Discussiones Mathematicae Graph Theory 31(3) (2011)
533-545
DOI: https://doi.org/10.7151/dmgt.1563
Closed k-stop distance in graphs
Grady Bullington1, Linda Eroh1, Ralucca Gera2 and Steven J. Winters1
1Department of Mathematics |
Abstract
The Traveling Salesman Problem (TSP) is still one of the most researched topics in computational mathematics, and we introduce a variant of it, namely the study of the closed k-walks in graphs. We search for a shortest closed route visiting k cities in a non complete graph without weights. This motivates the following definition. Given a set of k distinct vertices S = { x1, x2, …,xk } in a simple graph G, the closed k-stop-distance of set S is defined to be
|
where P(S) is the set of all permutations from S onto S. That is the same as saying that dk (S) is the length of the shortest closed walk through the vertices {x1, …,xk}. Recall that the Steiner distance sd(S) is the number of edges in a minimum connected subgraph containing all of the vertices of S. We note some relationships between Steiner distance and closed k-stop distance.
The closed 2-stop distance is twice the ordinary distance between two vertices. We conjecture that radk(G) ≤ diamk(G) ≤ k/(k −1) radk(G) for any connected graph G for k ≤ 2. For k = 2, this formula reduces to the classical result rad(G) ≤ diam(G) ≤ 2 rad(G). We prove the conjecture in the cases when k = 3 and k = 4 for any graph G and for k ≤ 3 when G is a tree. We consider the minimum number of vertices with each possible 3-eccentricity between rad3(G) and diam3(G). We also study the closed k-stop center and closed k-stop periphery of a graph, for k = 3.
Keywords: Traveling Salesman, Steiner distance, distance, closed k-stop distance
2010 Mathematics Subject Classification: 05C12, 05C05.
References
[1] | G. Chartrand and P. Zhang, Introduction to Graph Theory (McGraw-Hill, Kalamazoo, MI, 2004). |
[2] | G. Chartrand, O.R. Oellermann, S. Tian and H.-B. Zou, Steiner distance in graphs, Casopis Pro Pestován'i Matematiky 114 (1989) 399--410. |
[3] | J. Gadzinski, P. Sanders, and V. Xiong, k-stop-return distances in graphs, unpublished manuscript. |
[4] | M.A. Henning, O.R. Oellermann, and H.C. Swart, On Vertices with Maximum Steiner [eccentricity in graphs]. Graph Theory, Combinatorics, Algorithms, and Applications (San Francisco, CA, (1989)). SIAM, Philadelphia, PA (1991), 393--403. |
[5] | M.A. Henning, O.R. Oellermann, and H.C. Swart, On the Steiner Radius and Steiner Diameter of a Graph. Ars Combin. 29C (1990) 13--19. |
[6] | O.R. Oellermann, On Steiner Centers and Steiner Medians of Graphs, Networks 34 (1999) 258--263, doi: 10.1002/(SICI)1097-0037(199912)34:4<258::AID-NET4>3.0.CO;2-2. |
Received 4 June 2009
Revised 6 August 2010
Accepted 6 August 2010
Close