DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

PDF

Discussiones Mathematicae Graph Theory 30(4) (2010) 671-685
DOI: https://doi.org/10.7151/dmgt.1522

n-ary TRANSIT FUNCTIONS IN GRAPHS

Manoj Changat,  Joseph Mathews

Department of Futures Studies
University of Kerala, Trivandrum, India

e-mail: mchangat@gmail.com
e-mail: jose_chingam@yahoo.co.in
Iztok Peterin

Institute of Mathematics and Physics, FEECS
University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
e-mail: iztok.peterin@uni-mb.si

Prasanth G. Narasimha-Shenoi

Department of Mathematics, Government College, Chittur
Palakkad - 678 104, India
e-mail: gnprasanth@gmail.com

Abstract

n-ary transit functions are introduced as a generalization of binary (2-ary) transit functions. We show that they can be associated with convexities in natural way and discuss the Steiner convexity as a natural n-ary generalization of geodesicaly convexity. Furthermore, we generalize the betweenness axioms to n-ary transit functions and discuss the connectivity conditions for underlying hypergraph. Also n-ary all paths transit function is considered.

Keywords: n-arity, transit function, betweenness, Steiner convexity.

2000 Mathematics Subject Classification: 52A01, O5C12.

References

[1] B. Bresar, M. Changat, J. Mathews, I. Peterin, P.G. Narasimha-Shenoi and A. Tepeh Horvat, Steiner intervals, geodesic intervals, and betweenness, Discrete Math. 309 (2009) 6114-6125, doi: 10.1016/j.disc.2009.05.022.
[2] M. Changat, S. Klavžar and H.M. Mulder, The All-Paths Transit Function of a Graph, Czechoslovak Math. J. 51 (126) (2001) 439-448.
[3] M. Changat and J. Mathew, Induced path transit function, monotone and Peano axioms, Discrete Math. 286 (2004) 185-194, doi: 10.1016/j.disc.2004.02.017.
[4] M. Changat and J. Mathew, Characterizations of J-monotone graphs, in: Convexity in Discrete Structures (M. Changat, S. Klavžar, H.M. Mulder, A. Vijayakumar, eds.), Lecture Notes Ser. 5, Ramanujan Math. Soc. (2008) 47-55.
[5] M. Changat, J. Mathew and H.M. Mulder, Induced path function, betweenness and monotonicity, Discrete Appl. Math. 158 (2010) 426-433, doi: 10.1016/j.dam.2009.10.004.
[6] M. Changat, J. Mathew and H.M. Mulder, Induced path transit function, betweenness and monotonicity, Elect. Notes Discrete Math. 15 (2003).
[7] M. Changat, H.M. Mulder and G. Sierksma, Convexities Related to Path Properties on Graphs, Discrete Math. 290 (2005) 117-131, doi: 10.1016/j.disc.2003.07.014.
[8] M. Changat, P.G. Narasimha-Shenoi and I.M. Pelayo, The longest path transit function and its betweenness, to appear in Util. Math.
[9] P. Duchet, Convexity in combinatorial structures, Rend. Circ. Mat. Palermo (2) Suppl. 14 (1987) 261-293.
[10] P. Duchet, Convex sets in graphs II. Minimal path convexity, J. Combin. Theory (B) 44 (1988) 307-316, doi: 10.1016/0095-8956(88)90039-1.
[11] P. Duchet, Discrete convexity: retractions, morphisms and partition problem, in: Proceedings of the conference on graph connections, India, (1998), Allied Publishers, New Delhi, 10-18.
[12] P. Hall, On representation of subsets, J. Lon. Mat. Sc. 10 (1935) 26-30, doi: 10.1112/jlms/s1-10.37.26.
[13] M.A. Morgana and H.M. Mulder, The induced path convexity, betweenness and svelte graphs, Discrete Math. 254 (2002) 349-370, doi: 10.1016/S0012-365X(01)00296-5.
[14] H.M. Mulder, The Interval Function of a Graph. Mathematical Centre Tracts 132, Mathematisch Centrum (Amsterdam, 1980).
[15] H.M. Mulder, Transit functions on graphs (and posets), in: Convexity in Discrete Structures (M. Changat, S. Klavžar, H.M. Mulder, A. Vijayakumar, eds.), Lecture Notes Ser. 5, Ramanujan Math. Soc. (2008) 117-130.
[16] L. Nebeský, A characterization of the interval function of a connected graph, Czechoslovak Math. J. 44(119) (1994) 173-178.
[17] L. Nebeský, A Characterization of the interval function of a (finite or infinite) connected graph, Czechoslovak Math. J. 51(126) (2001) 635-642.
[18] E. Sampathkumar, Convex sets in graphs, Indian J. Pure Appl. Math. 15 (1984) 1065-1071.
[19] M.L.J. van de Vel, Theory of Convex Structures (North Holland, Amsterdam, 1993).

Received 11 November 2009
Accepted 2 March 2010


Close