DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

PDF

Discussiones Mathematicae Graph Theory 29(2) (2009) 275-292
DOI: https://doi.org/10.7151/dmgt.1447

ON ODD AND SEMI-ODD LINEAR PARTITIONS OF CUBIC GRAPHS

Jean-Luc Fouquet, Henri Thuillier, Jean-Marie Vanherpe

L.I.F.O., Faculté des Sciences, B.P. 6759
Université d'Orléans
45067 Orléans Cedex 2, France

Adam P. Wojda

Wydzia Matematyki Stosowanej
Zakad Matematyki Dyskretnej
AGH, Al. Mickiewicza 30, 30-059 Kraków, Poland

Abstract

A linear forest is a graph whose connected components are chordless paths. A linear partition of a graph G is a partition of its edge set into linear forests and la(G) is the minimum number of linear forests in a linear partition.

In this paper we consider linear partitions of cubic simple graphs for which it is well known that la(G) = 2. A linear partition L = (LB,LR) is said to be odd whenever each path of LB∪LR has odd length and semi-odd whenever each path of LB (or each path of LR) has odd length.

In [2] Aldred and Wormald showed that a cubic graph G is 3-edge colourable if and only if G has an odd linear partition. We give here more precise results and we study moreover relationships between semi-odd linear partitions and perfect matchings.

Keywords: Cubic graph, linear arboricity, strong matching, edge-colouring.

2000 Mathematics Subject Classification: Primary 05C70;
Secondary 05C38.

References

[1] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs III, Cyclic and Acyclic Invariant, Math. Slovaca 30 (1980) 405-417.
[2] R.E.L. Aldred and N.C. Wormald, More on the linear k-arboricity of regular graphs, Australas. J. Combin. 18 (1998) 97-104.
[3] J.C. Bermond, J.L. Fouquet, M. Habib and B. Peroche, On linear k-arboricity, Discrete Math. 52 (1984) 123-132, doi: 10.1016/0012-365X(84)90075-X.
[4] J.A. Bondy, Balanced colourings and the four color conjecture, Proc. Am. Math. Soc. 33 (1972) 241-244, doi: 10.1090/S0002-9939-1972-0294173-4.
[5] M. Habib and B. Peroche, La k-arboricité linéaire des arbres, Annals of Discrete Math. 17 (1983) 307-317.
[6] F. Harary, Covering and Packing in graphs I, Ann. New York Acad. Sci. 175 (1970) 198-205, doi: 10.1111/j.1749-6632.1970.tb56470.x.
[7] I. Holyer, The NP-completeness of edge coloring, SIAM J. Comput. 10 (1981) 718-720, doi: 10.1137/0210055.
[8] F. Jaeger, Etude de quelques invariants et problèmes d'existence en théorie des graphes, Thèse d'Etat, IMAG Grenoble, 1976. Proc 10th Ann. Symp. on Theory of Computing (1978) 216-226.
[9] C. Thomassen, Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5, J. Combin. Theory (B) 75 (1999) 100-109, doi: 10.1006/jctb.1998.1868.
[10] V.G. Vizing, On an estimate of the chromatic class of p-graph, Diskrete Analiz 3 (1964) 25-30.

Received 3 December 2007
Revised 13 June 2008
Accepted 13 June 2008


Close