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Abstract

The Traveling Salesman Problem (TSP) is still one of the most
researched topics in computational mathematics, and we introduce a
variant of it, namely the study of the closed k-walks in graphs. We
search for a shortest closed route visiting k cities in a non complete
graph without weights. This motivates the following definition. Given
a set of k distinct vertices S = {x1, x2, . . . , xk} in a simple graph G,
the closed k-stop-distance of set S is defined to be

dk(S) = min
θ∈P(S)

(

d(θ(x1), θ(x2))+d(θ(x2), θ(x3))+· · ·+d(θ(xk), θ(x1))

)

,

where P(S) is the set of all permutations from S onto S. That is the
same as saying that dk(S) is the length of the shortest closed walk
through the vertices {x1, . . . , xk}. Recall that the Steiner distance
sd(S) is the number of edges in a minimum connected subgraph con-
taining all of the vertices of S. We note some relationships between
Steiner distance and closed k-stop distance.
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The closed 2-stop distance is twice the ordinary distance between
two vertices. We conjecture that radk(G) ≤ diamk(G) ≤ k

k−1radk(G)
for any connected graph G for k ≥ 2. For k = 2, this formula reduces
to the classical result rad(G) ≤ diam(G) ≤ 2rad(G). We prove the
conjecture in the cases when k = 3 and k = 4 for any graph G and for
k ≥ 3 when G is a tree. We consider the minimum number of vertices
with each possible 3-eccentricity between rad3(G) and diam3(G). We
also study the closed k-stop center and closed k-stop periphery of a
graph, for k = 3.

Keywords: Traveling Salesman, Steiner distance, distance, closed k-
stop distance.
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1. Definitions and Motivation

In this paper, all graphs are simple (i.e., no loops or multiple edges). For
vertices u and v in a connected graph G, let d(u, v) denote the standard
distance from u to v (i.e., the length of the shortest path from u to v).
Recall that the eccentricity e(u) of a vertex u is the maximum distance
d(u, v) over all other vertices v ∈ V (G). The radius rad(G) of G is the
minimum eccentricity e(u) over all vertices u ∈ V (G), and the diameter
diam(G) is the maximum eccentricity e(u) taken over all vertices u ∈ V (G).

Let G = (V (G), E(G)) be a graph of order n (|V (G)| = n) and size m

(|E(G)| = m). Let S ⊆ V (G). Recall ([2, 4, 5, 6, 7]) that a Steiner tree
for S is a connected subgraph of G of smallest size (number of edges) that
contains S. The size of such a subgraph is called the Steiner distance for S
and is denoted by sd(S). Then, the Steiner k-eccentricity sek(v) of a vertex v

of G is defined by sek(v) = max{sd(S)|S ⊆ V (G), |S| = k, v ∈ S}. Then the
Steiner k-radius and k-diameter are defined by sradk(G) = min{sek(v)|v ∈
V (G)} and sdiamk(G) = max{sek(v)|v ∈ V (G)}.

In this paper, we study an alternate but related method of defining the
distance of a set of vertices. The closed k-stop distance was introduced by
Gadzinski, Sanders, and Xiong [3] as k-stop-return distance. The closed
k-stop-distance of a set of k vertices S = {x1, x2,. . . , xk}, where k ≥ 2, is
defined to be

dk(S) = min
θ∈P(S)

(

d(θ(x1), θ(x2)) + d(θ(x2), θ(x3)) + · · ·+ d(θ(xk), θ(x1))

)

,
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where P(S) is the set of all permutations from S onto S. That is the same
as saying that dk(S) is the length of the shortest closed walk through the
vertices {x1, . . . , xk}. The closed k-stop eccentricity ek(x) of a vertex x

in G is max{dk(S)|x ∈ S, S ⊆ V (G), |S| = k}. The minimum closed k-
stop eccentricity among the vertices of G is the closed k-stop radius, that
is, radk(G) = minx∈V (G) ek(x). The maximum closed k-stop eccentricity
among the vertices of G is the closed k-stop diameter, that is, diamk(G) =
maxx∈V (G) ek(x).

Note that if k = 2, then d2({x1, x2}) = 2d(x1, x2). We thus consider
k ≥ 3. In particular, the closed 3-stop distance of x, y and z (x 6= y, x 6= z,
y 6= z) is

d3({x, y, z}) = d(x, y) + d(y, z) + d(z, x).

