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1. Introduction and Preliminaries

Transit functions in graphs where introduced in [15] to study three basic
notions in metric graph theory, namely the interval, convexity and between-
ness. It is a set function defined for every pair of points on a set V sat-
isfying three simple axioms. Well studied transit functions on graphs are
the geodesic, the induced and the all paths transit functions. These three
transit functions and their convexities are extensively studied; some relevant
references are: for the geodesic transit function [11, 14, 16, 17, 19], for the
induced-path transit function [10, 13, 3, 4], and for the all paths transit func-
tion [2, 9, 18]. Path transit functions and their associated convexities are
surveyed in [7]. A transit function on a set V is a function R : V × V → 2V

satisfying the following axioms for any u, v in V .

(t1) u ∈ R(u, v);
(t2) R(u, v) = R(v, u);
(t3) R(u, u) = {u}.

The three axioms of the transit function defines three basic betweenness
properties, namely, (t1) implies that every element u in V is between u and
any other element v, (t2) implies that if x is between u and v, then x is
also between v and u and (t3) implies that no element different from u is
between u and u for any element u in V . Non-trivial betweenness axioms
where introduced by Mulder in [15] and considered also in [8]. Let R be any
transit function on a non-empty set V . The betweenness axioms are:

(b1) x ∈ R(u, v) ⇒ v 6∈ R(u, x);
(b2) x ∈ R(u, v) ⇒ R(u, x) ⊆ R(u, v);
(b3) x ∈ R(u, v), y ∈ R(u, x) ⇒ x ∈ R(y, v).

Another stronger betweenness axiom is the monotone axiom (m) defined as:

(m) x, y ∈ R(u, v) ⇒ R(x, y) ⊆ R(u, v).

A transit function satisfying the axioms (b1) and (b2) is known as a between-

ness by Mulder [15], see also [7, 6, 5], while that satisfying (b2) and (b3) is
known as geometric transit function by van de Vel [19] and Nebesky [16]. It is
easy to observe that for a given nonempty set V , a function R : V ×V → 2V ,
satisfying the axioms (t1), (t2) and (b1) is a transit function in the sense
that it satisfies the idempotent axiom (t3).

A family C of subsets of a nonempty set V is convexity or alignment of
V , if C fulfills the following conditions:
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(1) ∅, V ∈ C;

(2) if Ci ∈ C, i = 1, 2, . . ., then ∩iCi ∈ C;

(3) for a sequence C1 ⊆ C2 ⊆ · · · ⊆ Cn in C, n ≥ 1, also ∪n
i=1

Ci ∈ C.

The elements of C are known as convex sets. For a subset W of V the
smallest convex set containing W is called the C-convex hull of W or convex

hull of W denoted as 〈W 〉C . Let R be a transit function on a nonempty set
V . A set W ⊆ V is called as R-convex if R(u, v) ⊆ W , for every u, v ∈ W .
Every R(u, v) is clearly R-convex, if R satisfies the monotone axiom (m). It
is easy to verify that the family of all R-convex sets CR on V is a convexity on
V in which every singleton set is convex. Convexity in which every singelton
is convex is called an S1-convexity [19].

