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Abstract

The concept of an object-system is a common generalization of
simple graph, digraph and hypergraph. In the theory of generalised
colourings of graphs, the Unique Factorization Theorem (UFT) for
additive induced-hereditary properties of graphs provides an analogy of
the well-known Fundamental Theorem of Arithmetics. The purpose of
this paper is to present UFT for object-systems. This result generalises
known UFT for additive induced-hereditary and hereditary properties
of graphs and digraphs. Formal Concept Analysis is applied in the
proof.
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1. Introduction and Motivation

In the previous years a few results related to a factorisation of properties of
various combinatorial structures were presented (see [8, 9, 10, 11, 15, 18, 20,
22, 27]). The methods that were developed have many common features. We
try to extract them and present a common generalisation of these results.
Since the original motivation for our study comes from graph theory, we
start with introducing the concepts from this area.

Let I denotes the class of all finite simple graphs. A graph property P is
any nonempty proper isomorphism closed subclass of I. A graph property is
said to be induced-hereditary if it is closed under taking induced subgraphs
and additive if it is closed under taking disjoint union of graphs (see [2, 3]).
Let P1,P2, . . . ,Pn be graph properties, a vertex (P1,P2, . . . ,Pn)-partition
of a graph G is a partition {V1, V2, . . . , Vn} of V (G) such that each partition
class Vi induces a subgraph G[Vi] of property P i, i = 1, 2, . . . , n.

A graph G is said to be (P1,P2, . . . ,Pn)-partitionable if G has a vertex
(P1,P2, . . . ,Pn)-partition. Let us denote by P1◦P2◦ · · · ◦Pn the set of all
vertex (P1,P2, . . . ,Pn)-partitionable graphs. A property P is said to be
reducible if there exist properties P1,P2 such that P = P1◦P2. Otherwise P
is called irreducible. For example, the propertyO - “to be an edgeless graph”,
related to regular proper colouring, is irreducible and the smallest additive
induced-hereditary reducible property is the class O2 of all bipartite graphs.
The notion of reducible property has been introduced in [19]. The problem
of unique factorization of a reducible induced-hereditary graph property into
induced-hereditary factors was introduced in connection with the study of
reducible graph properties (see [2, 3, 8, 10, 18, 22] and Problem 17.9. in the
[17]). In [22] it is showed that every reducible additive hereditary property
of finite graphs is uniquely factorisable into irreducible additive hereditary
factors. An analogous result was obtained in [10, 20] for additive induced-
hereditary properties of finite graphs. Following [3] let us denote by M

a the
set of all additive induced-hereditary properties of finite graphs. Then UFT
can be stated as follows.
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Theorem 1 (Unique Factorization Theorem—UFT, [10, 20]). Every addi-
tive induced-hereditary property of finite graphs is in M

a uniquely factoris-
able into a finite number of irreducible additive induced-hereditary properties,
up to the order of factors.

The extension of the Unique Factorization Theorem for digraphs have been
presented in [27]. Theorem 1 has several deep applications related to the
existence of uniquely partitionable graphs (see [4, 5]) and consequently the
complexity of generalised colourings. A. Farrugia proved in [9] that if P and
Q are additive induced-hereditary graph properties, then (P ,Q)-colouring
is NP-hard, with the sole exception of graph 2-vertex colouring (the case
where both P and Q are the set O of finite edgeless graphs). Moreover,
(P ,Q)-colouring is NP-complete if and only if P- and Q-recognition are
both in NP. These results show that reducible additive induced-hereditary
properties are rather complicated mathematical structures.

In [6, 21] a general concept of object-systems have been introduced and
some results on the structure of additive hereditary properties of object-
systems and uniquely partitionable objects systems have been presented.
The concept of an object-system is a common generalization of simple graphs,
digraphs and hypergraphs. One can observe that the proofs of UFT for
graphs and digraphs are technically quite complicated. On the other hand,
it is not difficult to notice, that they follow the same idea and they are
rather independent from the considered underlying combinatorial structures
- graphs and digraphs. The aim of this paper is to generalise used methods
and constructions for systems of objects and show that UFT is valid also for
such general mathematical structures. Moreover we provide an application
of Formal Concept Analysis (FCA) which allows us to eliminate some tech-
nical difficulties in the previous proofs. This paper is an extended version
of [23] that shows an application of FCA in the simpler situation — the
domain of graphs.