For simplicity, we will write d3(x, y, z) instead of d3({x, y, z}).
The closed 3-stop eccentricity e3(x) of a vertex x in a graph G is the

maximum closed 3-stop distance of a set of three vertices containing x, that
is,

e3(x) = max
y,z∈V (G)

(

d(x, y) + d(y, z) + d(z, x)

)

.

The central vertices of a graph G are the vertices with minimum eccentricity,
and the center C(G) of G is the subgraph induced by the central vertices.
Similarly, we define the closed k-stop central vertices of G to be the vertices
with minimum closed k-stop eccentricity and the closed k-stop center Ck(G)
of G to be the subgraph induced by the closed k-stop central vertices. A
graph is closed k-stop self-centered if Ck(G) = G.

The peripheral vertices of a graph G are the vertices with maximum
eccentricity, and the periphery P (G) of G is the subgraph induced by the
peripheral vertices. Similarly, we define the closed k-stop peripheral vertices
of G to be the vertices with maximum closed k-stop eccentricity and the
closed k-stop periphery Pk(G) of G as the subgraph induced by the closed
k-stop peripheral vertices. For simplicity in this paper, we will sometimes
omit the words “closed” and “stop”, so for instance, we will refer to the
closed 3-stop eccentricity as the 3-eccentricity of a vertex.

Notice that for all values of k ≥ 2, two times the k-Steiner distance
is an upper bound on the closed k-stop distance of a set of vertices in a
graph. (Given a Steiner tree for a set of k vertices, one possible closed
walk through those vertices would trace each edge of the Steiner tree twice.)
The k-Steiner distance plus one is always a lower bound for the closed k-
stop distance, since the edges of a closed walk form a connected subgraph.
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Necessarily, in a closed walk, either an edge is repeated or a cycle is formed,
so at least one edge could be omitted without disconnecting the subgraph.
That is, for a set S of |S| = k ∈ {1, 2, . . . , n − 1, n} vertices, we have that

sek(v) + 1 ≤ ek(v) ≤ 2 sek(v),∀v ∈ V (G),(1)

sradk(G) + 1 ≤ radk(G) ≤ 2 sradk(G), and(2)

sdiamk(G) + 1 ≤ diamk(G) ≤ 2 sdiamk(G).(3)

For other graph theory terminology we refer the reader to [1]. In this paper
we study the closed k-stop distance in graphs. Particularly, we present an
inequality between the radius and diameter that generalizes the inequality
for the standard distance. We also present a conjecture regarding this in-
equality that is verified to be true in trees. We also study the closed k-stop
center and closed k-stop periphery of a graph, for k = 3.

2. Possible Values of Closed 3-stop Eccentricities

It is well-known that the ordinary radius and diameter of a graph G are
related by rad(G) ≤ diam(G) ≤ 2rad(G). Furthermore, for every k such
that rad(G) < k ≤ diam(G), a graph must have at least two vertices with
eccentricity k, and at least one vertex with eccentricity rad(G). In the case
of closed 3-stop distance, there is at least one vertex with closed 3-stop
eccentricity rad3(G), and there are at least three vertices with closed 3-stop
eccentricity diam3(G).

Proposition 1. A connected graph G of order at least 3 has at least three
closed 3-stop peripheral vertices.

Proof. Let x ∈ V (P3(G)). Then there exist vertices x1 and x2 ∈ V (G)
such that e3(x) = d(x, x1) + d(x1, x2) + d(x2, x) = e3(x1) = e3(x2). Thus
x, x1, x2 ∈ V (P3(G)).

Recall that in a graph G, the following relation holds: rad(G) ≤ diam(G) ≤
2rad(G). We present a similar sharp inequality between the closed 3-stop
radius and closed 3-stop diameter.

Proposition 2. For a connected graph G, we have

rad3(G) ≤ diam3(G) ≤ 3
2rad3(G).
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Proof. The first inequality follows by definition. Let u ∈ V (C3(G)), and let
y ∈ V (P3(G)). There are vertices w and x, necessarily also in the closed 3-
stop periphery, such that e3(y) = d(y,w)+d(w, x)+d(x, y) = e3(x) = e3(w).
Assume, without loss of generality, that d(u, y)+d(y, x)+d(x, u) ≤ d(u,w)+
d(w, x)+d(x, u) and d(u,w)+d(w, y)+d(y, u) ≤ d(u,w)+d(w, x)+d(x, u).
This gives d(u, y) + d(y, x) ≤ d(u,w) + d(w, x) and d(w, y) + d(y, u) ≤
d(w, x) + d(x, u).

