Discussiones Mathematicae Graph Theory 31(3) (2011)
559-575
DOI: https://doi.org/10.7151/dmgt.1565
UNIQUE FACTORIZATION THEOREM FOR OBJECT-SYSTEMS
Peter Mihók
Department of Applied Mathematics | Gabriel Semanišin
Institute of Computer Science |
Abstract
The concept of an object-system is a common generalization of simple graph, digraph and hypergraph. In the theory of generalised colourings of graphs, the Unique Factorization Theorem (UFT) for additive induced-hereditary properties of graphs provides an analogy of the well-known Fundamental Theorem of Arithmetics. The purpose of this paper is to present UFT for object-systems. This result generalises known UFT for additive induced-hereditary and hereditary properties of graphs and digraphs. Formal Concept Analysis is applied in the proof.Keywords: object-system, unique factorization, graph, hypergraph, formal concept analysis.
2010 Mathematics Subject Classification: 05C15, 05C75.
References
[1] | A. Bonato, Homomorphism and amalgamation, Discrete Math. 270 (2003) 33-42, doi: 10.1016/S0012-365X(02)00864-6. |
[2] | M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 42-69. |
[3] | M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. |
[4] | I. Broere and J. Bucko, Divisibility in additive hereditary properties and uniquely partitionable graphs, Tatra Mt. Math. Publ. 18 (1999) 79-87. |
[5] | I. Broere, J. Bucko and P. Mihók, Criteria for the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties, Discuss. Math. Graph Theory 22 (2002) 31-37, doi: 10.7151/dmgt.1156. |
[6] | J. Bucko and P. Mihók, On uniquely partitionable systems of objects, Discuss. Math. Graph Theory 26 (2006) 281-289, doi: 10.7151/dmgt.1320. |
[7] | R. Cowen, S.H. Hechler and P. Mihók, Graph coloring compactness theorems equivalent to BPI, Scientia Math. Japonicae 56 (2002) 171-180. |
[8] | A. Farrugia, Uniqueness and complexity in generalised colouring., Ph.D. Thesis, University of Waterloo, April 2003 (available at http://etheses.uwaterloo.ca). |
[9] | A. Farrugia, Vertex-partitioning into fixed additive induced-hereditary properties is NP-hard, Elect. J. Combin. 11 (2004) R46, pp. 9 (electronic). |
[10] | A. Farrugia and R.B. Richter, Unique factorization of additive induced-hereditary properties, Discuss. Math. Graph Theory 24 (2004) 319-343, doi: 10.7151/dmgt.1234. |
[11] | A. Farrugia, P. Mihók, R.B. Richter and G. Semanišin, Factorizations and Characterizations of Induced-Hereditary and Compositive Properties, J. Graph Theory 49 (2005) 11-27, doi: 10.1002/jgt.20062. |
[12] | R. Fraïssé, Sur certains relations qui generalisent l'ordre des nombers rationnels, C.R. Acad. Sci. Paris 237 (1953) 540-542. |
[13] | R. Fraïssé, Theory of Relations (North-Holland, Amsterdam, 1986). |
[14] | B. Ganter and R. Wille, Formal Concept Analysis - Mathematical Foundation (Springer-Verlag Berlin Heidelberg, 1999), doi: 10.1007/978-3-642-59830-2. |
[15] | W. Imrich, P. Mihók and G. Semanišin, A note on the unique factorization theorem for properties of infinite graphs, Stud. Univ. Zilina, Math. Ser. 16 (2003) 51-54. |
[16] | J. Jakubík, On the lattice of additive hereditary properties of finite graphs, Discuss. Math. - General Algebra and Applications 22 (2002) 73-86. |
[17] | T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Publications, New York, 1995). |
[18] | J. Kratochvíl and P. Mihók, Hom-properties are uniquely factorizable into irreducible factors, Discrete Math. 213 (2000) 189-194, doi: 10.1016/S0012-365X(99)00179-X. |
[19] | P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58. |
[20] | P. Mihók, Unique factorization theorem, Discuss. Math. Graph Theory 20 (2000) 143-153, doi: 10.7151/dmgt.1114. |
[21] | P. Mihók, On the lattice of additive hereditary properties of object systems, Tatra Mt. Math. Publ. 30 (2005) 155-161. |
[22] | P. Mihók, G. Semanišin and R. Vasky, Additive and hereditary properties of graphs are uniquely factorizable into irreducible factors, J. Graph Theory 33 (2000) 44-53, doi: 10.1002/(SICI)1097-0118(200001)33:1<44::AID-JGT5>3.0.CO;2-O. |
[23] | P. Mihók and G. Semanišin, Unique Factorization Theorem and Formal Concept Analysis, B. Yahia et al. (Eds.): CLA 2006, LNAI 4923, (Springer-Verlag, Berlin Heidelberg 2008) 231-238. |
[24] | B.C. Pierce, Basic Category Theory for Computer Scientists, Foundations of Computing Series (The MIT Press, Cambridge, Massachusetts 1991). |
[25] | N.W. Sauer, Canonical vertex partitions, Combinatorics, Probability and Computing 12 (2003) 671-704, doi: 10.1017/S0963548303005765. |
[26] | E.R. Scheinerman, On the Structure of Hereditary Classes of Graphs, J. Graph Theory 10 (1986) 545-551, doi: 10.1002/jgt.3190100414 . |
[27] | R. Vasky, Unique factorization theorem for additive induced-hereditary properties of digraphs Studies of the University of Zilina, Mathematical Series 15 (2002) 83-96. |
Received 7 April 2010
Revised 21 August 2010
Accepted 27 August 2010
Close