2. Object-Systems Over a Concrete Category

We shall use the basic elementary notions of category theory following e.g.
[24]. A concrete category C is a collection of objects and arrows called
morphisms, where an object is a set with structure. We shall denote the
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ground-set of the object A by V (A). In our investigation we will always
assume that the objects and their ground-sets are finite and each object has
at least two elements. The morphism between two objects is considered to be
a structure preserving mapping. The examples of concrete categories are e.g.
FinSet of finite sets, Graph of finite graphs, FinPoset of finite partially
ordered sets, with structure preserving mappings, i.e., the homomorphisms
of corresponding structures. We will consider concrete categories C with
isomorphisms i.e., structure preserving bijections between the ground-sets of
objects only. To avoid formal difficulties, in what follows we will assume that
the elements of the finite ground-set V (A) of each object A of C are labeled
by labels taken from a given countable set V (e.g. N) of cardinality ℵ0.
Hence, any considered concrete category C will be small (a category where
objects and arrows are sets, see [24]) and the objects of C are “labeled”
objects. We also assume, that for each object A of C a relabeling of the
elements of V (A) by labels from a set V ∗ ⊂ V yields to a “new” object A∗

with V (A∗) = V ∗ belonging to C and isomorphic to A. This requirement
is quite natural and it is satisfied e.g. if the concrete category C is one of
the above mentioned categories. Let us call categories which satisfies these
requierements wide.

Let C be a wide category. A simple finite (countable) object-system
over category C is an ordered pair S = (V,E), where V = V (S) is a finite
(countable) set (of vertices) and E = E(S) = {A1, A2, . . . , Am} is a finite
(countable) set of objects of C, called the objects of the object-system S.
The ground-set V (Ai) of each object Ai ∈ E is a finite set with at least two
elements (i.e., there are no loops) and V ⊇

⋃m
i=1 V (Ai). The symbols K0

and K1 denotes the null system K0 = (∅, ∅) and the system K1 = ({v}; ∅)
consisting of one isolated element, respectively.

For example, graphs can be viewed as object-systems over the con-
crete category of two-element sets with bijections as arrows; digraphs are
object-systems over the category of ordered pairs; hypergraphs are finite set
systems, etc. Let us remark, that the relational L-structures, introduced by
Fräıssé in [12] (see also [1, 13, 25]), that generalises graphs, digraphs and
k-uniform hypergraphs are object-systems over a category of relations given
by the signature L.

To generalise the results on generalised colourings of graphs to arbitrary
simple object-systems we need to define isomorphism of systems, disjoint
union of systems and induced-subsystems, respectively. We can do this in a
natural way:
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Let S1 = (V1, E1) and S2 = (V2, E2) be two simple object-systems over a
given concrete category C. The object-system S1 is a subobject-system of
S2 if V1 ⊆ V2 and E1 ⊆ E2. The systems S1 and S2 are said to be isomorphic
if there is a pair of mappings:

φ : V1 ←→ V2; ψ : E1 ←→ E2,

such that if ψ(A1i) = A2j then φ/V (A1i) : V (A1i) ←→ V (A2j) is an iso-
morphism of the objects A1i ∈ E1 and A2j ∈ E2 in the category C. The
homomorphism of the systems can be defined in a similar way as object-
preserving mappings. The disjoint union of the systems S1 and S2 is the
system S1 ∪ S2 = (V1 ∪ V2, E1 ∪ E2), where we assume that V1 ∩ V2 = ∅. A
system is said to be connected if it cannot be expressed as a disjoint union
of two systems. By Iω(C), I(C) and Iconn(C) we denote the class sim-
ple countable object-systems, simple finite object-systems and simple finite
connected object-systems over C, respectively.

The subobject-system S[U ] of the object-system S = (V,E) induced by
the set U ⊆ V is the system S[U ] = (U,E[U ]) with objects E([U ]) := {A1i ∈
E|V (A1i) ⊆ U}. S1 is an induced-subsystem of S if it is isomorphic to S[U ]
for some U ⊆ V .