Case I. d(w, x) ≤ 2d(u, y).
Using the inequalities above,

e3(y) = d(y,w) + d(w, x) + d(x, y)

≤ d(w, x) + d(x, u)− d(y, u) + d(w, x) + d(u,w) + d(w, x) − d(u, y)

= d(u, x) + d(x,w) + d(w, u) + 2(d(w, x) − d(u, y))

≤ e3(u) + 2(d(w, x) − d(u, y)).

Now, clearly, d(w, x) ≤ d(w, u) + d(u, x), and from our assumption for this
case, 2d(w, x) ≤ 4d(u, y). Thus, 4d(w, x) ≤ d(w, u) + d(u, x) + d(w, x) +
4d(u, y), which simplifies to

2(d(w, x) − d(u, y)) ≤
1

2
(d(u,w) + d(w, x) + d(x, u))

≤
1

2
e3(u).

Thus, e3(y) ≤
3
2e3(x).

Case II. d(w, x) > 2d(u, y).
If we restrict the paths from y so that they must come and go through u,
the resulting paths will be the same length or longer than they would be
without the restriction. Thus, e3(y) ≤ 2d(y, u) + e3(u) < d(w, x) + e3(u).
Since e3(u) ≥ d(u,w) + d(w, x) + d(x, u) and d(w, x) ≤ d(u,w) + d(x, u), it
follows that d(w, x) ≤ 1

2e3(u). Thus, e3(y) ≤
3
2e3(u).

Recall that, for the standard eccentricity, |e(u)− e(v)| ≤ 1 for adjacent ver-
tices u and v in a connected graph. Gadzinski, Sanders and Xiong noted
a similar relationship for the closed k-stop eccentricities of adjacent ver-
tices. Suppose u and v ∈ V (G) are adjacent. Let x2, x3, . . . , xk be vertices
such that ek(u) = dk({u, x2, x3, . . . , xk}). One possible closed walk through
{u, x2, x3, . . . , xk} would be from u to v, followed by a shortest closed walk
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through {v, x2, x3, . . . , xk}, and then from v to u. Thus, ek(u) ≤ ek(v) + 2.
Similarly, ek(v) ≤ ek(u) + 2.

Proposition 3 [3]. If u and v are adjacent vertices in a connected graph,
then |ek(u)− ek(v)| ≤ 2.

The following example shows that it is possible for every vertex between
rad3(G) and diam3(G) to be realized as the closed 3-stop eccentricity of some
vertex, though it is also possible that some values may only be achieved once.
Let V (G) = {u1, u2, . . . , uk, v1, v2, . . . , vk, w1, w2, . . . , wk, x0, x1, . . . , xk} and
E(G) = {uiui+1, vivi+1, wiwi+1, xixi+1|1 ≤ i ≤ k − 1} ∪ {x0x1, x0u1, x0v1,
x0w1, u1v1, v1w1}. Then rad3(G) = e3(x0) = 4k, e3(ui) = e3(xi) = e3(wi) =
4k + 2i, and e3(vi) = 4k + 2i − 1. Notice that all odd eccentricities larger
than 4k + 2M − 1 may be skipped by leaving out the vertices vi for i > M .
Thus, this construction also shows that not all integers between rad3(G) and
diam3(G) must be realized. Figure 1 shows an example of this construction
with k = 3.

u x318

u x216

u x114

u
x0

12

u v113

u v215

u v317

u
u3

18

u
u2

16

u
u1

14

u
w1

14

u
w2

16

u
w3

18

�
�
�

@
@

@

Figure 1. Graph with closed 3-stop eccentricities 12, 13, 14, 15, 16, 17, 18.

In any graph G, there is at least one vertex with closed 3-stop eccentricity
rad3(G) and at least three vertices with closed 3-stop eccentricity diam3(G).
From Proposition 3, we may conclude that, for any two consecutive integers
k and k+1 with rad3(G) ≤ k < diam3(G), there must be a vertex with closed
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3-stop eccentricity either k or k + 1. In fact, for every pair of consecutive
numbers between rad3(G) and diam3(G), there must be at least two vertices
with closed 3-stop eccentricity equal to one of those numbers.

Proposition 4. Let G be a connected graph and let k be an integer such
that rad3(G) < k < diam3(G) − 1. Then there are at least two vertices in
G with closed 3-stop eccentricity either k or k + 1.