The associated convexity of a transit function R is known as interval
convexities (van de Vel [19]) or 2-ary convexities in the sense that the convex
hull of a subset A of V (the smallest convex subset containing A) can be
generated ultimately by 2 point sets. That is, the convex hull of A can be
obtained by taking the union of R(u, v), for every u, v ∈ A and iterating this
operation until we obtain no more new vertices and at that stage we have
the R-convex hull of A. An interesting question is that whether an n-ary
convexity (n > 2) is the associated convexity of a transit function of arity
n > 2? Trying to answer this question, we will end up in defining a transit
function of arity more than 2. Once we define an n-ary transit function R
on V , we can also think of how the betweenness axioms can be extended
for R. One can extend meaningfully the axioms (b1), (b2) and (m), but we
could not find an analogue of (b3) for n ≥ 3. The study of transit functions
of higher arity is also motivated by natural examples in graphs. The n-
ary analogue of the geodesic interval function I(u, v), namely the Steiner
interval S(u1, u2, . . . , un) and its betweenness properties has been initiated
recently in [1]. There specifically, the class of graphs for which the Steiner
interval S(u1, u2, . . . , un) satisfies the relation S(u1, . . . , un) = ∪i6=jI(ui, uj)
is characterized. This property is defined as the the union property of the
n-Steiner interval in [1]. When n = 2 the union property trivially holds in
all graphs. It turns out that, as soon as n > 3, this class coincides with
the graphs in which the n-Steiner interval enjoys the betweenness axiom
(b2) and the monotone axiom (m). For n = 3, it is proved in [1] that the
class of graphs for which the n-Steiner interval satisfy the union property
is properly contained in the class of graphs for which the n-Steiner interval
satisfy the monotone axiom (m) which is properly contained in the class of
graphs satisfying the betweenness axiom (b2). It would be interesting to
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study the n-ary analogues of the other well studied binary transit functions
in graphs, namely the induced path transit function and the all paths transit
function, in a similar way as attempted for n-Steiner intervals in [1].

In this paper, we make an attempt to study the n-ary analogue of the
all paths transit functions for n ≥ 2. It turns out that the union property,
the betweenness axiom (b2) and the monotone axiom (m) holds for any con-
nected graph for the n-ary all paths transit function. The paper is organized
as follows. We consider only finite connected graphs.

In Section 2, we introduce the n-ary transit function and its associated
convexity. We consider the most prominent example of the n-ary transit
functions in graphs, namely the n-Steiner intervals and its associated con-
vexity. In Section 3, we define the betweenness axioms analogous to that of
the binary transit functions and consider the implications of these between-
ness axioms with specific examples. We also introduce the concept of an
underlying hypergraph of an n-ary transit function and discuss a prelimi-
nary result on its connectivity using the betweenness axioms. In Section 4,
we discuss the n-ary analogue of the binary all paths transit function, its
union property, the betweenness axiom (b2) and montone axiom (m) and
prove that all these properties hold for any connected graph.

2. n-ary Transit Functions and Associated Convexities

One may call the transit function R defined using the axioms (t1), (t2) and
(t3) as “binary transit function”, since it associates with every pair of points
u, v the function R(u, v). In this section, we generalize the transit function
from binary to n-ary, n > 2. By relaxing the idempotent axiom, we may
obtain non-trivial convex sets even though the singletons are not a convex
set. Let V be a non-empty set. Then a function R: V × V × . . . × V

︸ ︷︷ ︸

n times

→ 2V

is a transit function of arity n (or n-ary transit function) on V if R satisfies
the following axioms.

(t1) u1 ∈ R(u1, u2, . . . , un);

(t2) R(u1, u2, . . . , un) = R(π(u1, u2, . . . , un)) for all ui ∈ V , where
π(u1, u2, . . . , un) is any permutation of (u1, u2, . . . , un);

(t3) R(u, u, . . . , u) = {u} for all u ∈ V .

Note that from (t1) and (t2) it immediately follows that ui ∈ R(u1, u2, . . . ,
un), for all ui ∈ V , i = 1, 2, . . . , n. Similar to the binary case, if V is the
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vertex set of a graph G and R an n-ary transit function on V , then R is
called an n-ary transit function on G. We observe some basic results on the
convexity associated with an n-ary transit function.

If R is a transit function on V , a subset W of V is R-convex if
R(u1, u2, . . . , un) ⊆ W for any u1, u2, . . . , un ∈ W .

Let C be a convexity on V . We say that C is of arity ≤ n if C = {C ⊆ V |
F ⊆ C, |F | ≤ n ⇒ 〈F 〉C ⊆ C}. Again refer van de Vel [19], for a discussion
on n-ary convexities.

Proposition 1. C is an S1-convexity on V of arity ≤ n if and only if C is

an R-convexity for some n-ary transit function R on V .

Proof. By definition of an n-ary transit function R, the family of R-convex
sets CR of R is an S1-convexity of arity at most n.