Using these definitions we can define, analogously as for graphs, that an
additive induced-hereditary property of simple object-systems over a category
C is any class of systems closed under isomorphism, induced-subsystems
and disjoint union of systems. Thus a property P of object-systems is any
isomorphism-closed nonempty subclass of Iω(C). It means that while in-
vestigating properties, in principle, we can restrict our considerations to
unlabeled systems. Let us denote by M

a(C) the set of all additive induced-
hereditary properties of simple finite object-systems over a category C. In
the following we shall call simple object-systems over a category C shortly
object-systems.

In [21] it is proved, that the set M a(C) of all additive induced-hereditary
properties of simple finite object-systems over C partially ordered by set
inclusion forms a complete and distributive lattice and the structure of the
lattice M

a(C) is investigated. For a positive integer k and a system S, the
notation k.S is used for the union of k vertex disjoint copies of S. The join
of object-systems S,H is the object-system S+H obtained from the disjoint
union S and H by adding all possible objects of C having vertices belonging
to the union of V (S) and V (H).
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3. Compactness

Let P1,P2, . . . ,Pn be given properties of object-systems. A vertex P1,P2,
. . . ,Pn-colouring (partition) of an object-system S = (V,E) is a partition
(V1, V2, . . . , Vn) of V (every pair of Vi’s has empty intersection and the union
of Vi’s forms V ) such that each colour class Vi induces a subobject-system
S[Vi] having property P i. For convenience, we allow empty partition classes
in the partition sequence. An empty class induces the null object-system
K0 = (∅, ∅). If each of the Pi’s, i = 1, 2, . . . , n, is the property O of being
object-less (i.e., P = {S = (V,E)|E = ∅), we have the well-known proper
vertex n-colouring. An object-system S which have a (P1,P2, . . . ,Pn)-
colouring is called (P1,P2, . . . ,Pn)-colourable, and in such a situation we
say that S has property P1◦P2◦ · · · ◦Pn.

In 1951, de Bruijn and Erdős proved that an infinite graph G is k-
colourable if and only if every finite subgraph of G is k-colourable. An anal-
ogous compactness theorem for generalised colourings of graphs was proved
in [7]. The key concept for the Vertex Colouring Compactness Theorem of
[7] is that of a property of being of finite character. Let P be an prop-
erty of object-systems, P is of finite character if an object-system in Iω(C)
has property P if and only if each its finite induced subobject-system has
property P . It is easy to see that if P is of finite character and an object-
system has property P then so does every induced subobject-system and
thus properties of finite character are induced-hereditary. However not all
induced-hereditary properties are of finite character. Let us also remark that
every property which is hereditary with respect to every subobject-system
(we say simply hereditary) is induced-hereditary as well. The compactness
theorem for (P1,P2, . . . ,Pn)-colourings of graphs, where the Pi’s are of fi-
nite character, have been proved using Rado’s Selection Lemma in [7]. Using
Theorem 3.1 of [7], on can easily see that the Vertex Colouring Compactness
Theorem (VCCT) can be formulated also in the following form:

Theorem 2 (Vertex Colouring Compactness Theorem). Let S be an arbi-
trary object-system in Iω(C) and let P1,P2, . . . ,Pn be properties of object-
systems of finite character. Then S is (P1,P2, . . . ,Pn)-colourable if and only
if every finite induced subobject-system of S is (P1,P2, . . . ,Pn)-colourable.

Let us denote by R = P1◦P2◦ · · · ◦Pn, n ≥ 2 the set of all (P1,P2, . . . ,Pn)-
colourable object-systems. The binary operation ◦ is obviously commutative,
associative on the class of object-system properties and Θ = {K0} is its
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neutral element. The properties Θ, I(C) and Iω(C) are said to be trivial.
A nontrivial property of object-systems P is said to be reducible if there exist
nontrivial object-system properties P1,P2, such that P = P1◦P2; otherwise
P is called irreducible. In what follows each property is considered to be
nontrivial. Let us remark, that using Theorem 2 one can prove UFT for the
class M

ωa of the additive properties of countable graphs of finite character
(see [15]).

