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Abstract

The Traveling Salesman Problem (TSP) is still one of the most
researched topics in computational mathematics, and we introduce a
variant of it, namely the study of the closed k-walks in graphs. We
search for a shortest closed route visiting & cities in a non complete
graph without weights. This motivates the following definition. Given
a set of k distinct vertices S = {x1,z2,..., 2} in a simple graph G,
the closed k-stop-distance of set S is defined to be

() = min, (A(0(o1),a2))+(0(e2),Baa)) 402 ),
where P(S) is the set of all permutations from S onto S. That is the
same as saying that di(S) is the length of the shortest closed walk
through the vertices {z1,...,zr}. Recall that the Steiner distance
sd(S) is the number of edges in a minimum connected subgraph con-
taining all of the vertices of S. We note some relationships between
Steiner distance and closed k-stop distance.
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The closed 2-stop distance is twice the ordinary distance between

two vertices. We conjecture that rady(G) < diami(G) < Erradi(G)

for any connected graph G for k > 2. For k = 2, this formula reduces
to the classical result rad(G) < diam(G) < 2rad(G). We prove the
conjecture in the cases when k£ = 3 and k = 4 for any graph G and for
k > 3 when G is a tree. We consider the minimum number of vertices
with each possible 3-eccentricity between rads(G) and diams(G). We
also study the closed k-stop center and closed k-stop periphery of a
graph, for k = 3.

Keywords: Traveling Salesman, Steiner distance, distance, closed k-
stop distance.
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1. DEFINITIONS AND MOTIVATION

In this paper, all graphs are simple (i.e., no loops or multiple edges). For
vertices u and v in a connected graph G, let d(u,v) denote the standard
distance from u to v (i.e., the length of the shortest path from wu to v).
Recall that the eccentricity e(u) of a vertex u is the maximum distance
d(u,v) over all other vertices v € V(G). The radius rad(G) of G is the
minimum eccentricity e(u) over all vertices u € V(G), and the diameter
diam(G) is the maximum eccentricity e(u) taken over all vertices u € V(G).

Let G = (V(G), E(G)) be a graph of order n (|[V(G)| = n) and size m
(|JE(G)] = m). Let S C V(G). Recall ([2, 4, 5, 6, 7]) that a Steiner tree
for S is a connected subgraph of G of smallest size (number of edges) that
contains S. The size of such a subgraph is called the Steiner distance for S
and is denoted by sd(S). Then, the Steiner k-eccentricity sey(v) of a vertex v
of G is defined by sey(v) = max{sd(S)|S C V(G),|S| = k,v € S}. Then the
Steiner k-radius and k-diameter are defined by sradi(G) = min{sex(v)|v €
V(G)} and sdiamy(G) = max{seg(v)|v € V(G)}.

In this paper, we study an alternate but related method of defining the
distance of a set of vertices. The closed k-stop distance was introduced by
Gadzinski, Sanders, and Xiong [3] as k-stop-return distance. The closed
k-stop-distance of a set of k vertices S = {x1,z2,..., xx}, where k > 2, is
defined to be

() = min (A(00e2).0000) + dBaz). Oz) + -+ + B) ) ).
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where P(S) is the set of all permutations from S onto S. That is the same
as saying that di(S) is the length of the shortest closed walk through the
vertices {x1,...,25}. The closed k-stop eccentricity ex(x) of a vertex x
in G is max{d;(S)|z € S, S C V(G),|S| = k}. The minimum closed k-
stop eccentricity among the vertices of G is the closed k-stop radius, that
is, rady(G) = mingey(g) er(r). The maximum closed k-stop eccentricity
among the vertices of G is the closed k-stop diameter, that is, diamy(G) =
max,cy(q) ek ().

Note that if £ = 2, then dao({z1,22}) = 2d(x1,x2). We thus consider
k > 3. In particular, the closed 3-stop distance of z, y and z (x # y, = # z,
y # z) is

d3({$7 Y, Z}) = d($, y) + d(y7 Z) + d(z7 x)
For simplicity, we will write ds(z,y, z) instead of ds({x,y, z}).