Proof. Suppose to the contrary that v ∈ V (G) is the only vertex with
closed 3-stop eccentricity either k or k + 1. Let A = {u ∈ V (G)|e3(u) < k}
and B = {u ∈ V (G)|e3(u) > k + 1}. Notice that both A and B are non-
empty and A ∪ B ∪ {v} = V (G). Consider any x ∈ A and y ∈ B. Since
e3(x) ≤ k − 1 and e3(y) ≥ k + 2, it follows from Proposition 3 that any x-y
path must contain a vertex with eccentricity either k or k + 1. However,
v is the only such vertex. Thus, v is a cut-vertex and A and B are not
connected in G − v. Let w and y be vertices such that e3(v) = d3(v,w, y).
Since e3(w) ≥ e3(v) and e3(y) ≥ e3(v), both w and y must be in B. Now,
let u ∈ A. Every path from u to w or y must go through v, so e3(u) ≥
d3(u,w, y) = 2d(u, v) + d3(v,w, y) = 2d(u, v) + e3(v). But this contradicts
the fact that e3(u) < e3(v).

In every example that we have found, there are at least three vertices with
closed 3-stop eccentricity either k or k+1 for rad3(G) < k < diam3(G)− 1.

Conjecture 5. Let G be a connected graph and let k be an integer such
that

rad3(G) < k < diam3(G) − 1.

Then there are at least three vertices in G with closed 3-stop eccentricity
either k or k + 1.

3. Closed k-stop Radius and Closed k-stop Diameter

In this section we study closed k-stop eccentricity. Proposition 1 can be
generalized for k ≥ 4.

Proposition 6. Let G be a connected graph of order at least k, k ∈ N. Then
G has at least k vertices that are closed k-stop peripheral.
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Proof. Let x1 ∈ V (Pk(G)). Then there exist vertices x2, x3, . . . , xk ∈ V (G)
such that ek(x1) = d(x1, x2)+d(x2, x3)+ · · ·+d(xk, x1) = ek(x2) = ek(x3) =
· · · = ek(xk). Thus x1, x2, . . . , xk ∈ V (Pk(G)).

Also, Proposition 2 can be generalized for k = 4.

Proposition 7. For any connected graph G, we have

rad4(G) ≤ diam4(G) ≤
4

3
rad4(G).

Proof. Let G be a connected graph. Suppose u ∈ V (C4(G)) and v ∈
V (P4(G)). Furthermore, suppose that e4(v) is attained by visiting w, x,
and y, not necessarily in that order. We must have w, x, and y ∈ V (P4(G)),
and e4(v) = e4(w) = e4(x) = e4(y) = d4({v,w, x, y}).

Without loss of generality, we may assume that the minimum distance
among d(v,w), d(v, x), d(v, y), d(w, x), d(x, y), and d(w, y) is d(v,w). If
we now distinguish v and w from x and y, we may assume, without loss
of generality, that the distance from {v,w} to {x, y}, that is, the minimum
distance among d(v, x), d(v, y), d(w, x), and d(w, y), is d(v, y). Thus, v is
the vertex in common in these two distances. Now,

rad4(G) = e4(u)(4)

≥ d4(u,w, x, y)(5)

= min(d(u,w) + d(w, x) + d(x, y) + d(y, u), d(u, x) + d(x,w)(6)

+ d(w, y) + d(y, u), d(u,w) + d(w, y) + d(y, x) + d(x, u))(7)

≥ d(w, y) + d(w, x) + d(x, y).(8)

The last inequality follows by applying the triangle inequality to each of
terms in the minimum. Thus, 4rad4(G) ≥ 4d(w, y) + 4d(w, x) + 4d(x, y).
On the other hand, 3diam4(G) = 3e4(v) = 3min(d(v,w)+d(w, x)+d(x, y)+
d(y, v), d(v,w) + d(w, y) + d(y, x) + d(x, v), d(v, x) + d(x,w) + d(w, y) +
d(y, v)) ≤ 3d(v,w) + 3d(w, x) + 3d(x, y) + 3d(y, v).

From our initial assumptions, 3d(v,w) ≤ d(x, y)+2d(w, y) and 3d(y, v) ≤
d(w, x) + 2d(w, y). Thus, we have 3diam4(G) ≤ 3d(v,w) + 3d(w, x) +
3d(x, y) + 3d(y, v) ≤ 4d(x, y) + 4d(w, x) + 4d(w, y) ≤ 4rad4(G).