4. Hereditary Properties in the Language of FCA

As we already mentioned, it is quite easy to prove that the sets M
a,M ωa,

and M
a(C) of all additive induced-hereditary properties of finite graphs,

graph properties of finite character and properties of object-systems over
C, partially ordered by set inclusion, form complete distributive lattices.
The lattices of hereditary properties have been studied quite extensively,
references may be found in [3, 16, 21]. In this section we shall present a
new approach — Formal Concept Analysis — to study the structure of the
lattice of additive induced-hereditary properties of an object-system.

Formal Concept Analysis (FCA) is a theory of data analysis which iden-
tifies conceptual structures among data sets. It was introduced by R. Wille
in 1982 and since then has grown rapidly (for a comprehensive overview
see [14]). The mathematical lattices that are used in FCA can be inter-
preted as classification systems. Formalised classification systems can be
analysed according to the consistency of their relations. We shall use FCA
in the proof of the Unique Factorization Theorem for reducible properties
of object-systems. In order to proceed we need to introduce some concepts
of FCA according to the book [14].

Definition 1. A formal context K := (O,M, I) consists of two sets O
and M and a relation I between O and M . The elements of O are called
the objects and the elements of M are called the attributes of the formal
context.

For a set A ⊆ O of objects we define

A′ := {m ∈M |gIm for all g ∈ A}.

Analogously, for a set B of attributes we define

B′ := {g ∈ O|gIm for all m ∈ B}.
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A formal concept of the formal context (O,M, I) is a pair (A,B) with
A ⊆ O,B ⊆M,A′ = B and B′ = A.

We call A the extent and B the intent of a formal concept (A,B).
L(O,M, I) denotes the set of all formal concepts of the formal context
(O,M, I).

If (A1, B1) and (A2, B2) are formal concepts of a formal context and
A1 ⊆ A2 (which is equivalent to B2 ⊆ B1), we write (A1, B1) ≤ (A2, B2).

For an object g ∈ O we write γg for the object concept (g′′, g′), where
g′′ = {{g}′}′.

Let us mention that, according to the Basic Theorem on Concept Lattices,
the set L(O,M, I) of all formal concepts of the formal context (O,M, I)
partially ordered by the relation ≤ (see Definition 1) is a complete lattice.

Let us present additive induced-hereditary object-system properties as
formal concepts in a given formal context. Using FCA we can proceed in the
following way: Let us define a formal context (O,M, I) by setting objects to
countable simple object-systems, i.e. O = Iω(C). For each connected finite
simple object-system F ∈ Iconn(C) let us consider an attribute mF : “do
not contain an induced subobject-system isomorphic to F”. Thus SImF

means that the object-system S does not contain any induced subsystem
isomorphic to F . We can immediately observe the following:

Lemma 1. Let O = Iω(C) andM = {mF , F ∈ I
conn(C)}. Then the formal

concepts of the formal context K = (O,M, I) are additive induced-hereditary
properties of finite character and the concept lattice (L(O,M, I),≤) is iso-
morphic to the lattice (M ωa(C),⊆). Moreover, for each formal concept
P = (A,B) there is an object — a countable object-system S ∈ O such
that P = γS = (S′′, S′).

Proof. It is easy to verify that the extent of any formal concept (A,B) of
K forms an additive induced-hereditary property P = A of finite character.
Obviously, each countable object-system S = (V,E) in the formal context
K leads to an “object concept” γS = (S′′, S′). On the other hand, from the
additivity it follows that the disjoint union of all finite object-systems having
a given additive induced-hereditary property P ∈ M

ωa(C) is a countable
infinite object-system K satisfying γK = (P ,Iconn \ P).

In order to characterise additive induced-hereditary properties of finite
graphs, mainly two different approaches were used: a characterization by
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generating sets and/or by minimal forbidden subgraphs (see [3] and [11]).
While the extent A of a formal concept (A,B) ∈ L(O,M, I) is related to
a property of object-systems P , the intent B consists of forbidden con-
nected subobject-systems of P . The set F (P) of minimal forbidden induced
subobject-systems for P consists of minimal elements of the poset (B,⊆) of B
partially ordered by the partial order ”‘to be an induced subobject-system”’.
For a given countable object-system S ∈ Iω let us denote by age(S) the class
of all finite object-systems isomorphic to finite induced subobject-system of
S (see e.g. [25]). Scheinerman in [26] showed, that for each additive induced-
hereditary property P of finite graphs, there is an infinite countable graph
G such that P = age(G). This result is related to Lemma 1. On the other
hand, it is worth to mention that γS = (P , S′) does not imply, in general,
that P = age(S). Let us define a binary relation ∼= on Iω(C) by S1 ∼= S2
whenever γS1 = γS2 in the formal context K, and we say that S1 is congru-
ent with S2 with respect to K. Obviously, ∼= is an equivalence relation on
Iω(C). The aim of the next section is to find appropriate representatives of
congruence classes and to describe their properties.