The closed 3-stop eccentricity es(x) of a vertex x in a graph G is the
maximum closed 3-stop distance of a set of three vertices containing x, that
is,

es(r) = max <d(x,y) +d(y,z) + d(z,x)).
y,2€V(G)
The central vertices of a graph G are the vertices with minimum eccentricity,
and the center C'(G) of G is the subgraph induced by the central vertices.
Similarly, we define the closed k-stop central vertices of G to be the vertices
with minimum closed k-stop eccentricity and the closed k-stop center Ci(Q)
of G to be the subgraph induced by the closed k-stop central vertices. A
graph is closed k-stop self-centered if Cy(G) = G.

The peripheral vertices of a graph G are the vertices with maximum
eccentricity, and the periphery P(G) of G is the subgraph induced by the
peripheral vertices. Similarly, we define the closed k-stop peripheral vertices
of G to be the vertices with maximum closed k-stop eccentricity and the
closed k-stop periphery Pi(G) of G as the subgraph induced by the closed
k-stop peripheral vertices. For simplicity in this paper, we will sometimes
omit the words “closed” and “stop”, so for instance, we will refer to the
closed 3-stop eccentricity as the 3-eccentricity of a vertex.

Notice that for all values of k > 2, two times the k-Steiner distance
is an upper bound on the closed k-stop distance of a set of vertices in a
graph. (Given a Steiner tree for a set of k vertices, one possible closed
walk through those vertices would trace each edge of the Steiner tree twice.)
The k-Steiner distance plus one is always a lower bound for the closed k-
stop distance, since the edges of a closed walk form a connected subgraph.
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Necessarily, in a closed walk, either an edge is repeated or a cycle is formed,
so at least one edge could be omitted without disconnecting the subgraph.
That is, for a set S of |[S| =k € {1,2,...,n — 1,n} vertices, we have that

(1) ser(v) + 1 < eg(v) < 2sex(v),Vv € V(G),
(2) sradi(G) + 1 < rady(G) < 2 sradi(G), and
(3) sdiamy(G) + 1 < diamy(G) < 2 sdiamy(G).

For other graph theory terminology we refer the reader to [1]. In this paper
we study the closed k-stop distance in graphs. Particularly, we present an
inequality between the radius and diameter that generalizes the inequality
for the standard distance. We also present a conjecture regarding this in-
equality that is verified to be true in trees. We also study the closed k-stop
center and closed k-stop periphery of a graph, for k = 3.

2. PoOSSIBLE VALUES OF CLOSED 3-STOP ECCENTRICITIES

It is well-known that the ordinary radius and diameter of a graph G are
related by rad(G) < diam(G) < 2rad(G). Furthermore, for every k such
that rad(G) < k < diam(G), a graph must have at least two vertices with
eccentricity k, and at least one vertex with eccentricity rad(G). In the case
of closed 3-stop distance, there is at least one vertex with closed 3-stop
eccentricity rads(G), and there are at least three vertices with closed 3-stop
eccentricity diamg(G).

Proposition 1. A connected graph G of order at least 3 has at least three
closed 3-stop peripheral vertices.

Proof. Let x € V(P3(G)). Then there exist vertices 1 and z2 € V(G)
such that ez(x) = d(x,z1) + d(x1,22) + d(x2,2) = ez(x1) = e3(z2). Thus
x,T1,T2 € V(Pg(G)) |

Recall that in a graph G, the following relation holds: rad(G) < diam(G) <
2rad(G). We present a similar sharp inequality between the closed 3-stop
radius and closed 3-stop diameter.

Proposition 2. For a connected graph G, we have

rads(G) < diams(G) < 3rads(G).
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Proof. The first inequality follows by definition. Let u € V(C3(G)), and let
y € V(P3(G)). There are vertices w and z, necessarily also in the closed 3-
stop periphery, such that e3(y) = d(y, w)+d(w, z)+d(z,y) = e3(z) = ez(w).
Assume, without loss of generality, that d(u,y)+d(y, ) +d(z,u) < d(u,w)+
d(w,z)+d(z,u) and d(u, w) +d(w,y) +d(y,u) < d(u,w)+d(w,z)+d(z,u).
This gives d(u,y) + d(y,z) < d(u,w) + d(w,z) and d(w,y) + d(y,u) <
d(w,z) + d(z, u).

