DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

PDF

Discussiones Mathematicae Graph Theory 32(2) (2012) 255-261
DOI: https://doi.org/10.7151/dmgt.1612

The Laplacian Spectrum of Some Digraphs Obtained from the Wheel

Li Su, Hong-Hai Li and Liu-Rong Zheng

College of Mathematics and Information Science
Jiangxi Normal University
Nanchang, 330022, P.R. China

Abstract

The problem of distinguishing, in terms of graph topology, digraphs with real and partially non-real Laplacian spectra is important for applications. Motivated by the question posed in [R. Agaev, P. Chebotarev, Which digraphs with rings structure are essentially cyclic?, Adv. in Appl. Math. 45 (2010), 232-251], in this paper we completely list the Laplacian eigenvalues of some digraphs obtained from the wheel digraph by deleting some arcs.

Keywords: digraph, Laplacian matrix, eigenvalue, wheel

2010 Mathematics Subject Classification: 05C50, 15A18.

References

[1]R. Agaev and P. Chebotarev, Which digraphs with rings structure are essentially cyclic?, Adv. in Appl. Math. 45 (2010) 232--251, doi: 10.1016/j.aam.2010.01.005.
[2]R. Agaev and P. Chebotarev, On the spectra of nonsymmetric Laplacian matrices, Linear Algebra Appl. 399 (2005) 157--168, doi: 10.1016/j.laa.2004.09.003.
[3]W.N. Anderson and T.D. Morley, Eigenvalues of the Laplacian of a graph, Linear Multilinear Algebra 18 (1985) 141--145, doi: 10.1080/03081088508817681.
[4]J.S. Caughman and J.J.P. Veerman, Kernels of directed graph Laplacians, Electron. J. Combin. 13 (2006) R39.
[5]P. Chebotarev and R. Agaev, Forest matrices around the Laplacian matrix, Linear Algebra Appl. 356 (2002) 253--274, doi: 10.1016/S0024-3795(02)00388-9.
[6]P. Chebotarev and R. Agaev, Coordination in multiagent systems and Laplacian spectra of digraphs, Autom. Remote Control 70 (2009) 469--483, doi: 10.1134/S0005117909030126.
[7]C. Godsil and G. Royle, Algebraic Graph Theory (Springer Verlag, 2001).
[8]A.K. Kelmans, The number of trees in a graph I, Autom. Remote Control 26 (1965) 2118--2129.
[9]R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197/198 (1994) 143--176, doi: 10.1016/0024-3795(94)90486-3.
[10]R. Olfati-Saber, J.A. Fax and R.M. Murray, Consensus and cooperation in networked multi-agent systems, Proc. IEEE 95 (2007) 215--233, doi: 10.1109/JPROC.2006.887293.

Received 10 February 2011
Revised 10 May 2011
Accepted 10 May 2011


Close