5. Uniquely Decomposable Object-Systems

LetR be a reducible additive induced-hereditary property of object-systems.
All the previous proofs of UFT are based on a construction of finite uniquely
R-decomposable object-systems that are defined as follows:

Definition 2. For given finite object-systems S1, S2, . . . , Sn, n ≥ 2, denote
by S1 ∗ S2 ∗ · · · ∗ Sn the set of object-systems

{

H ∈ Iω(C) :
n
⋃

i=1

Si ⊆ H ⊆
n
∑

i=1

Si

}

,

where
⋃n

i=1 Si denotes the disjoint union and
∑n

i=1 Si the join of the object-
systems S1, S2, . . . , Sn, respectively. For an object-system S, k ≥ 2, k ⊗ S
stands for the class S ∗ S ∗ · · · ∗ S, with k copies of S.

Let S be an object-system and R be an additive induced-hereditary
property of object-systems. Then we define the R-decomposability number
of S decR(S) = max{n : there exists a partition {V1, V2, . . . , Vn}, Vi 6= ∅, of
V (S) such that for each k ≥ 1, k.S[V1] ∗ k.S[V2] ∗ · · · ∗ k.S[Vn] ⊆ R}. We
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shall call such partition {V1, V2, . . . , Vn} R-decomposition of S. If S 6∈ R
we set decR(S) to zero.

An object-system S is said to be R-decomposable if decR(S) ≥ 2;
otherwise S is R-indecomposable.

An object-system S ∈ P is called P-strict if S∗K1 6⊆ P . The class of all
P-strict object-systems is denoted by S(P). Put dec(R) = min{decR(S) :
S ∈ S(R)}.

An R-strict object-system S with decR(S) = dec(R) = n ≥ 2 is
said to be uniquely R-decomposable if there is exactly one R-partition
{V1, V2, . . . , Vn}, Vi 6= ∅, such that for each k ≥ 1, k.S[V1] ∗ k.S[V2] ∗ · · · ∗
k.S[Vn] ⊆ R. We call the object-systems S[V1], S[V2], . . . , S[Vn] ind-parts
of the uniquely decomposable object-system S.

These notions are motivated by the following observation: Let us suppose
that S ∈ R = P◦Q and let (V1, V2) be a (P ,Q)-partition of S. Then by
additivity of P and Q we have that k.S[V1] ∗ k.S[V2] ⊆ R for every positive
integer k. Thus, if the property R is reducible, every object-system S ∈ R
with at least two vertices is R-decomposable.

In [15, 20] we proved that for any reducible additive induced-hereditary
graph property the converse assertion holds, too. We shall prove that this
is valid also for object-systems, i.e., that an induced-hereditary additive
property R is reducible if and only if all object-systems in R with at least
two vertices are R-decomposable.

Let us show that every object-system S ∈ P is an induced subobject-
system of a P-strict object-system. Obviously for any nontrivial property
there exists an object-system F 6∈ P. For an induced-hereditary property P
we can therefore define f(P) to be the least number of vertices of a forbidden
subobject-system of P, i.e., f(P) = min{|V (F )| : F /∈ P}. Now it is easy to
see, that for every S ∈ P the class S ∗K1 ∗ · · · ∗K1 6⊆ P if the number of the
K1’s is f(P) − 1 which means that if S is not P-strict, then repeating the
operation ∗ with K1’s after less than f(P) steps we will obtain a P-strict
object-system S′ such that S ≤ S′.