Case 1. d(w,x) < 2d(u,y).
Using the inequalities above,

w) + d(w, x) + d(z,y)

x) +d(z,u) — d(y,u) + d(w, z) + d(u, w) + d(w, z) — d(u,y)
d(u, ) + d(z, w) + d(w,u) + 2(d(w, z) — d(u,y))

< eg(u) +2(d(w, ) — d(u,y)).

es(y) = d(y,
d(w,

IN

Now, clearly, d(w,z) < d(w,u) + d(u,z), and from our assumption for this
case, 2d(w,z) < 4d(u,y). Thus, 4dd(w,z) < d(w,u) + d(u,z) + d(w,z) +
4d(u,y), which simplifies to

2(d(w, z) — d(u,y)) <

IN

Thus, e3(y) < 3es(x).

Case I1. d(w,x) > 2d(u,y).
If we restrict the paths from y so that they must come and go through w,
the resulting paths will be the same length or longer than they would be
without the restriction. Thus, e3(y) < 2d(y,u) + e3(u) < d(w,z) + e3(u).
Since e3(u) > d(u,w) + d(w, z) + d(z,u) and d(w,z) < d(u,w) + d(x,u), it
follows that d(w,z) < les(u). Thus, e3(y) < 3es(u). |

Recall that, for the standard eccentricity, |e(u) —e(v)| < 1 for adjacent ver-
tices u and v in a connected graph. Gadzinski, Sanders and Xiong noted
a similar relationship for the closed k-stop eccentricities of adjacent ver-
tices. Suppose u and v € V(G) are adjacent. Let xo,x3, ...,z be vertices
such that ex(u) = di({u, z2,x3,...,2r}). One possible closed walk through
{u,z9,23,...,21} would be from u to v, followed by a shortest closed walk



538 G. BuLLINGTON, L. EROH, R. GERA AND S.J. WINTERS

through {v,x9,x3,..., 2k}, and then from v to u. Thus, ex(u) < ex(v) + 2.
Similarly, ex(v) < eg(u) + 2.

Proposition 3 [3]. If u and v are adjacent vertices in a connected graph,
then |ex(u) —eg(v)] < 2.

The following example shows that it is possible for every vertex between
rads(G) and diams(G) to be realized as the closed 3-stop eccentricity of some
vertex, though it is also possible that some values may only be achieved once.
Let V(G) = {uy,ug, ..., Uk, V1,02, ..., Uk, W, W2, ..., Wk, L0, T1,---, Tk} and
E(G) = {uiqu,viviH,winl,xixiH]l < 7 < k — 1} U {wowl,xoul,xovl,
rowi, urvy, viwi ). Then rad3(G) = e3(xo) = 4k, e3(u;) = e3(w;) = e3(w;) =
4k 4 24, and eg(v;) = 4k + 2¢ — 1. Notice that all odd eccentricities larger
than 4k + 2M — 1 may be skipped by leaving out the vertices v; for ¢ > M.
Thus, this construction also shows that not all integers between rads(G) and
diams(G) must be realized. Figure 1 shows an example of this construction
with k = 3.

17‘ U3
15' V2

13 V1

us U3 Uy ToN\L W1 w2 w3
@ L L L ®

18 16 14 12 14 16 18
14‘ I

16' T

18‘ I3
Figure 1. Graph with closed 3-stop eccentricities 12, 13, 14, 15, 16, 17, 18.

In any graph G, there is at least one vertex with closed 3-stop eccentricity
rads(G) and at least three vertices with closed 3-stop eccentricity diams(G).
From Proposition 3, we may conclude that, for any two consecutive integers
k and k+1 with rads(G) < k < diams(G), there must be a vertex with closed
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3-stop eccentricity either k£ or £ + 1. In fact, for every pair of consecutive
numbers between rads(G) and diams(G), there must be at least two vertices
with closed 3-stop eccentricity equal to one of those numbers.

Proposition 4. Let G be a connected graph and let k be an integer such
that rads(G) < k < diams(G) — 1. Then there are at least two vertices in
G with closed 3-stop eccentricity either k or k + 1.

