G), is defined as ½W(G)+¼ ∑u,v ∈ V(G)d2G(u,v). The vertex Padmakar-Ivan (vertex PI) index of a graph G is the sum over all edges uv of G of the number of vertices which are not equidistant from u and v. In this paper, the exact formulae for Wiener, hyper-Wiener and vertex PI indices of the strong product G⊠ Km0,m1, …,mr −1, where Km0,m1, …,mr −1 is the complete multipartite graph with partite sets of sizes m0,m1, …,mr −1, are obtained. Also lower bounds for Wiener and hyper-Wiener indices of strong product of graphs are established.

Keywords: strong product, Wiener index, hyper-Wiener index, vertex PI index

2010 Mathematics Subject Classification: 05C12, 05C76.


[1]A.R. Ashrafi and A. Loghman, PI index of zig-zag polyhex nanotubes, MATCH Commun. Math. Comput. Chem. 55 (2006) 447--452.
[2]A.R. Ashrafi and F. Rezaei, PI index of polyhex nanotori, MATCH Commun. Math. Comput. Chem. 57 (2007) 243--250.
[3]A.R. Ashrafiand and A. Loghman, PI index of armchair polyhex nanotubes, Ars Combin. 80 (2006) 193--199.
[4]R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory ( Springer-Verlag, New York, 2000).
[5]H. Deng, S. Chen and J. Zhang, The PI index of phenylenes, J. Math. Chem. 41 (2007) 63--69, doi: 10.1007/s10910-006-9198-2.
[6]A.A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66 (2001) 211--249, doi: 10.1023/A:1010767517079.
[7]I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry ( Springer-Verlag, Berlin, 1986).
[8]M. Hoji, Z. Luo and E. Vumar, Wiener and vertex PI indices of Kronecker products of graphs, Discrete Appl. Math. 158 (2010) 1848--1855, doi: 10.1016/j.dam.2010.06.009.
[9]W. Imrich and S. Klavžar, Product graphs: Structure and Recognition ( John Wiley, New York, 2000).
[10]W. Imrich, S. Klavžar and D. F. Rall, Topics in Graph Theory: Graphs and Their Cartesian Product ( AK Peters Ltd., Wellesley, Massachusetts, 2008).
[11]P.V. Khadikar, S. Karmarkar and V.K. Agrawal, A novel PI index and its application to QSPR/QSAR studies, J. Chem. Inf. Comput. Sci. 41 (2001) 934--949, doi: 10.1021/ci0003092.
[12]P.V. Khadikar, On a novel structural descriptor PI, Nat. Acad. Sci. Lett. 23 (2000) 113--118.
[13]M.H. Khalifeh, H. Yousefi-Azari and A.R. Ashrafi, The hyper-Wiener index of graph operations, Comput. Math. Appl. 56 (2008) 1402--1407, doi: 10.1016/j.camwa.2008.03.003.
[14]M.H. Khalifeh, H. Yousefi-Azari and A.R. Ashrafi, Vertex and edge PI indices of cartesian product graphs, Discrete Appl. Math. 156 (2008) 1780--1789, doi: 10.1016/j.dam.2007.08.041 .
[15]S. Klavžar, P. Zigert and I. Gutman, An algorithm for the calculation of the hyper-Wiener index of benzenoid hydrocarbons, Comput. Chem. 24 (2000) 229--233, doi: 10.1016/S0097-8485(99)00062-5 .
[16]D.J. Klein, I. Lukovits and I. Gutman, On the definition of the hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci. 35 (1995) 50--52, doi: 10.1021/ci00023a007.
[17]W. Linert, F. Renz, K. Kleestorfer and I. Lukovits, An algorithm for the computation of the hyper-Winer index for the characterization and discrimination of branched acyclic molecules, Comput. Chem. 19 (1995) 395--401, doi: 10.1016/0097-8485(95)00048-W.
[18]I. Lukovits, A Note on a formula for the hyper-Wiener index of some trees, J. Chem. Inf. Comput. Sci. 34 (1994) 1079--1081, doi: 10.1021/ci00021a007.
[19]I. Lukovits, QSPR/QSAR Studies by Molecular Descriptors, (Nova, Huntington, M.V. Diudea (Ed.), 2001) p.31.
[20]D.E. Needham, I.C. Wei and P.G. Seybold, Molecular modeling of the physical properties of alkanes, J. Amer. Chem. Soc. 110 (1988) 4186--4194, doi: 10.1021/ja00221a015.
[21]K. Pattabiraman and P. Paulraja, Wiener index of the tensor product of a path and a cycle, Discuss. Math. Graph Theory 31 (2011) 737--751, doi: 10.7151/dmgt.1576.
[22]K. Pattabiraman and P. Paulraja, On some topological indices of the tensor products of graphs, Discrete Appl. Math. 160 (2012) 267-279, doi: 10.1016/j.dam.2011.10.020 .
[23]K. Pattabiraman and P. Paulraja, Vertex and edge Padmakar-Ivan indices of the generalized hierarchical product of graphs, Discrete Appl. Math. 160 (2012) 1376--1384, doi: 10.1016/j.dam.2012.01.021.
[24]M. Randi'c, Novel molecular descriptor for structure-property studies, Chem. Phys. Lett. 211 (1993) 478--483, doi: 10.1016/0009-2614(93)87094-J.
[25]R. Todeschini and V. Consonni, Handbook of Molecular Descriptors (Wiley-VCH, Weinheim, 2000).
[26]H. Wiener, Structural determination of the paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17--20, doi: 10.1021/ja01193a005.

Received 20 June 2011
Revised 25 January 2012
Accepted 27 January 2012