To present our main result we need some notions introduced in [10]:

Definition 3. Let d0 = {U1, U2, . . . , Um} be an R-decomposition of an
object-system S ∈ R. An R-decomposition d1 = {V1, V2, . . . , Vn}, n ≥ m of
S respects d0 if no Vi intersects two or more Uj’s; that is each Vi is con-
tained in some Uj . We say that the object-system S∗ ∈ s ⊗ S respects d0
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if S∗ ∈ s.S[U1]∗s.S[U2]∗ · · · ∗s.S[Um]. For an object-system S∗ ∈ s⊗S, de-
note the copies of S by S1, S2, . . . , Ss. Then we say that anR-decomposition
d = {V1, V2, . . . , Vn} of S

∗ respects d0 uniformly whenever for each i there
is a j such that for every k we have Vi ∩ V (Sk) ⊆ Uj . The decomposition of
Sk induced by d is denoted d|Sk.

If S is uniquely R-decomposable, the vertices of its ind-parts respect d0 if its
unique R-decomposition with decR(S) parts respects d0. If S∗ is uniquely
R-decomposable, its ind-parts respect d0 uniformly if:

(a) for some positive integer s, S∗ ∈ s⊗ S;

(b) S∗ respects d0; and

(c) S∗’s unique R-decomposition with decR(S∗) parts respects d0 uni-
formly.

The extension of d0 to S∗ is the decomposition obtained by repeating d0
on each copy of S. If S∗ respects d0, or if it has an R-decomposition that
respects d0 uniformly, then the extension of d0 is also an R-decomposition
of S∗. In particular, S∗ is an object-system in R.

We shall sometimes write Si ∩ Ux (or just Ux when it is clear that we
are referring to Si) to mean the vertices of Si that correspond to Ux, and
S∗ ∩ Ux (or just Sx, when it is clear from the formal context) to mean
S∗[

⋃

i(S
i ∩ Ux)].

Based on the construction given in [20] and a refinement given in [10]
we can prove:

Theorem 3. Let S be an R-strict object-system with decR(S) = dec(R) =
n ≥ 2 and let d0 = {U1, U2, . . . , Um} be a fixed R-decomposition of S. Then
there is a uniquely R-decomposable finite object-system S∗ ∈ s⊗S, for some
positive integer s, that respects d0, and moreover any R-decomposition of S∗

with n parts respects d0 uniformly.

Proof. Let di = (Vi,1, Vi,2, . . . , Vi,n), i = 1, . . . , r, be the R-decompositions
of S with n parts which do not respect d0. Since S is a finite object-system, r
is a nonnegative integer. If r = 0, take S∗ = S; otherwise we shall construct
an object-system S∗ = S∗(r) ∈ s ⊗ S as below, denoting the s copies of S
by S1, . . . , Ss.

If the resulting S∗ has an R-decomposition d with n parts, then, since
S is R-strict, d|Si will also have n parts. The aim of the construction is to
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add new objects E∗ = E∗(r) to sS to exclude the possibility that d|Si = dj ,
for any 1 ≤ i ≤ s, 1 ≤ j ≤ r.

Whenever we add an object e, if e intersects Si∩Ux, it will also intersect
some Sj, i 6= j, and some Uy, x 6= y; thus S∗ will respect d0, and the object-
systems constructed will always be in P .

We shall use two types of constructions.

Construction 1. Si ⇒ Sj.

First let us construct an object-system Si ⇒ Sj in 2⊗ S such that, if d
is an R-decomposition of Si ⇒ Sj and d|Si respects d0, then d|S

j respects
d0; moreover, d respects d0 uniformly on Si ⇒ Sj .

Since S is R-strict, there is an object-system S′ ∈ (S ∗ K1) \ R. Let
E′ be the set of objects of S′ that contain z ∈ V (K1). For x = 1, 2, . . . ,m,
let E′

x be the set of objects from E′ that contain only z and vertices of
Ux, while E′

x is the set of objects from E′ that contain some vertex of
V (S) \ Ux. Let Si, Sj , i 6= j, be disjoint copies of S; for every x, and
every vertex v ∈ Ux ∩ V (Sj), we add the objects of E′

x (with v taking the
place of z ∈ V (K1), and Si taking the place of S). Note that Si ⇒ Sj ∈
2S[U1] ∗ 2S[U2] ∗ · · · ∗ 2S[Um]. Since d0 is an R-decomposition of S, this
implies that (Si ⇒ Sj) ∈ R.