Proof. Suppose to the contrary that v € V(G) is the only vertex with
closed 3-stop eccentricity either k or k 4+ 1. Let A = {u € V(G)|es(u) < k}
and B = {u € V(G)|es(u) > k + 1}. Notice that both A and B are non-
empty and AU B U {v} = V(G). Consider any x € A and y € B. Since
es(x) <k —1and e3(y) > k + 2, it follows from Proposition 3 that any z-y
path must contain a vertex with eccentricity either k or k + 1. However,
v is the only such vertex. Thus, v is a cut-vertex and A and B are not
connected in G —v. Let w and y be vertices such that eg(v) = ds(v,w,y).
Since e3(w) > e3(v) and e3(y) > es(v), both w and y must be in B. Now,
let w € A. Every path from u to w or y must go through v, so es(u) >
ds(u,w,y) = 2d(u,v) + ds(v,w,y) = 2d(u,v) + es(v). But this contradicts
the fact that es(u) < e3(v). ]

In every example that we have found, there are at least three vertices with
closed 3-stop eccentricity either k or k+ 1 for rads3(G) < k < diamz(G) — 1.

Conjecture 5. Let G be a connected graph and let £ be an integer such
that

rads(G) < k < diams(G) — 1.

Then there are at least three vertices in G with closed 3-stop eccentricity
either k or k£ + 1.

3. CLOSED k-sTOP RADIUS AND CLOSED k-STOP DIAMETER

In this section we study closed k-stop eccentricity. Proposition 1 can be
generalized for k > 4.

Proposition 6. Let G be a connected graph of order at least k, k € N. Then
G has at least k vertices that are closed k-stop peripheral.
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such that ex(z1) = d(z1,x2) +d(x2, x3)+ - -+ d(zk, 1) = ex(x2) = ex(v3)

Proof. Let x; € V(P;(G)). Then there exist vertices xo,z3,...,x; € V(G)
- =eg(xg). Thus z1,x9,..., 21 € V(P(G)). |

Also, Proposition 2 can be generalized for k = 4.

Proposition 7. For any connected graph G, we have
4
rady(G) < diam4(G) < grad4(G).

Proof. Let G be a connected graph. Suppose u € V(C4(G)) and v €
V(Py(G)). Furthermore, suppose that es(v) is attained by visiting w, z,
and y, not necessarily in that order. We must have w, z, and y € V(P4(QG)),
and eq(v) = eg(w) = eqg(x) = eq(y) = dy({v, w, x, y}).

Without loss of generality, we may assume that the minimum distance
among d(v,w), d(v,x), d(v,y), d(w,x), d(z,y), and d(w,y) is d(v,w). If
we now distinguish v and w from z and y, we may assume, without loss
of generality, that the distance from {v,w} to {z,y}, that is, the minimum
distance among d(v, z), d(v,y), d(w,z), and d(w,y), is d(v,y). Thus, v is
the vertex in common in these two distances. Now,

(4) rady(G) = e4q(u)

() > dy(u, w,z,y)

(6) = min(d(u, w) + d(w,z) + d(x,y) + d(y,u), d(u, z) + d(z,w)
(7) + d(w,y) + d(y,u), d(u,w) + d(w,y) + d(y, z) + d(z,u))

(8) > d(w,y) + d(w, x) + d(z,y).

The last inequality follows by applying the triangle inequality to each of
terms in the minimum. Thus, 4rads(G) > 4d(w,y) + 4d(w,x) + 4d(z,y).
On the other hand, 3diam4(G) = 3e4(v) = 3min(d(v, w)+d(w, z)+d(z,y)+
d(y,v),d(v,w) + d(w,y) + d(y,z) + d(z,v),d(v,z) + d(z,w) + d(w,y) +
d(y,v)) < 3d(v,w) + 3d(w, x) + 3d(z,y) + 3d(y, v).