Conjecture 8. For any integer k ≥ 2 and any connected graph G, we have

radk(G) ≤ diamk(G) ≤
k

k − 1
radk(G).
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Notice that for k = 2, this conjecture reduces to the classical result for
ordinary distance that rad(G) ≤ diam(G) ≤ 2rad(G). We have shown
that the conjecture is true for k = 3 and k = 4. However, for higher
values of k, the proof would have to take into account the order of the ec-
centric vertices w, x, and y of the peripheral vertex v in the last step of
equation 8. Suppose, for instance, that the vertices v1, v2, . . . , vk are ar-
ranged so that the length of a closed walk is minimized, that is, d(v1, v2) +
d(v2, v3) + · · · + d(vk−1, vk) + d(vk, v1) is as small as possible. If another
vertex v is included, we may wonder if the minimum length closed walk for
{v1, v2, . . . , vk, v} can always be achieved by inserting v in some location in
the list v1, v2, . . . , vk or if the original vertices may also have to be rear-
ranged. If k ≤ 3, the minimum can always be achieved by simply inserting
v. However, consider the example in Figure 2 for k = 4. A minimum closed
walk containing {v1, v2, v3, v4} has length 8 and visits these four vertices in
order v1, v2, v3, v4, v1 or in reverse order v1, v4, v3, v2, v1. However, a mini-
mum closed walk containing {v1, v2, v3, v4, v} has length 11 and visits the
vertices in one of the following orders: v1, v3, v2, v, v4, v1, v1, v3, v4, v, v2, v1,
v1, v2, v, v4, v3, v1, or v1, v4, v, v2, v3, v1.

4. Closed k-stop Distance in Trees

In this section we study the closed k-stop distance in trees. We start with
some observations and illustrations concerning closed k-stop distance.
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Figure 2. The shortest closed walk including v1, v2, v3, v4, v cannot be formed by

inserting v into the shortest closed walk including v1, v2, v3, v4.
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Proposition 9. If G is a graph, and T is a spanning tree of G, then for
any vertices x1, x2, . . . , xk ∈ V (G), dk({x1, x2, . . . , xk}) in G is at most
dk({x1, x2, . . . , xk}) in T .

As a result of Proposition 9 we have that radk(G) ≤ radk(T ) and diamk(G) ≤
diamk(T ). For this reason we study trees next.

In a tree T , the upper inequalities (1), (2), and (3) actually become
equalities, so ek(v) = 2sek(v) for all v ∈ V (T ), radk(T ) = 2sradk(T )
and diamk(T ) = 2sdiamk(T ), where the sradk(T ) and sdiamk(T ) are the
Steiner radius and diameter, respectively. A closed walk containing a set
of vertices traces every edge of a Steiner tree for those vertices twice. As
a consequence, we have the following observation, also noted independently
in [3].

Observation 10. Let T be a tree and let k ≥ 2 be an integer. Then ek(v)
is even, for all v ∈ V (T ).

For any positive integer k ≥ 2 and connected graph G, the Steiner k-center
of G, sCk(G), is the subgraph induced by the vertices v such that sek(v) =
sradk(G). Notice that since the Steiner distance of two vertices is simply
the usual distance, sC2(G)=C(G). Oellermann and Tian found the following
relationship between Steiner k-centers of trees.

Theorem 11 [7]. Let k ≥ 3 be an integer and T a tree of order greater than
k. Then sCk−1(T ) ⊆ sCk(T ).

Similarly, the Steiner k-periphery of a graph G, sPk(G), is the subgraph
induced by the vertices v such that sek(v) = sdiamk(G). When k = 2, notice
that sP2(G) is the usual periphery P (G). Henning, Oellermann, and Swart
found a relationship similar to the one above for the Steiner k-peripheries
of trees.

Theorem 12 [4]. Let k ≥ 3 be an integer and T a tree of order greater than
k. Then sPk−1(T ) ⊆ sPk(T ).

Since radk(T ) = 2sradk(T ) and diamk(T ) = 2sdiamk(T ) for a tree T , we
have sCk(T ) = Ck(T ) and sPk(T ) = Pk(T ). Thus, the results above produce
the following corollary.

Corollary 13. Let T be a tree of order n. Then C(T ) ⊆ C3(T ) and P (T ) ⊆
P3(T ). Furthermore, for any k with 3 ≤ k ≤ n, we have Ck(T ) ⊆ Ck+1(T )
and Pk(T ) ⊆ Pk+1(T ).
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We next present the only tree that is closed 3-stop self-centered.