Conversely, we prove that any S1-convexity C of arity at most n is an
R-convexity for an n-ary transit function R. For that, let C be an S1-
convexity on V with arity at most n on V . Define R(u1, u2, . . . , un) =
〈{u1, u2, . . . , un}〉C . Then R is clearly an n-ary transit function on V . We
prove that CR = C. Let first C ∈ CR and F ⊆ C with |F | ≤ n. By the
definition of R we have 〈F 〉CR

⊆ C. Therefore C ∈ C and CR ⊆ C.
Now suppose C ∈ C. Let u1, u2, . . . , un ∈ C. Then u1, u2, . . . , un ∈

〈{u1, u2, . . . , un}〉C . Now R(u1, u2, . . . , un) = 〈{u1, u2, . . . , un}〉C ⊆ C. There-
fore R(u1, u2, . . . , un) ⊆ C which implies that C ∈ CR. Therefore C ⊆ CR

and hence C = CR.

The prime example of a binary transit function on a graph is the geodesic
interval function I. The n-ary analogue of I, the Steiner interval function is
considered in [1]. We briefly discuss the definition of n-Steiner interval and
consider n-Steiner convex sets of a graph G.

Example 2. Let G be a graph. A Steiner tree of a multiset W ⊆ V (G), is
a minimum order tree in G that contains all vertices of W . The n-Steiner

interval S(u1, u2, . . . , un) consists of all vertices in G that lie on some Steiner
tree with respect to (u1, u2, . . . , un). Furthermore, a set A ⊆ V (G) is n-
Steiner convex if it is closed for n-Steiner intervals, i.e. S(u1, u2, . . . , un) ⊆ A
for every n-multi subset {u1, u2, . . . , un} of A.

We can easily verify that 2-Steiner intervals are precisely the geodesic inter-
vals I and thus the n-Steiner interval S naturally generalize I.

It can be seen that every n+1-Steiner convex subset is n-Steiner convex,
but converse need not hold.
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Theorem 3. If a set W is (n + 1)-Steiner convex, then it is also n-Steiner

convex.

Proof. First note that the n-Steiner interval S(u1, u2, . . . , un) is precisely
the (n+1)-Steiner interval S(u1, u1, u2, . . . , un). Thus if W is (n+1)-Steiner
convex, we have S(u1, u2, . . . , un+1) ⊆ W for all u1, u2, . . . , un+1 ∈ W and
S(u1, u2, . . . , un) = S(u1, u1, u2, . . . , un) ⊆ W for every u1, u2, . . . , un ∈ W .
Hence W is n-Steiner convex.

We prove that the converse is not true by constructing an example from the
subdivision of the complete graph Kn+1. In the case for n = 3 presented
on the following figure, the outer cycle is 2-Steiner convex but not 3-Steiner
convex, since for W = {u, v, w}, S(W ) contains x, y, t, s.

Figure 1. 2-Steiner convex but not 3-Steiner convex.

The general case is treated in the following theorem.

Theorem 4. There exists a graph G with vertex set V that contains an

n-Steiner convex subset which is not (n+1)-Steiner convex for every n ≥ 2.

Proof. Consider the complete graph Kn+1 with vertex set U = {u1,
u2, . . . , un, un+1} and replace each edge of Kn+1 by a path of length n + 1.
Let the resulting graph be H. Then add a vertex un+2 and join un+2 with
ui for every i = 1, . . . , n + 1 by paths of length n. Let the new graph be G.
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We claim the following: H is a subgraph of G which is n-Steiner convex,
but not (n + 1)-Steiner convex. (Note that the graph on the above figure is
the example for n = 2.)

Let A be an n-subset of U . Note that for i 6= j there is unique ui, uj-
shortest path of length n + 1 and unique shortest ui, uj-path that contains
un+2 is of length 2n. Let ui ∈ A. A subdivided star with the center ui

and leaves in A − {ui} contains (n − 1)(n + 1) = n2 − 1 edges. Clearly
this is a Steiner tree for A, since the distance between any two vertices of
A is n + 1. Thus a Steiner tree for A has n2 − 1 edges. Suppose that a
Steiner tree for T contains a vertex x ∈ V (G) − V (H). Let uj be a vertex
of A that is closest to x. If a tree T with vertices of A contains only uj , x-
path P outside of H, T is not a Steiner tree since T − P still contains
all vertices of A. Hence T contains a path ui → un+2 → uj , for some
ui, uj ∈ A.