If d = (V1, V2, . . . , Vl) would be an R-decomposition of T = (Si ⇒ Sj)
such that d|Si respects d0, but d|S

j does not respect d0 (or at least, not in
the same manner, i.e., d does not respect d0 uniformly). Then there exist
k and x 6= y such that Vk ∩ S

i ⊆ Uy, but some v ∈ Vk ∩ S
j belongs to Ux.

We can add the objects corresponding to E′

x (with v taking the place of
z ∈ V (K1), and S

i taking the place of S) because they contain at least one
vertex w of Si∩Ux (so w 6∈ Vk). But then, S

′ is an induced subobject-system
of an object-system in T [V1] ∗ T [V2] ∗ · · · ∗ T [Vl], which implies S′ ∈ R, a
contradiction.

Construction 2. m • ktS.
For an R-decomposition dt = (Vt,1, Vt,2, . . . , Vt,decR(S)) of S that does

not respect d0, m • ktS is an object-system in (mkt) ⊗ S having no R-
decomposition d = (W1,W2, . . . ,WdecR(S)) such that, for all of the mkt

induced copies Si of S, d|Si = dt.

Let Ai,j(t) denote Ui ∩ Vt,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Since dt does not
respect d0, at least n+ 1 sets Ai,j(t) are nonempty. Because decR(S) = n,
there exists a positive integer kt such that ktS[A1,1(t)] ∗ ktS[A1,2(t)] ∗ · · · ∗
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ktS[Am,n(t)] 6⊂ R. Fix an object-system Tt ∈ (ktS[A1,1(t)] ∗ ktS[A1,2(t)] ∗
· · · ∗ktS[Am,n(t)])\R. Note that Tt differs from ktS only in the objects that
intersect at least two different Ui’s, or at least two different Vj ’s.

The kiUi’s form an R-decomposition of ktS, so we can replace the ob-
jects of ktS that intersect at least two Ui’s, with the objects of Tt that
intersect at least two Ui’s, and still remain in R. If, in the resulting object-
system W̃ , the Vj’s also formed an R-decomposition, we could replace the
objects of W̃ that intersect at least two different Vj’s with the objects of Tt
that intersect at least two different Vj ’s, and still remain in R. But this is
impossible because we would then have Tt ∈ R.

The only problem with W̃ is that, in order to construct it, we altered
objects inside the kt copies that we had of S. We therefore construct m•ktS
by taking m disjoint copies of W = ktS, denoted by W j, j = 1, 2, . . . ,m,
and adding objects between W 1 ∩ U1,W

2 ∩ U2, . . . ,W
m ∩ Um. Specifically,

suppose an object of Tt intersects Ua1 , . . . , Uar (1 ≤ a1 < · · · < ar ≤ m,
r ≥ 2); then in m •ktS we put a corresponding object that intersects W a1 ∩
Ua1 , . . . ,W

ar ∩ Uar .

Suppose d = (X1,X2, . . . ,XdecR(S)) is an R-decomposition of m • ktS

such that, for every one of the mkt induced copies Si of S, d|Si = dt. Then
W 1 ∩ U1, . . . ,W

m ∩ Um induce a copy of the object-system W̃ from which
we could obtain Tt while still remaining in R, thus getting a contradiction
as above.

We now construct S∗ as follows. First let S(0) := S and S(1) :=
m • k1S. For 1 < l ≤ r, construct S(l) by taking mkl disjoint copies
S(l − 1)1, . . . , S(l − 1)mkl of S(l − 1). For each copy of S in S(l − 1)i and
each copy of S in S(l− 1)j , i 6= j we add the objects between them that are
between the ith and jth copies of S in m • klS.

Finally, from S(r), which is in, say, s ⊗ S, consisting of copies S1, S2,
. . . , Ss of S, we create S∗ by adding two more copies S+ and S− of S. We
add objects between S+ and S− to create the object-system S− ⇒ S+, and,
for each i = 1, . . . , s, we add objects to obtain Si ⇒ S− and S+ ⇒ Si.