From our initial assumptions, 3d(v, w) < d(z,y)+2d(w,y) and 3d(y,v) <
d(w,z) + 2d(w,y). Thus, we have 3diam4(G) < 3d(v,w) + 3d(w,z) +
3d(z,y) + 3d(y,v) < 4d(z,y) + 4d(w, z) + 4d(w,y) < 4rads(G). |

Conjecture 8. For any integer k > 2 and any connected graph G, we have

radi(G) < diamy(G) < Z b

1radk(G).
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Notice that for k& = 2, this conjecture reduces to the classical result for
ordinary distance that rad(G) < diam(G) < 2rad(G). We have shown
that the conjecture is true for £ = 3 and k£ = 4. However, for higher
values of k, the proof would have to take into account the order of the ec-
centric vertices w, x, and y of the peripheral vertex v in the last step of
equation 8. Suppose, for instance, that the vertices vi,vs,...,v; are ar-
ranged so that the length of a closed walk is minimized, that is, d(vi,ve) +
d(ve,v3) + -+ + d(vk—1,vk) + d(vg,v1) is as small as possible. If another
vertex v is included, we may wonder if the minimum length closed walk for
{v1,v9,..., vk, v} can always be achieved by inserting v in some location in
the list vy,vs,...,v or if the original vertices may also have to be rear-
ranged. If k < 3, the minimum can always be achieved by simply inserting
v. However, consider the example in Figure 2 for £ = 4. A minimum closed
walk containing {v1, ve, v3,v4} has length 8 and visits these four vertices in
order v1,vs9,v3,v4,v1 Or in reverse order vy, v4,v3,v2,v1. However, a mini-
mum closed walk containing {vy,vs,v3,v4, v} has length 11 and visits the
vertices in one of the following orders: vy, v3,vs, v, v4,v1, V1, V3, Vg, U, V2, V1,
v1,V92,V,V4, 03,01, OI V1,V4,0,V2,0V3, V1.

4. CLOSED k-STOP DISTANCE IN TREES

In this section we study the closed k-stop distance in trees. We start with
some observations and illustrations concerning closed k-stop distance.

//
/’1)3

Vg

Figure 2. The shortest closed walk including vy, va, v3,v4,v cannot be formed by
inserting v into the shortest closed walk including vy, va, v3, v4.
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Proposition 9. If G is a graph, and T is a spanning tree of G, then for
any vertices x1,xa,...,xx € V(G), dp({x1,x2,...,2k}) in G is at most
dk({ﬂ?l,fEQ, s 7'17147}) inT.

As aresult of Proposition 9 we have that rady(G) < rad(T') and diamy(G) <
diamy(T). For this reason we study trees next.

In a tree T, the upper inequalities (1), (2), and (3) actually become
equalities, so eg(v) = 2ser(v) for all v € V(T), rady(T) = 2srady(T)
and diamy(T) = 2sdiamy(T), where the srady(T) and sdiamy(T) are the
Steiner radius and diameter, respectively. A closed walk containing a set
of vertices traces every edge of a Steiner tree for those vertices twice. As
a consequence, we have the following observation, also noted independently
in [3].

Observation 10. Let T be a tree and let k > 2 be an integer. Then e (v)
is even, for allv € V(T).

For any positive integer k£ > 2 and connected graph G, the Steiner k-center
of G, sCi(Q), is the subgraph induced by the vertices v such that sey(v) =
srady(G). Notice that since the Steiner distance of two vertices is simply
the usual distance, sCy(G)=C(G). Oellermann and Tian found the following
relationship between Steiner k-centers of trees.

Theorem 11 [7]. Let k > 3 be an integer and T a tree of order greater than
k. Then sCx_1(T) C sCy(T).

Similarly, the Steiner k-periphery of a graph G, sPy(G), is the subgraph
induced by the vertices v such that sey(v) = sdiamy(G). When k = 2, notice
that sP5(G) is the usual periphery P(G). Henning, Oellermann, and Swart
found a relationship similar to the one above for the Steiner k-peripheries
of trees.

Theorem 12 [4]. Let k > 3 be an integer and T a tree of order greater than
k. Then sPy_1(T) C sPy(T).

Since rady(T) = 2srady(T) and diamg(T) = 2sdiamy(T) for a tree T, we
have sCy(T') = Cx(T) and sPy(T) = Pi(T). Thus, the results above produce
the following corollary.