Let k be the number of ui, un+2-shortest paths in T . By the above,
2 ≤ k ≤ n. If k = n we get T as a subdivided star with center un+2 and n
leaves with vertices from A. However T has n2 edges which is not possible
for a Steiner tree on A. If T has 2 ≤ k < n such paths, it contains kn edges
in G − H and some edges in H that must cover n − k vertices of A, not
covered by these paths. For these vertices we need additional (n− k)(n+1)
edges, altogether kn + n2 − kn + n − k = n2 + n − k > n2 − 1 edges, which
is again not possible for a Steiner tree for A.

Let now B be a multi set with n elements that are all in V (H). We
have already proved this, when B ⊆ U and all the vertices in B are different.
The same arguments hold when some vertices of B ⊆ U are repeated, only
the number of edges is smaller in a Steiner tree for B. Let y ∈ B be from
V (H) − U . By the structure of G, y lies on a shortest ui, uj-path, i 6= j.
Again by the same reasoning as before no vertex of V (G)− V (H) can be in
a Steiner tree for B, since otherwise we can construct (as before) the tree
with less edges that contains B.

Thus H (as a subgraph of G) is closed for n-Steiner trees and hence n-
Steiner convex. However it is not hard to see that (V (G)− V (H))∪U form
unique Steiner tree for U and the Steiner-convex hull of S(u1, u2, . . . , un+1),
〈S(u1, u2, . . . , un+1)〉SC = V (G), which is not a subset of V (H). Hence
V (H) is n-Steiner convex but not (n + 1)-Steiner convex.



678 M. Changat, J. Mathews, I. Peterin and ...

3. Betweenness

We generalize the betweenness axioms (b1), (b2) and (m) in the case of an
n-ary transit function. The following betweenness axioms can be considered
for an n-ary transit function R. For any u1, u2, . . . , un, x, x1, x2, . . . , xn ∈ V ,
define

(b1) x ∈ R(u1, u2, . . . , un), x 6= uk ⇒ uk 6∈ R(u1, u2, . . . , x, . . . , un).

(b2) x ∈ R(u1, u2, . . . , un) ⇒ R(x, u2, . . . , un) ⊆ R(u1, u2, . . . , un).

(m) ∀ x1, x2, . . . , xn ∈ R(u1, u2, . . . , un) ⇒ R(x1, x2, . . . , xn) ⊆ R(u1, u2,
. . . , un).

Observation 5. (m) ⇒ (b2) for any n-ary transit function.

Analogous to the binary case which is explained in [8], we have examples of
transit functions to show that the above betweenness axioms taken one at
a time are independent, except when (m) implies (b2). The illustration is
given in the Table 1.

Table 1. n-ary transit functions with possible betweenness relations.
× denotes that the corresponding axiom is satisfied.

(b1) (b2) (m) Example

× 6

× 7

× × 8

× × 9

× × × 10

11

In the following examples R will be an n-ary transit function on V with
|V | > n + 2. Thus R(u, u, . . . , u) = {u} holds and R(u1, u2, . . . , un) equals
to R(π(u1, u2, . . . , un)) for all possible permutations π. Also v1, v2, . . . , vn

are some fixed vertices of V .

Example 6. Let A = R(v1, v2, . . . , vn) = {v1, v2, . . . , vn+1}, B = R(v2, . . . ,
vn+1) = {v2, v3, . . . , vn+2} and R(u1, u2, . . . , un) = {u1, u2, . . . , un} for any
other n-tuple. We can see that R satisfies (b1) but not (b2), since vn+1 ∈ A
but B * A. By the same reason also (m) is not fulfilled.
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Example 7. Define R(v1, v2, . . . , vn) = V , R(v2, . . . , vn+1) = {v2, . . . , vn+1},
C = R(v1, v2, . . . , v2) = {v1, v2, v3}, A = R(v1, v3, . . . , v3) = {v1, v2, v3},
B = R(v2, v3, . . . , v3) = {v1, v2, v3} and in all the other cases R(u1, u2, . . . ,
un) = {u1, u2, . . . , un}. We can see that R satisfies (b2) but not (b1), see
A and B, and not (m), since v3 /∈ R(u1, u2, . . . , un−2, v1, v2) = D if every
ui 6= v3, but C * D.