Let d be an R-decomposition of S∗ with n parts (it might happen that
none such decomposition exists and it this case we are immediately done).
For 1 ≤ l ≤ r, if every copy of S(l−1) in S(l) contains a copy of S for which
d|S = dl, then we would havemkl such copies of S inducing a copy ofm•klS,
what is impossible. So by induction from r to 1, there is a copy Sp of S for
which d|Sp is none of d1, d2, . . . , dr. Thus, d is the unique R-decomposition
of S∗, d|Sp respects d0. But S

p ⇒ S− is an induced subobject-system of S∗,
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so d|S− = d0 (and in fact d respects d0 uniformly on these two copies of S).
Similarly, d|S+ respects d0 and, in the same way, d respects d0 uniformly,
as it is required.

Using Theorem 3 we can prove:

Theorem 4. Let R ∈ M
ωa be a reducible property of object-systems of finite

character. Then there exists a uniquely R-decomposable infinite countable
object-system H such that γH = (R,H ′) and age(H) = R ∩ I.

Proof. Analogously as in [26], a composition sequence of a class R of finite
object-systems is a sequence of finite object-systems H1,H2, . . . ,Hn, . . . such
that Hi ∈ R,Hi < Hi+1 for all i ∈ N and for all S ∈ R there exists a j
such that S ≤ Hj. Because of additivity of R, using the same arguments
as in [26], R has a composition sequence H1,H2, . . . ,Hn, . . .. According to
Theorem 3, we can easily find a composition sequence H∗

1 ,H
∗

2 , . . . ,H
∗

n, . . .
of R ∩ I consisting of finite uniquely R-decomposable object-systems H∗

i

containing Hi. Without loss of generality, we may assume that if i < j,
i, j ∈ N, then V (H∗

i ) ⊂ V (H∗

j ). Let V (H) =
⋃

i∈N
V (H∗

i ) and Ai ∈ E(H) if
and only if Ai ∈ E(H∗

j ) for some j ∈ N. It is easy to see that age(H) = R∩I,
implying γH = (R,H ′). Let us remark that, according to Theorem 2,
H is R-decomposable if every finite induced subobject-system of H is R-
decomposable. In order to verify, that H is uniquely R-decomposable it
is sufficient to verify that if {Vj1 , Vj2 , . . . , Vjn}, Vji 6= ∅ is the unique R-
decomposition of Hj, j ∈ N, then {U1, U2, . . . , Un}, where Uk =

⋃

j∈N
Vjk ,

k = 1, 2, . . . , n, is the unique R-decomposition of H. Indeed, this is because
the existence of other R-decomposition of H would imply the existence of
other decomposition of some Hi and it provides a contradiction.

6. The Unique Factorization Theorem for Properties of

Object-Systems

In [15], based on Theorem 2 and Theorem 1 we proved for graph properties
of finite character, that every reducible additive graph property R of finite
character is uniquely factorisable into finite number of irreducible factors.

Here we present a proof of the Unique Factorization Theorem for object-
systems based on Theorem 4 in the formal context K.
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Theorem 5. Every reducible additive property of object-systems R of finite
character is uniquely factorisable into finite number of irreducible factors.

Proof. According to Theorem 4, let H be a uniquely R-decomposable
infinite countable object-system such that γH = (R,H ′) and let dH =
{W1,W2, . . . ,Wn} be the unique R-decomposition of H. Let P i = γH[Wi]
for i = 1, 2, . . . , n = dec(R). Then obviously we have R = P1◦P2◦ · · · ◦Pn.
If there would be some other factorization of R into n irreducible factors
then H would have another R-decomposition, which contradicts the fact
that H is uniquely R-decomposable. Since dec(H) = dec(R) = n, there
is no factorization of R into more then n factors. Thus we have to prove
that R = P1◦P2◦ · · · ◦Pn is the unique factorization of R. Further, let R =
Q1◦Q2◦ · · · ◦Qm,m < n and d0 = {U1, U2, . . . , Um} be a (Q1,Q2, . . . ,Qm)-
partition of H. Then, by Theorem 3, there is an s ∈ N such that s ⊗ H
respects d0 uniformly. Thus, since m < n, there exists an index j such that
H[Uj ] ∈ H[Wr] ∗H[Ws], implying Qj is reducible.
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