Corollary 13. Let T be a tree of order n. Then C(T) C C5(T) and P(T) C
P3(T). Furthermore, for any k with 3 < k < n, we have Ci(T) C Cy+1(T)
and Pk(T) g Pk+1(T).
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We next present the only tree that is closed 3-stop self-centered.

Proposition 14. Let T be a tree. T is closed 3-stop self-centered if and
only if T = P, (n > 3).

Proof. f T = P, (n > 3), the result follows. For the converse, let T % P,
be a tree of order n > 3. Then T has three end-vertices x,y,z € V(P5(T))
such that diams(T) = dz(z,y,z). Let © = xo,21,...,2, = y be the
geodesic from = to y in T. Then e3(z) = d(z,y) + d(y, z) + d(z,z), and
es(z1) = d(x1,y) +d(y, z) + d(z,x1) < e3(x), and so T is not closed 3-stop
self-centered. ]

As a quick corollary of the above proof we have the following result.

Corollary 15. Let T be a tree. T is closed 3-stop self-peripheral if and only
if T = P, (n>3).

As we have seen already, the path P, has many special properties. The
next result shows that P, is the only tree that has the same closed k-stop
eccentricity for each vertex and for any k with 1 < k < n — 1. This result
follows as the path has only two end vertices and a unique path between
them.

Proposition 16. Let T be a tree of order n. Then ex(v) = 2n, for all
v e V(T), and for all k € {1,2,...,n — 1} if and only if T = P,, the path
of order n.

The following is a consequence of the Steiner distance in trees.

Proposition 17. Let T be a tree and k an integer with 1 < k <n. Then T
has at most k — 1 end vertices if and only if T is closed k-stop self-centered.

Proof. Let T be a tree with at most k£ — 1 end vertices, say they form the
set S = {x1,x9,...,25_1}, k > 3. Then for all v € V(G),

ex(v) = min. (d(00),601)) + d(0(21).6(z2)
- d(B().6aa)) + -+ dB(r).0(0) ).

where P(S) is the set of all permutations from P(S) onto P(S). Since T is
a tree with & — 1 end vertices, it follows that ex(v) = 2m, Yv € V(G).
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For the converse, assume that T is closed k-stop self-centered, and assume
to the contrary, that T has at least k end vertices, say y1,¥2,...,y:, for
t > k > 3. Let 2z, be the support vertex of y; and let S = {y2,¥3,..., Y1},
k > 3. Then

er(er) = i (a0:0).000) + (0. O00)

T d(0(ys).0()) + - + d(@(yk_n,e(zl))),

where P(S) is the set of all permutations from P(S) onto P(S). However,
er(y1) = 2 + ex(z1), which is a contradiction to T being closed k-stop self-
centered. ]

As a quick corollary of the above proof we have the following result.

Corollary 18. Let T be a tree and k an integer with 1 < k <n. Then T
has at most k—1 end vertices if and only if T is closed k-stop self-peripheral.

5. FURTHER RESEARCH

As seen in Section 3, Proposition 2 can be generalized for K = 4. The
following conjecture was posed in Section 3.

Conjecture (Section 3): For any integer k£ > 2 and any connected graph
G, we have

k
radi(G) < diamy(G) < 1
Chartrand, Oellermann, Tian, and Zou showed a similar result for Steiner
radius and diameter for trees.

radi(Q).

Theorem 19 [2]. If k > 2 is an integer and T is a tree of order at least k,
then

sradi(T) < sdiam(T) < ’ K

; sradg(T).

Since ey (v) = 2seg(v) for any vertex v in a tree, we have the corollary.

Corollary 20. If kK > 2 is an integer and T is a tree of order at least k,
then

k
radi(T) < diamg(T) < z

1radk(T).
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We have also been able to verify this conjecture for k = 3 and k = 4 for arbi-
trary connected graphs. As an interesting side note, Chartrand, Oellermann,
Tian and Zou conjectured that srady(G) < sdiamy(G) < %srad(G) for
any connected graph G [2]. This conjecture was disproven in [5], but our
conjecture for closed k-stop distance holds for the class of graphs used as a
counterexample to the Steiner conjecture.

We propose the extension of the study of centrality and eccentricity for
closed k-stop distance in graphs for k > 4.
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