Example 8. Let R(v1, v2, . . . , v2) = {v1, v2, v3}, R(v1, v3, . . . , v3) = {v1, v3},
R(v1, v4, . . . , v4) = {v1, v2, v3, v4}, R(v2, v3, . . . , v5) = {v2, v3, v5} and in all
the other cases R(u1, u2, . . . , un) = {u1, u2, . . . , un}. We can see that R sat-
isfies (b2) and (b1) but not (m) by a similar reason as in previous example.

Example 9. We can see that for R(u1, u2, . . . , un) = V , R satisfies (m) and
(b2) but not (b1), since |V | > n + 2 > n.

Example 10. For R(v1, v2, . . . , vn) = V and R(u1, u2, . . . , un) = {u1, u2,
. . . , un} for the rest, we can see that R satisfies (m), (b2) and (b1).

Example 11. Let A = R(v1, v2, . . . , vn) = {v1, v2, . . . , vn+1}, R(v2, . . . ,
vn+1) = V and R(u1, u2, . . . , un) = {u1, u2, . . . , un} for any other n-tuple.
We can see that R does not satisfy any of the axioms (b1), (b2) and (m).
For vn+1 6= v1 and vn+1 ∈ A, but v1 ∈ R(vn+1, v2 . . . , vn), hence (b1) is not
fulfilled. Also vn+1 ∈ A, but V * A and hence (b2) and (m) are not fulfilled.

Given a binary transit function R on a non-empty set V , one can define an
underlying graph GR with vertex set V and uv is an edge of GR if and only
if R(u, v) = {u, v}. The underlying graphs of ordinary transit functions are
discussed in [6, 14, 2]. It is proved in [6] that if R is a betweenness on V ,
then the underlying graph GR of V is connected and both axioms (b1) and
(b2) are necessary for the connectedness of GR. Analogous to the binary
case, for an n-ary transit function R, we obtain the underlying hypergraph
which we denote as HR. We first define a hypergraph. A hypergraph H
is a pair (V, E) where V is a nonempty finite set and E is a collection of
subsets of V . The members of E are called edges of H. Let R be any tran-
sit function on V . Then the underlying hypergraph HR on V is defined
as follows. V is the vertex set of HR and E is an edge of HR if and only
if E = R(u1, u2, . . . , un) = {u1, u2, . . . , un}. Two vertices u and v of a
hypergraph H are connected if there exists a sequence (E1, E2, . . . , En)
n ≥ 1, of edges of H such that u ∈ E1, v ∈ En and Ei ∩ Ei+1 6= ∅ for
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1 ≤ i ≤ n − 1. Hypergraph H is connected if every pair of vertices u and v
are connected.

Let R be any transit function on V . For n = 2, we can easily see that
the hypergraph HR becomes the underlying graph GR of R.

For an n-ary transit function R, n > 2, we have the following proposi-
tion, which is an analogue of the binary transit proved in [6].

Proposition 12. Let R be an n-ary transit function on V with |V | > n. If

R satisfies (b1) and (b2), then HR is connected.

Proof. Let V = {v1, v2, . . . , vm}, m > n. Consider u, v ∈ V (G). Let us de-
note u = u1 and v = up for some positive integer p. Consider R(v, u, . . . , u).
Suppose |R(v, u, . . . , u)| > 2, then there exists u2 ∈ R(v, u, . . . , u) such that
u2 6= u, v. Since R satisfies (b2) axiom, R(v, u2, . . . , u2) ⊆ R(v, u, . . . , u) and
R(u, u2, . . . , u2) ⊆ R(v, u, . . . , u). Also since R satisfies (b1) axiom, both
R(v, u2, . . . , u2) and R(u, u2, . . . , u2) are proper subsets of R(v, u, . . . , u). If
any one of these proper subsets contains more than 2 elements, by applying
the construction described above, we can divide it into two proper sub-
sets. Since R(v, u, . . . , u) is finite, this process cannot continue indefinitely.
Hence after a finite number of steps we get distinct vertices u2, u3, . . . , up−1 ∈
R(v, u, . . . , u) such that |R(ui+1, ui, . . . , ui)| = 2 for i = 0, 1, . . . , p−1. Since
|R(ui+1, ui, . . . , ui)| = 2, Ei = {ui, ui+1} is an edge, for i = 0, 1, . . . , n and
also Ei ∩ Ei+1 = {ui+1}. Hence E0, E1, . . . , Ep is a u, v-path in HR. Hence
HR is connected.