Proposition 14. Let T be a tree. T is closed 3-stop self-centered if and
only if T ∼= Pn (n ≥ 3).

Proof. If T ∼= Pn (n ≥ 3), the result follows. For the converse, let T 6∼= Pn

be a tree of order n ≥ 3. Then T has three end-vertices x, y, z ∈ V (P3(T ))
such that diam3(T ) = d3(x, y, z). Let x = x0, x1, . . . , xp = y be the
geodesic from x to y in T . Then e3(x) = d(x, y) + d(y, z) + d(z, x), and
e3(x1) = d(x1, y) + d(y, z) + d(z, x1) < e3(x), and so T is not closed 3-stop
self-centered.

As a quick corollary of the above proof we have the following result.

Corollary 15. Let T be a tree. T is closed 3-stop self-peripheral if and only
if T ∼= Pn (n ≥ 3).

As we have seen already, the path Pn has many special properties. The
next result shows that Pn is the only tree that has the same closed k-stop
eccentricity for each vertex and for any k with 1 ≤ k ≤ n − 1. This result
follows as the path has only two end vertices and a unique path between
them.

Proposition 16. Let T be a tree of order n. Then ek(v) = 2n, for all
v ∈ V (T ), and for all k ∈ {1, 2, . . . , n − 1} if and only if T = Pn, the path
of order n.

The following is a consequence of the Steiner distance in trees.

Proposition 17. Let T be a tree and k an integer with 1 ≤ k ≤ n. Then T

has at most k− 1 end vertices if and only if T is closed k-stop self-centered.

Proof. Let T be a tree with at most k − 1 end vertices, say they form the
set S = {x1, x2, . . . , xk−1}, k ≥ 3. Then for all v ∈ V (G),

ek(v) = min
θ∈P(S)

(

d(θ(v), θ(x1)) + d(θ(x1), θ(x2))

+ d(θ(x2), θ(x3)) + · · ·+ d(θ(xk−1), θ(v))

)

,

where P(S) is the set of all permutations from P(S) onto P(S). Since T is
a tree with k − 1 end vertices, it follows that ek(v) = 2m, ∀v ∈ V (G).
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For the converse, assume that T is closed k-stop self-centered, and assume
to the contrary, that T has at least k end vertices, say y1, y2, . . . , yt, for
t ≥ k ≥ 3. Let z1 be the support vertex of y1 and let S = {y2, y3, . . . , yk−1},
k ≥ 3. Then

ek(z1) = min
θ∈P(S)

(

d(θ(z1), θ(y2)) + d(θ(y2), θ(y3))

+ d(θ(y3), θ(y4)) + · · · + d(θ(yk−1), θ(z1))

)

,

where P(S) is the set of all permutations from P(S) onto P(S). However,
ek(y1) = 2 + ek(z1), which is a contradiction to T being closed k-stop self-
centered.

As a quick corollary of the above proof we have the following result.

Corollary 18. Let T be a tree and k an integer with 1 ≤ k ≤ n. Then T

has at most k−1 end vertices if and only if T is closed k-stop self-peripheral.

5. Further Research

As seen in Section 3, Proposition 2 can be generalized for k = 4. The
following conjecture was posed in Section 3.

Conjecture (Section 3): For any integer k ≥ 2 and any connected graph
G, we have

radk(G) ≤ diamk(G) ≤
k

k − 1
radk(G).

Chartrand, Oellermann, Tian, and Zou showed a similar result for Steiner
radius and diameter for trees.

Theorem 19 [2]. If k ≥ 2 is an integer and T is a tree of order at least k,
then

sradk(T ) ≤ sdiamk(T ) ≤
k

k − 1
sradk(T ).

Since ek(v) = 2sek(v) for any vertex v in a tree, we have the corollary.

Corollary 20. If k ≥ 2 is an integer and T is a tree of order at least k,
then

radk(T ) ≤ diamk(T ) ≤
k

k − 1
radk(T ).
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We have also been able to verify this conjecture for k = 3 and k = 4 for arbi-
trary connected graphs. As an interesting side note, Chartrand, Oellermann,
Tian and Zou conjectured that sradk(G) ≤ sdiamk(G) ≤ k

k−1srad(G) for
any connected graph G [2]. This conjecture was disproven in [5], but our
conjecture for closed k-stop distance holds for the class of graphs used as a
counterexample to the Steiner conjecture.

We propose the extension of the study of centrality and eccentricity for
closed k-stop distance in graphs for k ≥ 4.
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