As in the binary case, we can show that both axioms (b1) and (b2) are
necessary for the connectedness of HR. As an application of the celebrated
Hall’s matching theorem (marriage theorem) for bipartite graphs [12], it is
possible to establish the existence of an n-ary transit function R satisfying
(b1), but not (b2) with disconnected underlying hypergraph HR. For com-
pleteness, we state the Hall’s theorems and prove the existence of such a
transit function.

Note that in a bipartite graph G, a matching in G is a set of edges S
such that any two edges in S are pairwise disjoint and a matching is maximal

if for any edge in e ∈ E \ S, S ∪ {e} is not a matching. A perfect matching

is a matching such that every vertex is incident to some edge in S.

Theorem 13 (Hall’s Marriage Theorem [12]). Let G be a bipartite graph

with bipartition U and V . Then there is a maximal matching from U to V
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if and only if Hall’s condition is satisfied: |N(A)| ≥ |A| for all subsets A of

U . Here N(A) denotes the set of neighbors of the vertices in A.

Theorem 14 (Hall’s marriage theorem on regular bipartite graphs [12]). If

G is a k-regular bipartite graph for k > 1, then G has a perfect matching.

We construct (n− 1)-bipartite graphs as follows. Let U and V be the set of
all k-tuples and (k+1)-tuples, respectively, of distinct integers 1, 2, . . . , 2n+1
(for k = 2, 3, . . . , n, respectively) so that (a1, a2, . . . , ak) is such that i ≤ j ⇒
ai ≤ aj. Define edges of G as follows. If u ∈ U and v ∈ V , then (u, v) is
an edge of G if and only if u is a proper subset of v. Then G is a bipartite
graph. Thus we have (n−1)-bipartite graphs. Each of these bipartite graphs
satisfies the conditions of the Halls’s marriage theorem, because each vertex
in U has more than one neighbor. Therefore for any subset A of U , we have
|N(A)| ≥ |A|. Thus by Hall’s theorem, there exists a maximal matching
from U to V . In fact for k = n, we have that both U and V have the same
number of elements and the degree of a vertex in U is the same as the degree
of a vertex in V which is equal to k +1. Hence when k = n, G has a perfect
matching by Hall’s theorem on regular bipartite graphs. Therefore when
k = n, two distinct n-tuples are mapped to two distinct (n + 1)-tuples.

Now, we use the edges of the maximal matching in all the bipartite
graphs for k = 1, 2, . . . , n − 1, as well as the edges of the regular bipartite
graph when k = n to define the required n-ary transit function R. There-
fore the vertex set (U, V ) of the bipartite graph G can be considered as U
consists of all n-tuples and V consists of subsets of cardinality 3 ≤ n+1 (by
considering the tuples of V as subsets).

Let uv be an edge of the maximal matching given by Hall’s theorem,
for k = 2, 3, . . . , n, with coresponding tuples u = (u1, u2, . . . , un) and v =
(y1, y2, . . . , yn+1). Define R as R(u, u, . . . , u) = {u} and R(u1, u2, . . . , un) =
{y1, y2, . . . , yn+1}.

Clearly R is an n-ary transit function satisfying the (b1) axiom and the
underlying hypergraph HR of R has no edges and so HR is disconnected. It
is to be noted that R does not satisfy the (b2) axiom, as any two distinct
vertices of U when k = n are mapped by R into two distinct subsets of equal
cardinality and hence one cannot be a subset of the other. Therefore R fails
to satisfy the (b2) axiom. Thus, we have proved the following theorem.

Theorem 15. There exists an n-ary transit function R satisfying the (b1)-
axiom, but not the (b2)-axiom, with disconnected underlying hypergraph HR.
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We illustrate the above theorem with an example for n = 3. The actual
construction of an arbitrary n-ary transit function may not be easy.

Example 16. (R satisfies (b1) but not (b2)); and GR is not connected.
Let V = {1, 2, 3, 4, 5, 6, 7} and let R be a 3-ary transit function, defined
on V as follows. There are 35 distinct 3 tuples and 4 tuples with distinct
elements. We define R on distinct 3 tuples as follows.

R(1, 2, 3) = {1, 2, 3, 4}, R(1, 2, 4) = {1, 2, 4, 5}, R(1, 2, 5) = {1, 2, 3, 5},
R(1, 2, 6) = {1, 2, 3, 6}, R(1, 2, 7) = {1, 2, 3, 7}, R(1, 3, 4) = {1, 3, 4, 5},
R(1, 3, 5) = {1, 3, 5, 6}, R(1, 3, 6) = {1, 3, 6, 7}, R(1, 3, 7) = {1, 3, 5, 7},
R(1, 4, 5) = {1, 4, 5, 6}, R(1, 4, 6) = {1, 4, 6, 7}, R(1, 4, 7) = {1, 2, 4, 7},
R(1, 5, 6) = {1, 2, 5, 6}, R(1, 5, 7) = {1, 2, 5, 7}, R(1, 6, 7) = {1, 2, 6, 7},
R(2, 3, 4) = {2, 3, 4, 6}, R(2, 3, 5) = {2, 3, 4, 5}, R(2, 3, 6) = {2, 3, 5, 6},
R(2, 3, 7) = {2, 3, 4, 7}, R(2, 4, 5) = {2, 4, 5, 7}, R(2, 4, 6) = {1, 2, 4, 6},
R(2, 4, 7) = {2, 4, 6, 7}, R(2, 5, 6) = {2, 5, 6, 7}, R(2, 5, 7) = {2, 3, 5, 7},
R(2, 6, 7) = {2, 3, 6, 7}, R(3, 4, 5) = {3, 4, 5, 6}, R(3, 4, 6) = {1, 3, 4, 6},
R(3, 4, 7) = {1, 3, 4, 7}, R(3, 5, 6) = {3, 5, 6, 7}, R(3, 5, 7) = {3, 4, 5, 7},
R(3, 6, 7) = {3, 4, 6, 7}, R(4, 5, 6) = {2, 4, 5, 6}, R(4, 5, 7) = {1, 4, 5, 7},
R(4, 6, 7) = {4, 5, 6, 7}, R(5, 6, 7) = {1, 5, 6, 7}.

There are 21 distinct 3 tuples with one element repeating. R on such 3
tuples as follows.

R(1, 1, 2) = R(1, 2, 2) = {1, 2, 3}, R(1, 1, 3) = R(1, 3, 3) = {1, 3, 4},
R(1, 1, 4) = R(1, 4, 4) = {1, 4, 5}, R(1, 1, 5) = R(1, 5, 5) = {1, 5, 6},
R(1, 1, 6) = R(1, 6, 6) = {1, 6, 7}, R(1, 1, 7) = R(1, 7, 7) = {1, 2, 7},
R(2, 2, 3) = R(2, 3, 3) = {2, 3, 4}, R(2, 2, 4) = R(2, 4, 4) = {2, 4, 5},
R(2, 2, 5) = R(2, 5, 5) = {2, 5, 6}, R(2, 2, 6) = R(2, 6, 6) = {2, 6, 7},
R(2, 2, 7) = R(2, 7, 7) = {2, 3, 7}, R(3, 3, 4) = R(3, 4, 4) = {3, 4, 5},
R(3, 3, 5) = R(3, 5, 5) = {3, 5, 6}, R(3, 3, 6) = R(3, 6, 6) = {1, 3, 6},
R(3, 3, 7) = R(3, 7, 7) = {3, 4, 7}, R(4, 4, 5) = R(4, 5, 5) = {4, 5, 6},
R(4, 4, 6) = R(4, 6, 6) = {4, 6, 7}, R(4, 4, 7) = R(4, 7, 7) = {4, 5, 7},
R(5, 5, 6) = R(5, 6, 6) = {5, 6, 7}, R(5, 5, 7) = R(5, 7, 7) = {1, 5, 7},
R(6, 6, 7) = R(6, 7, 7) = {3, 6, 7}; and R(u, u, u) = {u} for all u ∈ V .

We have a simple example of a transit function R satisfying (b2), but not
(b1) with disconnected HR.

Example 17. Define R(u1, u2, . . . , un) = V (G) for all u1, u2, . . . , un ∈ V (G)
and R(u, u, . . . , u) = {u} with | V (G) |> n. It can be verified that R satisfies
(b2) but not (b1) and that HR is totally disconnected.
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4. n-ary All Paths Transit Function of a Graph

Let G = (V,E) be a connected graph. The binary all paths transit function

A of G is defined as A(u, v) = {w ∈ V |w lies on some u, v-path in G}. A
block of a graph is a maximal connected subgraph without a cut vertex. A
graph G is called a block graph if and only if every block of G is a clique. A
tree of blocks in G is a connected subgraph such that, whenever it contains
two distinct vertices u and v of some block of G, it contains the whole block.
Let (u1, u2, . . . , un) be an n-tuple of V ×V ×· · ·×V . The n-ary analogue of
the all paths transit function denoted as An(u1, u2, . . . , un) is defined as the
set of vertices belonging to the smallest tree of blocks containing the multi
set {u1, u2, . . . , un}. We can easily verify that when n = 2, A2 is precisely
the all paths transit function A of G. If every element of {u1, u2, . . . , un}
belongs to the same block of G, then An(u1, u2, . . . , un) induces the block of
G containing the multi set {u1, u2, . . . , un}. Note that if G is itself a block,
then the family of An-convex sets in G is just the trivial convexity consisting
of the empty set ∅, all the singletons and V just as the case of A-convex
sets. Note also that for every set V the n-ary transit function An satisfies the
monotone axiom (m). Analogous to the union property of n-Steiner interval
S, we say that the n-ary all paths transit function An(u1, u2, . . . , un) satisfy
the union property if An(u1, . . . , un) = ∪i6=jA(ui, uj), where A is the binary
all paths transit function of G.

To understand the structure of An(u1, u2, . . . , un) more clearly, we use
the intersection graph of blocks of the graph G, denoted as B(G), which
is defined as the graph whose vertices correspond to the blocks of G and
two blocks will form an edge in the intersection graph if the corresponding
blocks have a common cut vertex. It is well-known and also is trivial to
verify that the graph B(G) is a block graph in the sense that every block
of B(G) forms a clique. It can be easily verified that a tree of blocks in
G correspond to some Steiner tree in B(G) and conversely. For n-Steiner
intervals, the following theorem is proved in [1]:

Theorem 18 [1]. Let G be a connected graph and n > 3. The following

statements are equivalent:

(i) G is a block graph,

(ii) the n-Steiner interval on G satisfies (m),

(iii) the n-Steiner interval on G satisfies (b2),

(iv) the n-Steiner interval on G satisfies the union property.
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We have the following theorem.

Theorem 19. Let G be a connected graph and n ≥ 2 and An be the n-ary

all paths transit function of G. The following statements are equivalent:

(i) the An on G satisfies (m),

(ii) the An on G satisfies (b2),

(iii) the An on G satisfies the union property.

Proof. The theorem can be proved using Theorem 18. For this, consider
the graph B(G) of G. Since B(G) is a block graph and An(u1, u2, . . . , un)
correspond to an n-Steiner interval in B(G) and by Theorem 18, the con-
dition (i), (ii) and (iii) are equivalent for n > 3. It can be easily verified
that for n = 3 also the conditions (i), (ii) and (iii) hold. Hence the theorem
follows.

We conclude the paper with an interesting question, namely, what will be
the n-ary analogue of the induced path transit function of a connected graph
and what about its betweenness and convexity properties?
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